CN109226743A - 一种硼合金化变质降低tc4增材制造各向异性的方法 - Google Patents

一种硼合金化变质降低tc4增材制造各向异性的方法 Download PDF

Info

Publication number
CN109226743A
CN109226743A CN201811297256.8A CN201811297256A CN109226743A CN 109226743 A CN109226743 A CN 109226743A CN 201811297256 A CN201811297256 A CN 201811297256A CN 109226743 A CN109226743 A CN 109226743A
Authority
CN
China
Prior art keywords
titanium alloy
boron
material manufacturing
laser
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811297256.8A
Other languages
English (en)
Inventor
张安峰
李涤尘
霍浩
张金智
张晓星
刘亚雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811297256.8A priority Critical patent/CN109226743A/zh
Publication of CN109226743A publication Critical patent/CN109226743A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种硼合金化变质降低TC4增材制造各向异性的方法,包括以下步骤:步骤S1,将Ti‑6Al‑4V‑0.05B合金粉末在120℃真空环境下烘干8h;步骤S2,使用激光增材制造装置将步骤1中烘干的合金粉末在惰性气体保护气氛下进行激光熔覆成形,得到成形的样件。步骤S3对成形零件在惰性气体氩气保护下进行固溶时效热处理。使用本发明中的硼与TC4合金化的新材料进行激光熔覆沉积,成形过程中硼元素在TC4钛合金中有效地抑制粗大一次柱状晶生长,促使TC4钛合金晶粒趋于等轴与细化,组织更加均匀,使常规力学性能的各向异性控制在10%以内。为激光增材制造TC4钛合金开辟了一条新的途径。

