CN109214061A - 一种超燃冲压发动机隔离段截面渐变优化设计方法 - Google Patents

一种超燃冲压发动机隔离段截面渐变优化设计方法 Download PDF

Info

Publication number
CN109214061A
CN109214061A CN201810912019.1A CN201810912019A CN109214061A CN 109214061 A CN109214061 A CN 109214061A CN 201810912019 A CN201810912019 A CN 201810912019A CN 109214061 A CN109214061 A CN 109214061A
Authority
CN
China
Prior art keywords
section
distance piece
angular region
plate angular
chamfering radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810912019.1A
Other languages
English (en)
Other versions
CN109214061B (zh
Inventor
郑博睿
刘雄
葛畅
柯熙政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810912019.1A priority Critical patent/CN109214061B/zh
Publication of CN109214061A publication Critical patent/CN109214061A/zh
Application granted granted Critical
Publication of CN109214061B publication Critical patent/CN109214061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明公开的一种超燃冲压发动机隔离段截面渐变优化设计方法,具体步骤如下:步骤1,根据进气道出口矩形尺寸确定w0、h0,根据隔离段出口尺寸确定R0,根据隔离段长度确定l0;步骤2,以隔离段入口截面的流向位置为原点,在流向l位置的截面,此时该截面的宽度为w,该截面的高度为h,该截面顶板角区的倒圆半径为R1,该截面底板角区的倒圆半径为R2;步骤3,根据进气道出口截面低能流动区域的分布;步骤4,w、h、R1、R2这4个变截面控制变量参数的定量变化过程,根据数值模拟的结果,对某一控制变量的变化规律进行迭代优化。本发明方法解决了现有截面渐变方法中仅仅从数学和几何角度进行了简单截面融合的问题。

Description

一种超燃冲压发动机隔离段截面渐变优化设计方法
技术领域
本发明属于超燃冲压发动机变截面隔离段设计技术领域,具体涉及一种超燃冲压发动机隔离段截面渐变优化设计方法。
背景技术
隔离段是超燃冲压发动机的不可或缺的重要部件,是解决有边界层条件下燃烧室反压极易对进气道工作造成影响这一问题的有效手段。它作为气动和压力缓冲段将高超声速进气道与燃烧室联接起来。对隔离段本身的优化设计以及对隔离段与进气道和燃烧室一体化设计,具有重要工程应用价值。
目前的研究和设计工作主要有以下两个特点:第一,隔离段构型简单。研究对象多为十分简单的矩形等直管道或等直圆管道,这主要是因为当时冲压发动机研究中,通常会将隔离段设计成为这两种简单的几何构型。第二,往往把隔离段当做一个独立部件来看待,没有很好地考虑与进气道和燃烧室的一体化设计。第三,往往只从气动方面考虑设计的优化,没有把进气道机身一体化、燃烧室结构、热载荷、燃烧效率纳入考虑综合权衡。因此,变截面隔离段具有独特的优势,它可以前端对接可模块化布置的二维进气道,充分利用前体预压缩气流;后端对接湿面积较小、承受特定压力和热载荷的所需的结构重量较轻的圆形燃烧室,并能缓解超声速角区流动的影响。
目前变截面管道设计主要针对进气道,主要是利用流线追踪技术与截面融合渐变方法,实现了入口矩形向出口圆形的过渡。其中截面融合渐变过程采用的融合函数尤为关键,主要是对两种不同的形状轮廓进行加权融合,达到渐变的效果。由于隔离段的入口截面就是进气道的出口截面,来流条件为非均匀来流,因此变截面隔离段的设计不能简单地照搬流线追踪和截面融合函数方法。截面渐变过程将造成隔离段底板附近的低能流动区域在底板中心线附近堆积,进而造成隔离段抗反压性能下降,所以在优化设计的过程中应考虑尽量减小这种影响。
发明内容
本发明的目的是提供一种超燃冲压发动机隔离段截面渐变优化设计方法,解决了现有截面渐变方法中仅仅从数学和几何角度进行了简单截面融合的问题。
本发明所采用的技术方案是:一种超燃冲压发动机隔离段截面渐变优化设计方法,具体步骤如下:
步骤1,根据进气道出口矩形尺寸确定w0、h0,根据隔离段出口尺寸确定R0,根据隔离段长度确定l0;其中,w0为隔离段入口截面宽度,h0为隔离段入口截面高度,R0为隔离段出口圆形截面的半径,l0为隔离段的长度;
步骤2,以隔离段入口截面的流向位置为原点,在流向l位置的截面,此时该截面的宽度为w,该截面的高度为h,该截面顶板角区的倒圆半径为R1,该截面底板角区的倒圆半径为R2;因为截面为左右对称,因此可对顶板角区倒圆半径R1和底板角区的倒圆半径为R2的变化规律分开控制;
步骤3,根据进气道出口截面低能流动区域的分布,对宽度w、高度h、顶板角区倒圆半径R1、底板角区倒圆半径R2这4个控制变量沿程变化规律函数一一进行选择;
步骤4,w、h、R1、R2这4个变截面控制变量参数的定量变化过程,被唯一地确定下来,由此可得出整个隔离段的三维型面数据,然后对其根据入口来流条件进行CFD仿真计算,根据数值模拟的结果,对某一控制变量的变化规律进行迭代优化。
本发明的特点还在于:
步骤3中,对宽度w、高度h、顶板角区倒圆半径R1、底板角区倒圆半径R2这4个控制变量沿程变化规律函数一一进行选择的具体方式为:宽度w要从w0减小到R0,高度h要从h0增加到R0,顶板角区倒圆半径R1、底板角区倒圆半径R2都要从0增加到R0,根据需求设计不同的三次变化函数。
三次变化函数为:以进气道出口截面的低能流动区域位于底部,宽度w和高度h选择y=x的线性变化规律,即全程缓急相当的变化规律,流向l位置截面的宽度w=w0-(w0-R0)×l/l0,截面的高度h=h0+(R0-h0)×l/l0
三次变化函数为:底板角区倒圆半径R2采用前缓后急的变化规律函数y=x2,即R2=R0×(l/l0)2
三次变化函数为:顶板角区倒圆半径R1采用前急后缓的变化规律函数y2=x,R1=R0×(l/l0)1/2
本发明的有益效果是:
(1)针对进气道出口的非均匀来流,可进行参数化截面渐变,各控制变量定量、可控,并且可以根据不同的入口来流条件,对截面渐变过程进行针对性地优化设计;
(2)将横向收缩、纵向扩张、顶板角区倒圆、底板角区倒圆列为截面渐变过程中的4个控制变量,改变了以往单单从转圆这一因素进行考虑的局限;
(3)根据低能流动区域在截面内分布的特点,通过对顶板转圆过程与底板转圆过程的针对性控制,从气动角度将截面渐变对抗反压能力的影响减小到最低程度,解决了现有截面渐变方法中仅仅从数学和几何角度进行了简单截面融合等问题。
附图说明
图1是本发明中超燃冲压发动机隔离段截面渐变过程示意图;
图2是图1的隔离段简化三维示意图;
图3是本发明中以隔离段入口截面流向位置为原点在流向l位置的截面轮廓示意图;
图4是本发明中截面渐变过程的w、h、R1、R2这4个控制变量沿程变化控制规律示意图。
具体实施方式
下面结合附图以及具体实施方式对本发明进行详细说明。
本发明提供了一种超燃冲压发动机隔离段截面渐变优化设计方法,具体步骤如下:
步骤1,如图1-2所示,根据进气道出口矩形尺寸确定w0、h0,根据隔离段出口尺寸确定R0,根据隔离段长度确定l0;其中,w0为隔离段入口截面宽度,h0为隔离段入口截面高度,R0为隔离段出口圆形截面的半径,l0为隔离段的长度;
步骤2,如图2所示,以隔离段入口截面的流向位置为原点,在流向l位置的截面,此时该截面的宽度为w,该截面的高度为h,该截面顶板角区的倒圆半径为R1,该截面底板角区的倒圆半径为R2;因为截面为左右对称,因此可对顶板角区倒圆半径R1和底板角区的倒圆半径为R2的变化规律分开控制;
其中,l位置的截面是指以矩形截面为起点,沿流向距离该截面l距离的位置,垂直截下去,在隔离段形成的截面;
步骤3,如图4所示,根据进气道出口截面低能流动区域的分布,对w、h、R1、R2这4个控制变量沿程变化规律函数一一进行选择。其中宽度w要从w0减小到R0,高度h要从h0增加到R0,顶板角区倒圆半径R1、底板角区倒圆半径R2都要从0增加到R0,y=x对应全程缓急相当的线性变化,y=x2对应前缓后急的变化规律,y2=x对应前急后缓的变化规律,还可根据需求设计不同的三次变化函数,比如前急中缓后急,以及前缓中急后缓等;
以进气道出口截面的低能流动区域位于底部,接近二维分布状态为例,可选择的参数化优化设计方案为:宽度w和高度h选择y=x的线性变化规律,即全程缓急相当的变化规律,流向l位置截面的宽度w=w0-(w0-R0)×l/l0,截面的高度h=h0+(R0-h0)×l/l0,考虑底板附近低能流动区对抗反压能力的影响,底板角区倒圆半径R2采用前缓后急的变化规律函数,R2=R0×(l/l0)2,顶板角区倒圆半径R1采用前急后缓的变化规律函数,R1=R0×(l/l0)1/2
步骤4,由此,w、h、R1、R2这4个变截面控制变量参数的定量变化过程,被唯一地确定下来,由此可得出整个隔离段的三维型面数据,然后对其根据入口来流条件进行CFD仿真计算,根据数值模拟的结果,对某一控制变量的变化规律进行迭代优化。
图1是超燃冲压发动机隔离段截面渐变过程示意图,其中直观展示了隔离段矩形入口向隔离段圆形出口的截面转变,需要在宽度方向收缩,在高度方向扩张,并在角区沿流向方向逐步倒圆角;
图2给出了隔离段简化三维示意图;
在图1-2中,w0为隔离段入口截面宽度,h0隔离段入口截面高度,R0隔离段出口圆形截面的半径,l0隔离段的长度;
图3是以隔离段入口截面流向位置为原点在流向l位置的截面轮廓示意图,其中w为该截面的宽度,h为该截面的高度,R1为该截面顶板角区的倒圆半径,R2为该截面底板角区的倒圆半径;
图4是截面渐变过程的w、h、R1、R2这4个控制变量沿程变化控制规律示意图,其中v代表w、h、R1、R2这4个控制变量中任一控制变量,由于倒圆半径是从0开始增大的,所以R10=R20=0,R10及R20分别表示顶板和底板在隔离段入口的倒圆半径。
本发明的优点为:将横向收缩、纵向扩张、顶板角区倒圆、底板角区倒圆列为截面渐变过程中的4个控制变量,从气动角度将截面渐变对抗反压能力的影响减小到最低程度,解决了现有截面渐变方法中仅仅从数学和几何角度进行了简单截面融合的问题。

Claims (5)

1.一种超燃冲压发动机隔离段截面渐变优化设计方法,其特征在于,具体步骤如下:
步骤1,根据进气道出口矩形尺寸确定w0、h0,根据隔离段出口尺寸确定R0,根据隔离段长度确定l0;其中,w0为隔离段入口截面宽度,h0为隔离段入口截面高度,R0为隔离段出口圆形截面的半径,l0为隔离段的长度;
步骤2,以隔离段入口截面的流向位置为原点,在流向l位置的截面,此时该截面的宽度为w,该截面的高度为h,该截面顶板角区的倒圆半径为R1,该截面底板角区的倒圆半径为R2;因为截面为左右对称,因此可对顶板角区倒圆半径R1和底板角区的倒圆半径为R2的变化规律分开控制;
步骤3,根据进气道出口截面低能流动区域的分布,对宽度w、高度h、顶板角区倒圆半径R1、底板角区倒圆半径R2这4个控制变量沿程变化规律函数一一进行选择;
步骤4,w、h、R1、R2这4个变截面控制变量参数的定量变化过程,被唯一地确定下来,由此可得出整个隔离段的三维型面数据,然后对其根据入口来流条件进行CFD仿真计算,根据数值模拟的结果,对某一控制变量的变化规律进行迭代优化。
2.如权利要求1所述的一种超燃冲压发动机隔离段截面渐变优化设计方法,其特征在于,步骤3中,对宽度w、高度h、顶板角区倒圆半径R1、底板角区倒圆半径R2这4个控制变量沿程变化规律函数一一进行选择的具体方式为:宽度w要从w0减小到R0,高度h要从h0增加到R0,顶板角区倒圆半径R1、底板角区倒圆半径R2都要从0增加到R0,根据需求设计不同的三次变化函数。
3.如权利要求2所述的一种超燃冲压发动机隔离段截面渐变优化设计方法,其特征在于,所述三次变化函数为:以进气道出口截面的低能流动区域位于底部,宽度w和高度h选择y=x的线性变化规律,即全程缓急相当的变化规律,流向l位置截面的宽度w=w0-(w0-R0)×l/l0,截面的高度h=h0+(R0-h0)×l/l0
4.如权利要求2所述的一种超燃冲压发动机隔离段截面渐变优化设计方法,其特征在于,所述三次变化函数为:底板角区倒圆半径R2采用前缓后急的变化规律函数y=x2,即R2=R0×(l/l0)2
5.如权利要求2所述的一种超燃冲压发动机隔离段截面渐变优化设计方法,其特征在于,所述三次变化函数为:顶板角区倒圆半径R1采用前急后缓的变化规律函数y2=x,R1=R0×(l/l0)1/2
CN201810912019.1A 2018-08-10 2018-08-10 一种超燃冲压发动机隔离段截面渐变优化设计方法 Active CN109214061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810912019.1A CN109214061B (zh) 2018-08-10 2018-08-10 一种超燃冲压发动机隔离段截面渐变优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810912019.1A CN109214061B (zh) 2018-08-10 2018-08-10 一种超燃冲压发动机隔离段截面渐变优化设计方法

Publications (2)

Publication Number Publication Date
CN109214061A true CN109214061A (zh) 2019-01-15
CN109214061B CN109214061B (zh) 2019-08-16

Family

ID=64987730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810912019.1A Active CN109214061B (zh) 2018-08-10 2018-08-10 一种超燃冲压发动机隔离段截面渐变优化设计方法

Country Status (1)

Country Link
CN (1) CN109214061B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487553A (zh) * 2019-07-26 2019-11-22 中国航发沈阳发动机研究所 一种矩形燃烧室进气整流装置
CN112555052A (zh) * 2020-12-04 2021-03-26 中国人民解放军国防科技大学 一种收缩型隔离段及超燃冲压发动机
CN117763763A (zh) * 2024-01-02 2024-03-26 上海交通大学 用于角区流动控制的压气机叶根轴向非均匀倒圆优化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606564A (zh) * 2012-04-13 2012-07-25 中国人民解放军国防科学技术大学 超声速流道的实现方法和装置
CN103605876A (zh) * 2013-12-11 2014-02-26 厦门大学 超燃冲压发动机燃料喷射系统的设计方法
KR101616647B1 (ko) * 2014-12-12 2016-04-28 한국항공우주연구원 직사각형단면을 가지는 극초음속 공기 흡입식 복합 사이클 엔진
CN106438047A (zh) * 2015-08-04 2017-02-22 北京机电工程研究所 埋入式进气道内通道的设计方法
CN106567782A (zh) * 2016-10-26 2017-04-19 南京航空航天大学 高超声速内转进气道‑圆形隔离段流场畸变的装置及设计方法
CN106677925A (zh) * 2015-11-06 2017-05-17 上海新力动力设备研究所 侧向力发动机狭缝喷管扩散段设计方法
CN108038295A (zh) * 2017-12-07 2018-05-15 中国人民解放军国防科技大学 一种高超声速进气道与隔离段一体化设计方法
CN108301926A (zh) * 2018-01-09 2018-07-20 南京航空航天大学 一种高超声速凸形转圆形内收缩进气道及其设计方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606564A (zh) * 2012-04-13 2012-07-25 中国人民解放军国防科学技术大学 超声速流道的实现方法和装置
CN103605876A (zh) * 2013-12-11 2014-02-26 厦门大学 超燃冲压发动机燃料喷射系统的设计方法
KR101616647B1 (ko) * 2014-12-12 2016-04-28 한국항공우주연구원 직사각형단면을 가지는 극초음속 공기 흡입식 복합 사이클 엔진
CN106438047A (zh) * 2015-08-04 2017-02-22 北京机电工程研究所 埋入式进气道内通道的设计方法
CN106677925A (zh) * 2015-11-06 2017-05-17 上海新力动力设备研究所 侧向力发动机狭缝喷管扩散段设计方法
CN106567782A (zh) * 2016-10-26 2017-04-19 南京航空航天大学 高超声速内转进气道‑圆形隔离段流场畸变的装置及设计方法
CN108038295A (zh) * 2017-12-07 2018-05-15 中国人民解放军国防科技大学 一种高超声速进气道与隔离段一体化设计方法
CN108301926A (zh) * 2018-01-09 2018-07-20 南京航空航天大学 一种高超声速凸形转圆形内收缩进气道及其设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOHN W.SABEAN等: ""Computational Optimization of a Hypersonic Rectangular-to-Circular Inlet"", 《JOURNAL OF PROPULSION AND POWER》 *
NADIR T.BAGAVEYEV等: ""Parametric Investigation of Racetrack-to-Circular Cross-Section Transition of a Dual-mode Ramjet Isolator"", 《48TH AIAA AEROSPACE SCIENCES MEETING INCLUDING THE NEW HORIZONS FORUM AND AEROSPACE EXPOSITION》 *
刘雄等: ""宽高比对侧板前掠二维高超声速进气道启动特性影响研究"", 《推进技术》 *
王渊等: ""非对称超声速来流下矩形转圆隔离段研究"", 《推进技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487553A (zh) * 2019-07-26 2019-11-22 中国航发沈阳发动机研究所 一种矩形燃烧室进气整流装置
CN112555052A (zh) * 2020-12-04 2021-03-26 中国人民解放军国防科技大学 一种收缩型隔离段及超燃冲压发动机
CN112555052B (zh) * 2020-12-04 2021-10-01 中国人民解放军国防科技大学 一种收缩型隔离段及超燃冲压发动机
CN117763763A (zh) * 2024-01-02 2024-03-26 上海交通大学 用于角区流动控制的压气机叶根轴向非均匀倒圆优化方法

Also Published As

Publication number Publication date
CN109214061B (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN109214061B (zh) 一种超燃冲压发动机隔离段截面渐变优化设计方法
CN107742011B (zh) 叶轮叶片减阻微织构的设计方法
CN107963236B (zh) 基于密切锥理论的定平面乘波体设计方法
CN104280205A (zh) 超声速层流喷管及其超声速静风洞
CN104908957B (zh) 山脊型扫掠涡流发生器及生成方法
CN103770935A (zh) 乘波体外形设计方法
CN106122189B (zh) 一种基于构造局部压差扰动的高超声速前体转捩控制方法
CN105138787A (zh) 基于特征线追踪的超声速流场设计方法
CN108487942A (zh) 控制涡轮叶尖间隙流动的机匣及叶片联合造型方法
CN108038295A (zh) 一种高超声速进气道与隔离段一体化设计方法
CN104317994A (zh) 非光滑表面与射流相结合的车身气动减阻方法
CN110633522A (zh) 一种基于最大推力理论的超声速推力喷管反设计方法
CN103950544A (zh) 通用亚声速扩压器设计方法
CN108304611A (zh) 一种给定三维前缘线的锥导乘波体设计方法
CN103422987A (zh) 一种可控压力梯度的s形进气道设计方法
CN111159814A (zh) 一种具有拐弯入口及高长细比的矩形超声速喷管的设计方法及构型
CN112926132B (zh) 一种考虑三维效应影响下的固定翼翼型气动外形设计方法
CN103982462B (zh) 一种叶片尾缘的波形射流方法
CN103291661B (zh) 降噪汽车空调鼓风机进口防风环装置
CN104455872A (zh) 一种低流阻三通结构
CN103823921B (zh) 一种大涵道比发动机分开式喷管设计方法
CN107423481B (zh) 基于渗透边界反问题方法的全三维内转式进气道设计方法
CN104960585A (zh) 基于射流激励器对汽车进行主动减阻控制的方法及系统
CN105626163B (zh) 一种隔板静叶锻造转角的确定方法
CN112906161A (zh) 适应宽涵道比变化范围的分流段气动型面快速设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant