CN109241682B - 一种基于电偶极子辐射模型的任意取向磁化场的产生方法 - Google Patents

一种基于电偶极子辐射模型的任意取向磁化场的产生方法 Download PDF

Info

Publication number
CN109241682B
CN109241682B CN201811283444.5A CN201811283444A CN109241682B CN 109241682 B CN109241682 B CN 109241682B CN 201811283444 A CN201811283444 A CN 201811283444A CN 109241682 B CN109241682 B CN 109241682B
Authority
CN
China
Prior art keywords
field
magnetization
electric
orientation
electric dipole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811283444.5A
Other languages
English (en)
Other versions
CN109241682A (zh
Inventor
王思聪
骆建军
朱竹青
李向平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201811283444.5A priority Critical patent/CN109241682B/zh
Publication of CN109241682A publication Critical patent/CN109241682A/zh
Application granted granted Critical
Publication of CN109241682B publication Critical patent/CN109241682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于电偶极子辐射模型的任意三维取向磁化场的产生方法,包括聚焦透镜和特定空间取向振荡的两个电偶极子,根据电偶极子天线辐射理论计算得到远场空间任意处两个所述的电偶极子的辐射电场;根据透镜函数,通过所述辐射电场逆向推导得到所述聚焦透镜入瞳处的入射光场,根据所述入射光场,借助Debye矢量衍射理论计算得到聚焦光场,所述聚焦光场通过反法拉第效应计算得到相应取向的磁化场。本发明能够产生亚波长尺度下任意三维空间取向的磁化场,且在磁化场半高全宽空间范围内,磁化场取向纯度可达93%以上。这将为微纳空间尺度局域磁化行为的系统观测以及多维全光磁存储提供有力的技术支持。