Description

一种硼合金化变质降低TC4增材制造各向异性的方法
技术领域
本发明属于激光增材制造领域;具体涉及一种硼合金化变质降低TC4钛合金激光增材制造各向异性的方法。
背景技术
激光增材制造钛合金是近年来发展起来的一项新兴技术,该技术通过高功率激光熔化同步输送的钛合金粉末,逐点逐层堆积成形零件,克服了由于钛合金本身所具有的高熔点、导热性差、高熔融态活性以及变形抗力大的特点所带来的加工难度大、复杂零件加工技术难等缺点,在航天航空和国防制造领域被越来越多的研究和应用,但是,由于激光增材制造具有即热即冷、温度梯度大的特性难以控制,造成了其钛合金成形件宏观组织为沿成形方向贯穿多个熔覆层的粗大β柱状晶,导致钛合金构件各向异性(可达到15%-70%)明显,断裂韧性和低周疲劳强度较低,从而严重制约其在国防工业和航空航天领域的应用。如何细化激光增材制造钛合金晶粒,减小其各向异性是激光增材制造钛合金研究的热点。
发明内容
本发明提供了一种通过变质剂硼与TC4合金化来降低TC4钛合金激光增材制造各向异性的新方法。使用该方法能够使得粗大的β柱状晶消失或者得到有效抑制,细化激光增材制造TC4钛合金晶粒,降低各向异性,使常规力学性能的各向异性控制在10%以内。本发明通过硼与TC4钛合金合金化的增材制造方法,可以有效地改善激光增材制造TC4宏微观组织,细化TC4晶粒,使得β柱状晶消失或者得到有效抑制,进而起到减小其各向异性的作用。有利于进一步扩大推广激光增材制造TC4钛合金在在国防工业和航空航天领域的应用。
本发明采用如下技术方案:一种硼合金化变质降低TC4增材制造各向异性的方法,硼B以合金化的方法加入到TC4钛合金中,在增材制造过程中B元素在TC4钛合金中有效地抑制粗大一次柱状晶生长,促使TC4钛合金晶粒趋于等轴与细化,有效地降低了激光增材制造TC4钛合金的各向异性,使常规力学性能的各向异性控制在10%以内,包括以下步骤:
步骤(1),制备TC4-0.05B(Ti-6Al-4V-0.05B)合金粉末,合金粉末粒度为50~150μm,将Ti-6Al-4V-0.05B合金粉末在真空环境下烘干,烘干温度为120℃,且烘干时间4~8h;合金化粉末硼元素的质量分数为0.02~0.08%;
步骤(2),使用激光增材制造装置将步骤(1)中烘干的合金化粉末在惰性气体氩气保护环境下进行激光熔覆沉积,得到成形的零件;
步骤(3),对零件在惰性气体氩气保护下进行固溶时效热处理,热处理工艺:固溶温度900~950℃,保温1~3h,空冷;时效温度500~550℃,保温4~6h,然后空冷。
所述步骤(2)中激光功率为180~240W,扫描速度为8~16mm/s,送粉量为2~3g/min。
与现有技术相比,本发明的有益效果在于:变质剂硼以合金化的方法加入到TC4钛合金中,在增材制造过程中硼元素在TC4钛合金中有效地抑制粗大一次柱状晶生长,促使TC4钛合金晶粒趋于等轴与细化,有效地降低了激光增材制造TC4钛合金的各向异性,为激光增材制造TC4钛合金开辟了一条新的途径。在激光熔覆沉积的过程中,当熔池开始凝固时,硼原子在固液界面处发生富集,从而产生成分过冷,提高形核率,细化柱状晶晶粒;另一方面,由Ti-B二元相图可知,B原子和Ti反应生成难熔相TiB,TiB相沿晶界析出,阻断α相沿原始晶界的连续生长,从而达到消除晶界的目的,最终起到提高其塑性和韧性,减小其各向异性的作用。
附图说明
表1为A、B两种不同工艺下激光增材制造拉伸试样横向与纵向的拉伸数据;
图1为A、B两种不同工艺下激光增材制造的组织对比图;
(a)Ti-6Al-4V固溶时效的显微组织;
(b)Ti-6Al-4V-0.05B固溶时效的显微组织;
图2为A、B两种不同工艺下激光增材制造的拉伸试样的各向异性直方图;
具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步说明。
本发明制备了一种变质剂硼与TC4合金化的Ti-6Al-4V-0.05B粉末,其中硼元素的质量分数占比为0.05%,且该合金化粉末的粒度为50-150μm。
本发明还提供了一种降低各向异性的增材制造方法,具体包括以下步骤:
步骤S1,硼合金化的Ti-6Al-4V-0.05B粉末在真空干燥箱、120℃烘干,烘干时长至少8h;
步骤S2,使用激光增材制造装置将步骤1中烘干的合金化粉末在惰性气体氩气保护气氛下进行激光熔覆成形,得到成形的零件;
步骤S3,对步骤S2中得到的样件进行热处理,热处理在惰性气体保护气氛下进行,具体过程是:将成形样件进行固溶时效热处理,固溶温度900~950℃,保温1~3h,空冷;时效温度500~550℃,保温4~6h,然后空冷。
具体分为A、B两种工艺实施,两种工艺分别采用A工艺的粉末为Ti-6Al-4V和B工艺的粉末为Ti-6Al-4V-0.05B粉末进行激光熔覆成形,然后进行固溶时效热处理,固溶温度950±5℃,保温1h,空冷;时效温度550±5℃,保温4h,然后空冷。
本发明的实施例包括:
实施例1
A工艺,取TC4钛合金粉末,粉末的粒度为50-150μm,在真空120℃下烘干8h;再使用激光增材制造装置在氩气保护气氛下进行激光熔覆成形。其中激光功率为180W,激光光斑直径为0.5mm,扫描速度为10mm/s,送粉量为2.5g/min,Z轴提升量△Z=0.10mm,扫描间距0.2mm。然后对成形零件在惰性气体氩气保护下进行固溶时效热处理,固溶温度950℃,保温1h,空冷;时效温度550℃,保温4h,然后空冷。成型合金的室温的横纵拉伸性能见表1,得到的样件的金相图如图1-a所示,组织以短棒状柱状晶为主。柱状晶宽度在100~450μm,平均约为210μm。力学性能各向异性明显,如图2所示。
实施例2
B工艺,取合金化的Ti-6Al-4V-0.05B粉末,其中硼元素的质量分数占比为0.05%,该合金粉的粒度为50-150μm,在真空120℃下烘干8h;再使用激光增材制造装置在氩气保护气氛下进行激光熔覆成形。其中激光功率为180W,激光光斑直径为0.5mm,填充速度为10mm/s,送粉量为2.5g/min,Z轴提升量△Z=0.10mm,扫描间距0.2mm。然后对成形零件在惰性气体氩气保护下进行固溶时效热处理,固溶温度950℃,保温1h,空冷;时效温度550℃,保温4h,然后空冷。成型合金的室温的横纵拉伸性能见表1,得到的样件的金相图如图1-b所示,晶粒明显细化,组织更加均匀,呈现出类等轴晶。各向异性如图2所示,较实施例1各向异性明显减小。
表1:拉伸实验各向异性结果

Claims (2)

1.一种硼合金化变质降低TC4增材制造各向异性的方法,其特征在于,硼B以合金化的方法加入到TC4钛合金中,在增材制造过程中B元素在TC4钛合金中有效地抑制粗大一次柱状晶生长,促使TC4钛合金晶粒趋于等轴与细化,有效地降低了激光增材制造TC4钛合金的各向异性,使常规力学性能的各向异性控制在10%以内,包括以下步骤:
步骤(1),制备TC4-0.05B(Ti-6Al-4V-0.05B)合金粉末,合金粉末粒度为50~150μm,将Ti-6Al-4V-0.05B合金粉末在真空环境下烘干,烘干温度为120℃,且烘干时间4~8h;合金化粉末硼元素的质量分数为0.02~0.08%;
步骤(2),使用激光增材制造装置将步骤(1)中烘干的合金化粉末在惰性气体氩气保护环境下进行激光熔覆沉积,得到成形的零件;
步骤(3),对零件在惰性气体氩气保护下进行固溶时效热处理,热处理工艺:固溶温度900~950℃,保温1~3h,空冷;时效温度500~550℃,保温4~6h,然后空冷。
2.根据权利要求1所述的硼合金化变质降低TC4钛合金激光增材制造各向异性的方法,其特征在于,所述步骤(2)中激光功率为180~240W,扫描速度为8~16mm/s,送粉量为2~3g/min。
CN201811297256.8A 2018-11-01 2018-11-01 一种硼合金化变质降低tc4增材制造各向异性的方法 Pending CN109226743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811297256.8A CN109226743A (zh) 2018-11-01 2018-11-01 一种硼合金化变质降低tc4增材制造各向异性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811297256.8A CN109226743A (zh) 2018-11-01 2018-11-01 一种硼合金化变质降低tc4增材制造各向异性的方法

Publications (1)

Publication Number Publication Date
CN109226743A true CN109226743A (zh) 2019-01-18

Family

ID=65080221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811297256.8A Pending CN109226743A (zh) 2018-11-01 2018-11-01 一种硼合金化变质降低tc4增材制造各向异性的方法

Country Status (1)

Country Link
CN (1) CN109226743A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216352A (zh) * 2019-07-26 2019-09-10 南昌航空大学 一种改善电弧增材制造钛合金构件拉伸性能各向异性的方法
CN110508814A (zh) * 2019-09-25 2019-11-29 河北科技大学 选区激光粉末床熔融制备含硼钛合金材料的方法及其产品
CN111074185A (zh) * 2019-12-20 2020-04-28 西安交通大学 能有效降低激光增材制造钛合金各向异性的热处理方法
CN111168069A (zh) * 2020-02-28 2020-05-19 西安交通大学 能有效提高lam tc4强韧性降低各向异性的热处理方法
CN111455296A (zh) * 2020-06-05 2020-07-28 成都先进金属材料产业技术研究院有限公司 激光熔丝沉积Ti-6Al-4V钛合金块的固溶处理工艺
CN111826594A (zh) * 2020-07-30 2020-10-27 北京理工大学 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN113088848A (zh) * 2021-04-20 2021-07-09 重庆大学 一种同时提高激光熔覆沉积tc4钛合金强度和塑性的热处理方法
CN114260466A (zh) * 2021-09-16 2022-04-01 攀枝花容则钒钛有限公司 一种具有β相柱状晶TC18钛合金的热处理方法
CN114959531A (zh) * 2022-06-01 2022-08-30 沈阳飞机工业(集团)有限公司 一种激光直接沉积Ti65钛合金的热处理方法
CN114959362A (zh) * 2022-06-20 2022-08-30 长安大学 一种基于等轴细晶强化的高强高塑激光增材制造钛合金

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555281A (zh) * 2018-05-15 2018-09-21 西安交通大学 降低各向异性的增材制造方法及其加b钛合金增材材料
CN108555297A (zh) * 2018-05-15 2018-09-21 西安交通大学 加B感应加热消除激光增材制造TC4合金初生β晶界的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108555281A (zh) * 2018-05-15 2018-09-21 西安交通大学 降低各向异性的增材制造方法及其加b钛合金增材材料
CN108555297A (zh) * 2018-05-15 2018-09-21 西安交通大学 加B感应加热消除激光增材制造TC4合金初生β晶界的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110216352A (zh) * 2019-07-26 2019-09-10 南昌航空大学 一种改善电弧增材制造钛合金构件拉伸性能各向异性的方法
CN110508814A (zh) * 2019-09-25 2019-11-29 河北科技大学 选区激光粉末床熔融制备含硼钛合金材料的方法及其产品
CN110508814B (zh) * 2019-09-25 2022-02-11 河北科技大学 选区激光粉末床熔融制备含硼钛合金材料的方法及其产品
CN111074185B (zh) * 2019-12-20 2021-08-13 西安交通大学 能有效降低激光增材制造钛合金各向异性的热处理方法
CN111074185A (zh) * 2019-12-20 2020-04-28 西安交通大学 能有效降低激光增材制造钛合金各向异性的热处理方法
CN111168069A (zh) * 2020-02-28 2020-05-19 西安交通大学 能有效提高lam tc4强韧性降低各向异性的热处理方法
CN111455296A (zh) * 2020-06-05 2020-07-28 成都先进金属材料产业技术研究院有限公司 激光熔丝沉积Ti-6Al-4V钛合金块的固溶处理工艺
CN111826594A (zh) * 2020-07-30 2020-10-27 北京理工大学 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN111826594B (zh) * 2020-07-30 2021-09-28 北京理工大学 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN113088848A (zh) * 2021-04-20 2021-07-09 重庆大学 一种同时提高激光熔覆沉积tc4钛合金强度和塑性的热处理方法
CN114260466A (zh) * 2021-09-16 2022-04-01 攀枝花容则钒钛有限公司 一种具有β相柱状晶TC18钛合金的热处理方法
CN114260466B (zh) * 2021-09-16 2024-08-13 攀枝花容则钒钛有限公司 一种具有β相柱状晶TC18钛合金的热处理方法
CN114959531A (zh) * 2022-06-01 2022-08-30 沈阳飞机工业(集团)有限公司 一种激光直接沉积Ti65钛合金的热处理方法
CN114959362A (zh) * 2022-06-20 2022-08-30 长安大学 一种基于等轴细晶强化的高强高塑激光增材制造钛合金
CN114959362B (zh) * 2022-06-20 2023-03-14 长安大学 一种基于等轴细晶强化的高强高塑激光增材制造钛合金

Similar Documents

Publication Publication Date Title
CN109226743A (zh) 一种硼合金化变质降低tc4增材制造各向异性的方法
Lu et al. Microstructure evolution of sub-critical annealed laser deposited Ti–6Al–4V alloy
Wei et al. Preliminary investigation on selective laser melting of Ti-5Al-2.5 Sn α-Ti alloy: From single tracks to bulk 3D components
CN108555281A (zh) 降低各向异性的增材制造方法及其加b钛合金增材材料
CN111826594B (zh) 一种电弧增材制造高强钛合金的热处理方法和一种增强的高强钛合金
CN109504927B (zh) 促进晶界周围一次γ'相和晶内二次γ'相析出及细化晶粒的GH4720Li加热方法
CN113355666B (zh) 一种激光熔覆增材制造tc18钛合金组织细化和等轴化方法
Zhang et al. The effect of annealing on microstructure and mechanical properties of selective laser melting AlSi10Mg
Lou et al. Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys
CN113481444B (zh) 一种包晶凝固铸态TiAl合金细晶组织调控方法
CN108977693B (zh) 一种再结晶高强钛合金及其制备方法
CN113430403A (zh) 一种预时效制备高强韧稀土镁合金的方法
Kaoushik et al. Development of microstructure and high hardness of Ti6Al4V alloy fabricated using laser beam powder bed fusion: A novel sub-transus heat treatment approach
Feng et al. Influence of processing parameter on phase transformation and superelastic recovery strain of laser solid forming NiTi alloy
CN108555297B (zh) 加B感应加热消除激光增材制造TC4合金初生β晶界的方法
CN108977692B (zh) 一种高强钛合金及其制备方法
Cao et al. Refinement of carbide precipitates in high-Nb TiAl by cyclic aging treatments
CN103820666A (zh) 一种细晶铜铬合金的制备方法
Qi et al. Effect of hydrogen on the microstructure and mechanical properties of high temperature deformation of Ti6Al4V additive manufactured
Tao et al. Effect of multi-stage heat treatment on the microstructure and mechanical properties of Ti–6Al–4V alloy deposited by high-power laser melting deposition
CN113512668A (zh) 一种含硼形状记忆合金及其制备方法
CN111394665A (zh) 一种TiCuZrPdFe非晶合金及其制备方法
Pu et al. Accelerated improvement in tensile superelasticity of electron beam directed energy deposition manufactured NiTi alloys by artificial thermal cycling combined with low temperature aging treatment
CN116254491A (zh) 一种提高激光熔覆成形Ti-5321钛合金强度的热处理方法
CN103074531A (zh) 一种耐热稀土镁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190118

RJ01 Rejection of invention patent application after publication