CN109208080A - 一种拓扑绝缘体材料的制备方法 - Google Patents

一种拓扑绝缘体材料的制备方法 Download PDF

Info

Publication number
CN109208080A
CN109208080A CN201710517726.6A CN201710517726A CN109208080A CN 109208080 A CN109208080 A CN 109208080A CN 201710517726 A CN201710517726 A CN 201710517726A CN 109208080 A CN109208080 A CN 109208080A
Authority
CN
China
Prior art keywords
bi2se3
graphene
powder
insulator material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710517726.6A
Other languages
English (en)
Inventor
赵莉民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Long Yao Electronic Technology (jiangsu) Co Ltd
Original Assignee
Long Yao Electronic Technology (jiangsu) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Long Yao Electronic Technology (jiangsu) Co Ltd filed Critical Long Yao Electronic Technology (jiangsu) Co Ltd
Priority to CN201710517726.6A priority Critical patent/CN109208080A/zh
Publication of CN109208080A publication Critical patent/CN109208080A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开了一种拓扑绝缘体材料的制备方法,包括在蒸发源Bi2Se3粉末中加入Se粉末,蒸发源中加入Se粉末提高了Bi2Se3的结晶质量,有利于Bi2Se3纳米结构的横向生长,而且保证了Se与Bi的原子比例更接近标准值1.4,通过化学气相沉积法在铜箔上生长石墨烯,并用湿法转移石墨烯到SiO2衬底上,利用石墨烯作为缓冲层来合成Bi2Se3。该拓扑绝缘体材料的制备方法因其石墨烯的加入有利于提高Bi2Se3纳米片的结晶质量,而且使Bi2Se3纳米片沿C轴生长的特点更明显,另外,由于石墨烯的加入使Bi2Se3的面内振动峰E2g发生了红移现象。

Description

一种拓扑绝缘体材料的制备方法
技术领域
本发明涉及绝缘新材料技术领域,具体为一种拓扑绝缘体材料的制备方法。
背景技术
现有拓扑绝缘体是一类体内是绝缘态,而表面是由于强自旋轨道耦合作用具有时间反演对称保护金属态的特殊绝缘体,其电子之间“各行其道,互不干扰”避免了电子的无序碰撞造成的电子能量消耗,对解决半导体行业乃至整个信息技术发展有着重要的意义。第二代三维拓扑绝缘体中的Bi2Se3,由于其是纯的化学相;表面态只有一个狄拉克点,是最接近理想状态的强拓扑绝缘体;能隙为0.3eV(等价于3600K),是目前能隙最大的拓扑绝缘体,近几年已经成为了人们关注和研究的焦点。
发明内容
本发明的目的在于提供一种拓扑绝缘体材料的制备方法,以解决上述背景技术中提出的现有的绝缘体材料能量消耗大的问题。
为实现上述目的,本发明提供如下技术方案,一种拓扑绝缘体材料的制备方法,包括在蒸发源Bi2Se3粉末中加入Se粉末,蒸发源中加入Se粉末提高了Bi2Se3的结晶质量,有利于Bi2Se3纳米结构的横向生长,而且保证了Se与Bi的原子比例更接近标准值1.4,通过化学气相沉积法在铜箔上生长石墨烯,并用湿法转移石墨烯到SiO2衬底上,利用石墨烯作为缓冲层来合成Bi2Se3。
优选的,所述蒸发源Bi2Se3粉末中加入Se粉末。
优选的,所述e与Bi的原子比例更接近标准值1.4。
优选的,所述石墨烯作为缓冲层来合成Bi2Se3。
与现有技术相比,本发明的有益效果是:该拓扑绝缘体材料的制备方法因其石墨烯的加入有利于提高Bi2Se3纳米片的结晶质量,而且使Bi2Se3纳米片沿C轴生长的特点更明显,另外,由于石墨烯的加入使Bi2Se3的面内振动峰E2g发生了红移现象。
具体实施方式
下面将结合本发明实施例中的制备工艺,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种技术方案:一种拓扑绝缘体材料的制备方法,包括在蒸发源Bi2Se3粉末中加入Se粉末,蒸发源中加入Se粉末提高了Bi2Se3的结晶质量,有利于Bi2Se3纳米结构的横向生长,而且保证了Se与Bi的原子比例更接近标准值1.4,通过化学气相沉积法在铜箔上生长石墨烯,并用湿法转移石墨烯到SiO2衬底上。利用石墨烯作为缓冲层来合成Bi2Se3。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种拓扑绝缘体材料的制备方法,包括在蒸发源Bi2Se3粉末中加入Se粉末,蒸发源中加入Se粉末提高了Bi2Se3的结晶质量,有利于Bi2Se3纳米结构的横向生长,而且保证了Se与Bi的原子比例更接近标准值1.4,通过化学气相沉积法在铜箔上生长石墨烯,并用湿法转移石墨烯到SiO2衬底上,利用石墨烯作为缓冲层来合成Bi2Se3。
2.根据权利要求1所述的一种拓扑绝缘体材料的制备方法,其特征在于:所述的蒸发源Bi2Se3粉末中加入Se粉末。
3.根据权利要求1所述的一种拓扑绝缘体材料的制备方法,其特征在于:所述的e与Bi的原子比例更接近标准值1.4。
4.根据权利要求1所述的一种拓扑绝缘体材料的制备方法,其特征在于:所述的石墨烯作为缓冲层来合成Bi2Se3。
CN201710517726.6A 2017-06-29 2017-06-29 一种拓扑绝缘体材料的制备方法 Withdrawn CN109208080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710517726.6A CN109208080A (zh) 2017-06-29 2017-06-29 一种拓扑绝缘体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710517726.6A CN109208080A (zh) 2017-06-29 2017-06-29 一种拓扑绝缘体材料的制备方法

Publications (1)

Publication Number Publication Date
CN109208080A true CN109208080A (zh) 2019-01-15

Family

ID=64976671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710517726.6A Withdrawn CN109208080A (zh) 2017-06-29 2017-06-29 一种拓扑绝缘体材料的制备方法

Country Status (1)

Country Link
CN (1) CN109208080A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304737A (zh) * 2019-12-03 2020-06-19 中国人民解放军军事科学院国防科技创新研究院 一种合成内禀磁性拓扑绝缘体的方法
CN115505868A (zh) * 2022-10-09 2022-12-23 西南交通大学 溅射沉积Fe(Se,Te)薄膜制备超导带材的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304737A (zh) * 2019-12-03 2020-06-19 中国人民解放军军事科学院国防科技创新研究院 一种合成内禀磁性拓扑绝缘体的方法
CN111304737B (zh) * 2019-12-03 2021-08-27 中国人民解放军军事科学院国防科技创新研究院 一种合成内禀磁性拓扑绝缘体的方法
CN115505868A (zh) * 2022-10-09 2022-12-23 西南交通大学 溅射沉积Fe(Se,Te)薄膜制备超导带材的方法

Similar Documents

Publication Publication Date Title
Cai et al. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers
Wu et al. Optimization, selective and efficient production of CNTs/Co x Fe 3− x O 4 core/shell nanocomposites as outstanding microwave absorbers
Wang et al. Towards high‐safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy
Cheng et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption
Li et al. The development trend of graphene derivatives
Yan et al. Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties
Li et al. Achieving superior electromagnetic wave absorbers with 2D/3D heterogeneous structures through the confinement effect of reduced graphene oxides
Yi et al. Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries
Wang et al. N‐doped graphene‐SnO2 sandwich paper for high‐performance lithium‐ion batteries
Chen et al. Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries
WO2015165215A1 (zh) 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
Men et al. Hierarchically structured microspheres consisting of carbon coated silicon nanocomposites with controlled porosity as superior anode material for lithium-ion batteries
Yang et al. LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis
CN109449423A (zh) 一种中空/多孔结构硅基复合材料及其制法
Shen et al. Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries
Susantyoko et al. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes
CN109256534B (zh) 硅-碳复合粉末
Tao et al. One-step synthesis of nickel sulfide/N-doped graphene composite as anode materials for lithium ion batteries
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
Zhu et al. Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries
JP2010275186A5 (zh)
CN109208080A (zh) 一种拓扑绝缘体材料的制备方法
Zhao et al. Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries
Zhang et al. Si@ Cu3Si nano-composite prepared by facile method as high-performance anode for lithium-ion batteries
CN103754925A (zh) 一种氧化亚铜纳米线多孔薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190115