Description

一种基于电偶极子辐射模型的任意取向磁化场的产生方法
技术领域
本发明属于磁化场调控与光磁存储技术领域,具体涉及一种基于电偶极子辐射模型的任意取向磁化场的产生方法。
背景技术
对磁材料的磁化场进行灵活调控,在磁动力学、自旋波操控以及磁信息记录等研究领域中具有十分重要的意义。例如,通过对磁化场取向的调控,人们可灵活控制电子自旋波的振动与传播方向,还可实现电子磁矩的反转,并有效应用于磁存储中。目前,人们主要基于外加磁场对磁材料磁化场取向进行调控。利用这种方法进行磁化场取向调控的弊端在于难以实现小空间尺度(微米、纳米尺度)磁化场空间取向的精确控制。因而,外加磁场大多应用于大面积水平磁化场或垂直磁化场(即磁化场方向平行或垂直于磁材料表面)的调控中,极大地降低了磁化场取向调控的自由度。由于人们需要在减小磁化单元空间尺寸的基础上,充分利用磁化场的三维空间取向,以实现微纳空间尺度局域磁化行为的系统观测,如何精确控制微纳空间磁化场三维取向俨然成为当今磁学领域的重要议题。
与传统外加磁场相比,光场具有更为丰富的物理属性,例如波长、偏振态、角动量等。此外,光场还可通过高数值孔径透镜聚焦,将聚焦光斑限制在几百纳米的空间尺度。因此,若能将光场与磁材料磁化场联系起来,即利用光场对磁化场进行调控,微纳空间尺度三维取向磁化场的产生将变得更为灵活可行。二十世纪六十年代,反法拉第效应(InverseFaraday effect,IFE)被人们所提出(L.P.Pitaevskii,Sov.Phys.JEPT 12,1008(1961);P.S.Pershan,Phys.Rev.130,919(1963))。当圆偏振入射光照射在光磁材料上时,光磁材料中将诱导产生等效磁场,并进一步影响磁材料的磁化场,且这一诱导磁化场的取向与入射圆偏振光的旋向和偏振面取向有关。由此可见,基于反法拉第效应,人们可通过调控入射光场的偏振态来实现对光磁材料磁化场的调控。基于这一原理,人们在理论上预测了亚波长尺度纯纵向磁化场(Y.Jiang,et al.,Opt.Lett.38,2957(2013);S.Wang,et al.,Opt.Lett.39,5022(2014))与纯横向磁化场(S.Wang,et al.,Opt.Lett.42,5050(2017))的产生。然而,这些工作也仅限于水平(纯横向)磁化场与垂直(纯纵向)磁化场的调控,仍旧未对磁化场的三维空间取向加以有效利用。其主要原因在于,利用传统的正向算法,即利用已知入射光场来计算聚焦空间中磁化场取向,人们难以找到任意三维取向磁化场与入射光场间的一一对应关系。这为光控获取三维取向磁化场带来了难以突破的技术瓶颈。
逆向算法为此提供了全新的思路。目前,逆向算法已应用于功能性聚焦光场结构的获得,例如光针与球形光斑(W.Chen,et al.,Opt.Lett.34,2444(2009);J.Wang,et al.,Opt.Express 18,21965(2010))。类似地,将所需的任意三维空间取向的磁化场作为出发点,利用电偶极子辐射模型逆推得到入射光场分布,将使光控获取三维取向磁化场的瓶颈技术问题迎刃而解。
因此,有待对现有的技术进行进一步的改进,提供一种基于电偶极子辐射模型的任意三维空间取向的磁化场的产生方法。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于电偶极子辐射模型的任意三维空间取向磁化场的产生方法。
为实现上述发明目的,采用的技术方案实现如下:一种基于电偶极子辐射模型的任意取向磁化场的产生方法,包括聚焦透镜和特定空间取向振荡的两个电偶极子,根据电偶极子天线辐射理论计算得到远场空间任意处两个所述的电偶极子的辐射电场;根据透镜函数,通过所述辐射电场逆向推导得到所述聚焦透镜入瞳处的入射光场,根据所述入射光场,借助Debye矢量衍射理论计算得到聚焦光场,所述聚焦光场通过反法拉第效应计算得到相应取向的磁化场。
优选地,两个所述的电偶极子振荡相位相差π/2且正交排列。
优选地,当所述聚焦透镜的数值孔径为NA=0.95时,所述磁化场的取向纯度在磁化场半高全宽空间范围内大于93%。
优选地,当所述聚焦透镜的数值孔径为NA=0.95时,所述磁化场的横向半高全宽在亚波长空间尺度范围内。
优选地,所述入射光场分布与聚焦空间内磁化场三维取向为一一对应关系,所述入射光场分布包括振幅分布和偏振态分布。
优选地,所述两个电偶极子分别标号为电偶极子1和电偶极子2,所述两个电偶极子利用电偶极子辐射模型产生的任意三维取向的磁化场表示为
Figure BDA0001848526030000021
根据电偶极子天线辐射理论,电偶极子1和电偶极子2在A点处的辐射场分别为
Figure BDA0001848526030000022
Figure BDA0001848526030000031
于是,聚焦透镜参考球面(Ω)上的任意一点
Figure BDA0001848526030000032
处的总辐射场
Figure BDA0001848526030000033
表示为
Figure BDA0001848526030000034
其中,i为虚数单位,θM表示M取向与z轴正方向的夹角,
Figure BDA0001848526030000035
表示M取向在x-y平面上的投影与x轴正方向的夹角,θ和
Figure BDA0001848526030000036
分别是与A点相对应的仰角和旋向角,eθ
Figure BDA0001848526030000037
分别是仰角和旋向角方向的基矢,C是与电偶极子长度有关的常数。
优选地,所述聚焦透镜遵循正弦条件,即r=fsinθ,通过所述辐射电场逆向推导得到所述聚焦透镜入瞳处的入射光场
Figure BDA0001848526030000038
Figure BDA0001848526030000039
其中,r是聚焦系统的径向坐标,f是透镜的焦距。
优选地,根据Debye矢量衍射理论,所得入射光场的聚焦光场为
Figure BDA00018485260300000310
其中,C’是常数,rs
Figure BDA00018485260300000311
和zs是聚焦空间中任意一点S的柱坐标,α为最大的聚焦仰角。
优选地,所述聚焦光场通过反法拉第效应计算得到的磁化场为
Figure BDA00018485260300000312
其中,i为虚数单位,γ是与磁导率相关的常数,
Figure BDA00018485260300000313
是Ef的复共轭。
本发明利用电偶极子辐射模型产生任意三维空间取向磁化场的原理如下:
根据反法拉第效应,在光磁材料中,圆偏振入射光将诱导产生有效磁场,所述有效磁场的取向与圆偏振光的旋向有关。为了得到任意三维取向的磁化场,首先需获得任意三维取向的圆偏振电场。电偶极子模型为构造所需的圆偏振电场提供了有效的技术手段。圆偏振电场可分解为相互垂直的、相位相差π/2的两线偏振电场分量。如果将振荡的电偶极子等效于相应的线偏振电场分量,便可通过设计电偶极子的空间取向与相位来构造所需的圆偏振电场,进而构造出相应取向的反法拉第效应诱导的磁化场。根据电偶极子天线辐射理论以及具体的透镜函数,可逆向推导出所需的入射光场。最后,根据此入射光场,通过Debye矢量衍射理论计算,得到实际的聚焦光场,并进一步得到预设取向的反法拉第效应诱导磁化场。
有益效果
本发明与现有技术相比,具有如下的优点及效果:
(1)可实现亚波长尺度内磁化场的全光调控。
(2)能够产生亚波长尺度下任意三维空间取向的磁化场。
(3)为微纳空间尺度局域磁化行为的系统观测以及多维全光磁存储提供有力的技术支持。
附图说明
图1表示的是利用电偶极子辐射模型产生任意三维取向磁化场的示意图;
图2表示的是利用特定取向的正交电偶极子构造取向为(π/6,π/3)的磁化场示意图;
图3表示的是利用逆向算法所得的聚焦光场(Ef)的归一化强度与偏振态在三个正交平面上的投影分布图;
图4表示的是|M(π/6,π/3)|的空间三维归一化分布图;
图5表示的是M(π/6,π/3)的归一化振幅和三维空间取向在三个正交平面上的投影分布图;
图6表示的是由电偶极子辐射模型逆向算法得到的磁化场在取向
Figure BDA0001848526030000041
上的取向纯度计算示意图;
图7表示的是M||(π/6,π/3)分量的归一化振幅和三维空间取向在三个正交平面上的投影分布图;
图8表示的是M(π/6,π/3)分量的归一化振幅在三个正交平面上的投影分布图;
图9表示的是由电偶极子辐射模型逆向算法得到的磁化场取向纯度随空间位置的变化关系图;
图10表示的是在磁化场半高全宽空间范围内,即V=0.5,磁化场取向纯度随NA的变化关系图;
图11表示的是M||(0,π/2)的归一化场分布在三个正交平面上的投影图;
图12表示的是|M(0,π/2)|的归一化场分布在三个正交平面上的投影图;
图13表示的是M||(π/4,π/2)的归一化场分布在三个正交平面上的投影图;
图14表示的是|M(π/4,π/2)|的归一化场分布在三个正交平面上的投影图;
图15表示的是M||(π/2,π/2)的归一化场分布在三个正交平面上的投影图;
图16表示的是|M(π/2,π/2)|的归一化场分布在三个正交平面上的投影图;
为了更好地看清附图中的内容,故部分附图采用彩色图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更加详细的描述。附图中给出了本发明较佳的实施例。但是,本发明可以以其他不同的形式来体现,并不局限于本文所描述的实施例。相反的,提供这个实施例的目的是为了使本发明的公开内容理解的更加全面透彻。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例:
图1所示为利用电偶极子辐射模型产生任意三维取向磁化场的示意图。
Figure BDA0001848526030000051
表示任意三维取向的磁化场,其中,θM表示M取向与z轴正方向的夹角,
Figure BDA0001848526030000052
表示M取向在x-y平面上的投影与x轴正方向的夹角。为通过反法拉第效应获得
Figure BDA0001848526030000053
电偶极子1(Dipole1)和电偶极子2(Dipole 2)的取向分别为
Figure BDA0001848526030000054
Figure BDA0001848526030000055
且与电偶极子1相比,电偶极子2的振荡相位落后π/2。eθ
Figure BDA0001848526030000056
分别是仰角和旋向角方向的基矢。
Figure BDA0001848526030000057
是聚焦透镜参考球面(Ω)上的任意一点,其中θ和
Figure BDA0001848526030000058
分别是与之相对应的仰角和旋向角。根据电偶极子天线辐射理论,电偶极子1和电偶极子2在A点处的辐射场分别为
Figure BDA0001848526030000059
Figure BDA00018485260300000510
其中,i为虚数单位,C是与电偶极子长度有关的常数。于是,A点处的总辐射场
Figure BDA00018485260300000511
可表示为
Figure BDA00018485260300000512
假设,消球差聚焦透镜遵循正弦条件,即r=fsinθ,其中r是聚焦系统的径向坐标,f是透镜的焦距。则,逆向推导所得的入射光场
Figure BDA00018485260300000513
可表示为
Figure BDA00018485260300000514
根据Debye矢量衍射理论(以人名德拜命名的矢量衍射理论),所得入射光场的聚焦光场为
Figure BDA00018485260300000515
其中,C’是常数,rs
Figure BDA00018485260300000516
和zs是聚焦空间中任意一点S的柱坐标,α为最大的聚焦仰角。根据反法拉第效应,此聚焦光场在光磁材料中所产生的磁化场可表示为
Figure BDA0001848526030000061
其中,i为虚数单位,γ是与磁导率相关的常数,
Figure BDA00018485260300000615
是Ef的复共轭。
不失一般性,图2所示为利用取向分别为(π/2,-π/6)和(2π/3,π/3)的正交电偶极子构造取向为(π/6,π/3)的磁化场示意图。
图3所示为Ef的归一化强度与偏振态在三个正交平面上的投影分布。其中,插图表示透镜入瞳处的光场分布Ein,Rin是透镜的半径。
图4所示为|M(π/6,π/3)|的空间三维归一化分布,V代表不同等值面的值。
图5所示为M(π/6,π/3)的归一化振幅和三维空间取向在三个正交平面上的投影分布。其中,NA=0.95。M(π/6,π/3)场分布在x、y和z方向上的半高全宽分别为0.56λ、0.56λ和1.31λ,λ是光场在聚焦空间中的波长。
由于聚焦透镜有限的孔径大小限制了用于重构聚焦空间中由两电偶极子相干合成的圆偏振电场的传播分量,通过此方法计算所得的磁化场实际取向会与理想取向有微弱的偏差。因此,需对磁化场取向纯度进行定量分析。为便于分析和理解,将利用逆向算法所得到的
Figure BDA0001848526030000062
Figure BDA0001848526030000063
表示为
Figure BDA0001848526030000064
将其在取向
Figure BDA0001848526030000065
上的投影表示为
Figure BDA0001848526030000066
将其在与取向
Figure BDA0001848526030000067
相垂直的平面内的投影表示为
Figure BDA0001848526030000068
根据图6所示的示意图所表示的几何关系可得
Figure BDA0001848526030000069
以及
Figure BDA00018485260300000610
其中,
Figure BDA00018485260300000611
Figure BDA00018485260300000612
可通过
Figure BDA00018485260300000613
的表达式直接得到。于是,通过逆向算法所得到的磁化场的取向纯度P可表示为
Figure BDA00018485260300000614
图7和图8分别表示当NA=0.95时,M||(π/6,π/3)分量和M(π/6,π/3)分量在三个正交平面上的投影分布。可以发现,M||(π/6,π/3)远远强于M(π/6,π/3),且M||(π/6,π/3)分布于聚焦空间的中心。计算表明,在等值面为0.9、0.5、0.3和0.1的磁化场空间中,磁化场取向纯度可分别达到0.983、0.935、0.903和0.844。由此可见,即使在等值面为0.1时,利用此方法仍可得到高纯度的三维取向磁化场。
图9所示为任意磁化场取向纯度随空间位置的变化关系。其中,NA=0.95。可以发现,在磁化场半高全宽空间范围内,任意磁化场取向纯度均可达93%以上。
图10所示为在磁化场半高全宽空间范围内,磁化场取向纯度随NA的变化关系。
图11至图16所示分别为M||(0,π/2)、|M(0,π/2)|、M||(π/4,π/2)、|M(π/4,π/2)|、M||(π/2,π/2)、|M(π/2,π/2)|的归一化场分布在三个正交平面上的投影。这些结果均证明,利用电偶极子辐射模型逆向算法可得到极高取向纯度的任意三维取向磁化场。
所述入射光场分布与聚焦空间内磁化场三维取向为一一对应关系,所述入射光场分布包括振幅分布和偏振态分布。
与传统正向算法相比,此方法能够产生亚波长尺度下任意三维空间取向的磁化场,且在磁化场半高全宽空间范围内,磁化场取向纯度可达93%以上,这将为微纳空间尺度局域磁化行为的系统观测以及多维全光磁存储提供有力的技术支持。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,如本发明中电偶极子对的空间取向、计算辐射场与聚焦场所使用的衍射理论。其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (4)

1.一种基于电偶极子辐射模型的任意取向磁化场的产生方法,其特征在于:包括聚焦透镜和特定空间取向振荡的两个电偶极子;根据电偶极子天线辐射理论计算得到远场空间任意处两个所述的电偶极子的辐射电场;根据透镜函数,通过所述辐射电场逆向推导得到所述聚焦透镜入瞳处的入射光场;根据所述入射光场,借助Debye矢量衍射理论计算得到聚焦光场,所述聚焦光场通过反法拉第效应计算得到相应取向的磁化场;
所述的两个电偶极子振荡相位相差π/2且正交排列;
所述两个电偶极子分别标号为电偶极子1和电偶极子2,所述两个电偶极子利用电偶极子辐射模型产生的任意三维取向的磁化场表示为
Figure FDA0003954097100000011
根据电偶极子天线辐射理论,电偶极子1和电偶极子2在A点处的辐射场分别为
Figure FDA0003954097100000012
Figure FDA0003954097100000013
于是,聚焦透镜参考球面(Ω)上的任意一点
Figure FDA0003954097100000014
处的总辐射场
Figure FDA0003954097100000015
表示为
Figure FDA0003954097100000016
其中,i为虚数单位,θM表示M取向与z轴正方向的夹角,
Figure FDA0003954097100000017
表示M取向在x-y平面上的投影与x轴正方向的夹角,θ和
Figure FDA0003954097100000018
分别是与A点相对应的仰角和旋向角,eθ
Figure FDA0003954097100000019
分别是仰角和旋向角方向的基矢,C是与电偶极子长度有关的常数;
所述聚焦透镜遵循正弦条件,即r=fsinθ,通过所述辐射电场逆向推导得到所述聚焦透镜入瞳处的入射光场
Figure FDA00039540971000000110
Figure FDA00039540971000000111
其中,r是聚焦系统的径向坐标,f是透镜的焦距;
根据Debye矢量衍射理论,所得入射光场的聚焦光场为
Figure FDA00039540971000000112
其中,C’是常数,rs
Figure FDA00039540971000000113
和zs是聚焦空间中任意一点S的柱坐标,α为最大的聚焦仰角;所述聚焦光场通过反法拉第效应计算得到的磁化场为
Figure FDA00039540971000000114
其中,i为虚数单位,γ是与磁导率相关的常数,Ef *是Ef的复共轭。
2.根据权利要求1所述的一种基于电偶极子辐射模型的任意取向磁化场的产生方法,其特征在于:当所述聚焦透镜的数值孔径为NA=0.95时,所述磁化场的取向纯度在磁化场半高全宽空间范围内大于93%。
3.根据权利要求1所述的一种基于电偶极子辐射模型的任意取向磁化场的产生方法,其特征在于:当所述聚焦透镜的数值孔径为NA=0.95时,所述磁化场的横向半高全宽在亚波长空间尺度范围内。
4.根据权利要求1所述的一种基于电偶极子辐射模型的任意取向磁化场的产生方法,其特征在于:所述入射光场分布与聚焦空间内磁化场三维取向为一一对应关系,所述入射光场分布包括振幅分布和偏振态分布。
CN201811283444.5A 2018-10-31 2018-10-31 一种基于电偶极子辐射模型的任意取向磁化场的产生方法 Active CN109241682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811283444.5A CN109241682B (zh) 2018-10-31 2018-10-31 一种基于电偶极子辐射模型的任意取向磁化场的产生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811283444.5A CN109241682B (zh) 2018-10-31 2018-10-31 一种基于电偶极子辐射模型的任意取向磁化场的产生方法

Publications (2)

Publication Number Publication Date
CN109241682A CN109241682A (zh) 2019-01-18
CN109241682B true CN109241682B (zh) 2023-01-31

Family

ID=65079646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811283444.5A Active CN109241682B (zh) 2018-10-31 2018-10-31 一种基于电偶极子辐射模型的任意取向磁化场的产生方法

Country Status (1)

Country Link
CN (1) CN109241682B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113805330A (zh) * 2020-06-16 2021-12-17 南开大学 一种基于硅球三聚体的高方向性横向单向散射实现方法
CN116165792B (zh) * 2023-04-26 2023-06-23 泉州师范学院 一种产生携带任意指向轨道角动量涡旋焦场的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090386A (zh) * 2014-07-30 2014-10-08 东南大学 一种调控光场偏振态分布的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740984A (en) * 1983-03-11 1988-04-26 The United States Of America As Represented By The Secretary Of The Navy Magnetically induced laser
US5408178A (en) * 1991-05-17 1995-04-18 Vanderbilt University Apparatus and method for imaging the structure of diamagnetic and paramagnetic objects
AU8669398A (en) * 1997-07-28 1999-02-16 Research And Development Institute, Inc. Coherent interaction of optical radiation beams with optical-electronic materials of generalized crystal symmetry
WO2010053753A1 (en) * 2008-11-04 2010-05-14 Exxonmobil Upstream Research Company Method for determining orientation of electromagnetic receivers
US8743005B2 (en) * 2011-08-01 2014-06-03 LGS Innovations LLC Low-aspect antenna having a vertical electric dipole field pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090386A (zh) * 2014-07-30 2014-10-08 东南大学 一种调控光场偏振态分布的方法

Also Published As

Publication number Publication date
CN109241682A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Beresna et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass
Wang et al. Polarization singularities: Progress, fundamental physics, and prospects
Rashid et al. Focusing of high order cylindrical vector beams
Ott et al. Circular heat and momentum flux radiated by magneto-optical nanoparticles
Orlov et al. Complex source beam: A tool to describe highly focused vector beams analytically
CN109241682B (zh) 一种基于电偶极子辐射模型的任意取向磁化场的产生方法
Zhang et al. Synthetic vector optical fields with spatial and temporal tunability
Sarenac et al. Generation of a lattice of spin-orbit beams via coherent averaging
Trypogeorgos et al. Synthetic clock transitions via continuous dynamical decoupling
Wang et al. Semiclassical calculation of the photodetachment cross section of hydrogen negative ion inside a square microcavity
Lecheminant et al. Exotic quantum criticality in one-dimensional coupled dipolar bosons tubes
Zhou Propagation property of a Lorentz–Gauss vortex beam in a strongly nonlocal nonlinear media
Lembessis et al. Chirality-enabled optical dipole potential energy for two-level atoms
Higurashi et al. Optically induced angular alignment of birefringent micro-objects by linear polarization
Wang et al. Effect of degree of polarization on localized spin density in tightly focusing of vortex beams
Sun et al. The appearance and annihilation of the spin angular momentum for the multi-polar vector optical field in the focal plane
Zhang et al. Selective generation and amplification of RKKY interactions by ap-n interface
Zhou et al. Diffraction-limited optical focusing with arbitrarily oriented magnetic field
Janet et al. Tight focusing properties of radially polarized Gaussian beams with pair of vortices
Gu et al. Controllable vector bottle-shaped fields generated by focused spatial-variant linearly polarized vector beams
Sun et al. Generalized vector diffraction model for tight focusing of light with arbitrary polarization state
Kumar et al. Dynamic evolution of transverse energy flow in focused asymmetric optical vector-vortex beams
Vyas et al. Twisted longitudinally polarized field in the focal region
Zhang et al. Photonic spin-orbit coupling induced by deep-subwavelength structured light
Wang et al. Polarization-insensitive ultraviolet super-oscillatory metalens doublet for large-field-of-view focusing and imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant