CN109206808A - 一种导热高分子液晶分散膜的制备方法 - Google Patents

一种导热高分子液晶分散膜的制备方法 Download PDF

Info

Publication number
CN109206808A
CN109206808A CN201811289057.2A CN201811289057A CN109206808A CN 109206808 A CN109206808 A CN 109206808A CN 201811289057 A CN201811289057 A CN 201811289057A CN 109206808 A CN109206808 A CN 109206808A
Authority
CN
China
Prior art keywords
liquid crystal
heat
conducting polymer
polymer dispersed
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811289057.2A
Other languages
English (en)
Other versions
CN109206808B (zh
Inventor
李颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Zhiduo Network Technology Co ltd
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201811289057.2A priority Critical patent/CN109206808B/zh
Publication of CN109206808A publication Critical patent/CN109206808A/zh
Application granted granted Critical
Publication of CN109206808B publication Critical patent/CN109206808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种导热高分子液晶分散膜的制备方法,包括:将聚合物基材研磨,与水或溶剂混合,浸泡,得到聚合物基底溶液,室温静置得到均相澄清的溶液;将侧链液晶聚硅氧烷的晶状体研磨;将侧链液晶聚硅氧烷分散到聚合物基底溶液中,得到微黄乳状溶液;乳状溶液缓慢平铺在玻璃器皿中,加热蒸干成膜,即得导热高分子液晶分散膜。本发明制备的导热高分子液晶分散膜,兼具高热导率、优异的力学性能和易成型加工等特性。

Description

一种导热高分子液晶分散膜的制备方法
技术领域
本发明涉及电子封装导热材料,具体是一种导热高分子液晶分散膜的制备方法。
背景技术
在工业需求和科学技术的发展过程中,对各类工程导热材料提出了更新、更高的要求。如电子元器件所需的高绝缘导热柔性界面、封装材料,化工换热器和废水处理所需的卓越耐高温和耐化学腐蚀的轻质导热材料等。理想的导热材料要兼具高热导率、优异力学性能及易成型加工等性能。相比无机和金属等传统导热材料,高分子导热材料以其良好的冲击韧性、力学强度,低成本和易加工等优异特性得到了广泛应用。
LCP(高分子液晶)在高分子制膜领域是一种新的材料,它独一无二的物理和化学性质使其在制膜材料上炙手可热。而热导率的提高则取决于在基体内形成的导热输运通路的完整性、稳定性及界面热阻。只有当导热粒子用量增大到某一临界值时,粒子间开始相互接触和作用,局部导热链或导热网才会相互连接和贯穿形成通路,热导率才会显著提高;但这是以牺牲聚合物优良韧性等力学性能为前提的,且热导率的提高也有限,此外还会降低聚合物的电阻,而且因导热粒子种类、粒径、分散性和电性能差异还会降低聚合物的击穿强度。
由于导热粒子和聚合物因界面性能的不匹配所造成的严重声子散射,以及聚合物基体的巨大热阻,导致体系热导率提高有限。而且导热粒子和聚合物的热导率差异为10-104倍,当差异超过102倍之后,导热粒子的添加对聚合物热导率的提高作用甚微。
因此,提供一种兼具高热导率以及优异力学性能的易成型加工的本征型导热材料成为目前本领域亟待解决的技术问题。
发明内容
为解决现有技术中存在的上述缺陷,本发明的目的在于提供一种导热高分子液晶分散膜,本发明通过改善聚合物连续相基体的热导率来提高体系的热导率,该方式远比提高导热粒子的更有效,并能够解决聚合物韧性等力学性能劣化、制备工艺复杂的的技术问题。
本发明是通过下述技术方案来实现的。
根据本发明实施例提供的一种导热高分子液晶分散膜的制备方法,包括以下步骤:
步骤1,聚合物基底溶液的制备
将聚合物基材研磨,研磨后的固体按质量比1∶(4-6)比例与水或溶剂混合,并浸泡,然后在搅拌的状态下加热使其溶解,得到聚合物基底溶液,室温静置至溶液中的气泡自然溶出,最终得到均相澄清的溶液;
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体研磨,使其便于在聚合物基底溶液中分散;
步骤3,按照质量比为1:5的比例在搅拌加热条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液中,直至溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,导热高分子液晶分散膜的制备
将步骤3制备的乳状溶液缓慢平铺在平整的玻璃器皿中,避免产生气泡,加热蒸干,成膜,即得导热高分子液晶分散膜。
优选的,所述聚合物基材为聚乙烯醇、聚氯乙烯、聚丙烯或聚丙烯腈。
优选的,所述溶剂为丙酮、四氢呋喃、对二甲苯或二甲基甲酰胺。
优选的,所述步骤1中,对聚合物基材研磨200-600目,用溶剂将其浸泡5-20个小时;在温度为25-150℃加热0.5-2个小时。
优选的,所述步骤1中,聚合物基底溶液静置2-6个小时。
优选的,所述步骤2中,将侧链液晶聚硅氧烷的晶状体进行研磨至60-120目。
优选的,所述步骤2中,所述侧链液晶聚硅氧烷为聚硅氧烷分别与反式-4-乙烯基-反式-4’-丙基双环己烷、反式-4-丙烯基-反式-4’-丙基双环己烷、4-烯丙氧基苯甲酸-4’-羟基苯氰酯和4-烯丙氧基苯甲酸-4’-羟基苯甲氧基酯聚合得到的。
优选的,所述步骤3中,加热温度为50-120℃。
优选的,所述步骤4中,成膜厚度为100-200μm。
优选的,所述步骤4中,在55-160℃下加热16-24个小时。
本发明由于采取以上技术方案,其具有以下有益效果:
本发明通过将侧链液晶聚硅氧烷分散到聚合物基底溶液中,制备的乳状溶液蒸干制膜,得到导热高分子液晶分散膜,其兼具高热导率、优异力学性能和易成型加工等特性。本发明通过改善聚合物连续相基体的热导率来提高体系的热导率。
本发明明确了导热高分子液晶分散膜的制备方法的适用性,并提高了导热高分子液晶分散膜的成膜性、高热导率和优异力学性能。在LCP膜材料的应用领域上,为高分子液晶导热膜材料的制备和应用提供了一定的理论基础和技术支持,进而拓宽高分子液晶膜材料在导热领域的应用。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1为本发明工艺流程图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1所示,本发明的导热高分子液晶分散膜的制备方法,包括以下步骤:
导热高分子液晶分散膜的制备可分为以下4个部分,分别是聚合物基底溶液的制备、侧链液晶聚硅氧烷的预处理、侧链液晶聚硅氧烷在聚合物基底溶液中的分散、导热高分子液晶分散膜的制备。
步骤1,聚合物基底溶液的制备
将聚合物基材研磨200-600目,在搅拌的状态下用蒸馏水或溶剂将其浸泡5-20个小时,然后在25-150℃温度下加热0.5-2h使其溶解,在溶解过程中应不停搅拌,得到聚合物基底溶液,室温下将其静置2-6个小时,让溶液中的气泡自然溶出,最终得均相澄清的溶液。
其中,聚合物基材为聚乙烯醇、聚氯乙烯、聚丙烯或聚丙烯腈。溶剂为丙酮、四氢呋喃、对二甲苯或二甲基甲酰胺。
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体进行研磨至60-120目,使其便于在聚合物基底溶液中分散;其中,侧链液晶聚硅氧烷通过聚硅氧烷和液晶单体接枝聚合而得,其中聚硅氧烷与反式-4-乙烯基-反式-4’-丙基双环己烷聚合得到的侧链液晶聚硅氧烷为P1、聚硅氧烷和反式-4-丙烯基-反式-4’-丙基双环己烷聚合得到的侧链液晶聚硅氧烷为P2、聚硅氧烷和4-烯丙氧基苯甲酸-4’-羟基苯氰酯聚合得到的侧链液晶聚硅氧烷为P3、聚硅氧烷和4-烯丙氧基苯甲酸-4’-羟基苯甲氧基酯聚合得到的侧链液晶聚硅氧烷为P4。其结构见表1所示。
表1侧链液晶聚硅氧烷分子结构式
上述侧链液晶聚硅氧烷的合成方法见(P1:Ying Li,Guangcheng Zhang,YingJiang,Zhenzhong Hou,Longgui Peng,Synthesis and Characterization of Side-ChainLiquid-Crystalline Polysiloxanes exhibiting Spherulite Texture of PolymericSmectic A Phase,Journal of Chemical Research,2011,35(35):715-719.P2:李颖,胆甾相小板块织构聚硅氧烷侧链液晶的合成和性能,功能高分子学报,2016,29(01):80-84.P3:李颖,张广成,胡灵峰,史爱华,近晶型聚硅氧烷侧链液晶的合成与表征,功能高分子学报,2011,24(02):211-216.P4:蒋莹,李颖,杨建业,张亮,陈晶,新型含苯甲醚基团的向列型聚硅氧烷侧链液晶的合成与表征,合成化学,2013,21(4):420-423)。
步骤3,按照质量比1:5的比例在搅拌加热50-120℃条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液,直到溶液从均相澄清的状态变为微黄乳状溶液。
步骤4,导热高分子液晶分散膜的制备
将制好的溶液平铺在平整的玻璃器皿中,避免产生气泡,根据所选溶剂选择合适的温度55-160℃加热16-24个小时,制备导热高分子液晶分散膜,成膜厚度为100-200μm。
下面给出不同的具体实施例来进一步说明本发明。
实施例1
步骤1,将聚合物基材聚乙烯醇研磨200目,在搅拌的状态下用蒸馏水或丙酮将其浸泡20个小时,然后在25℃温度下加热2h使其溶解,在溶解过程中应不停搅拌,得到聚合物基底溶液,室温下将其静置4个小时,让溶液中的气泡自然溶出,最终得均相澄清的溶液;
步骤2,将侧链液晶聚硅氧烷的晶状体进行研磨至60目,使其便于在聚合物基底溶液中分散;
其中,侧链液晶聚硅氧烷为聚硅氧烷和反式-4-乙烯基-反式-4’-丙基双环己烷聚合得到的P1
步骤3,按照质量比1:5的比例在搅拌加热50℃条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液,直到溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,将制好的溶液平铺在平整的玻璃器皿中,避免产生气泡,根据所选溶剂选择合适的温度55℃加热24个小时,制备导热高分子液晶分散膜,成膜厚度为120μm。
实施例2
步骤1,将聚合物基材聚氯乙烯研磨300目,在搅拌的状态下用四氢呋喃将其浸泡15个小时,然后在100℃温度下加热时间1h使其溶解,在溶解过程中应不停搅拌,得到聚合物基底溶液,室温下将其静置6时,让溶液中的气泡自然溶出,最终得均相澄清的溶液;
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体进行研磨至100目,使其便于在聚合物基底溶液中分散;
其中,侧链液晶聚硅氧烷为聚硅氧烷和反式-4-丙烯基-反式-4’-丙基双环己烷聚合得到的P2
步骤3,按照质量比1:5的比例在搅拌加热80℃条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液,直到溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,将制好的溶液平铺在平整的玻璃器皿中,避免产生气泡,根据所选溶剂选择合适的温度90℃加热20个小时,制备导热高分子液晶分散膜,成膜厚度为150μm。
实施例3
步骤1,将聚合物基材聚丙烯研磨600目,在搅拌的状态下用对二甲苯将其浸泡5个小时,然后在50℃温度下加热时间1.5h使其溶解,在溶解过程中应不停搅拌,得到聚合物基底溶液,室温下将其静置3个小时,让溶液中的气泡自然溶出,最终得均相澄清的溶液;
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体进行研磨至80目,使其便于在聚合物基底溶液中分散;
其中,侧链液晶聚硅氧烷为聚硅氧烷和4-丙氧基苯甲酸-4’-羟基苯氰酯聚合而得的P3
步骤3,按照质量比1:5的比例在搅拌加热120℃条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液,直到溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,将制好的溶液平铺在平整的玻璃器皿中,避免产生气泡,根据所选溶剂选择合适的温度160℃加热16个小时,制备导热高分子液晶分散膜,成膜厚度为100μm。
实施例4
步骤1,将聚合物基材聚丙烯腈研磨500目,在搅拌的状态下用二甲基甲酰胺将其浸泡10个小时,然后在150℃温度下加热时间0.5h使其溶解,在溶解过程中应不停搅拌,得到聚合物基底溶液,室温下将其静置2个小时,让溶液中的气泡自然溶出,最终得均相澄清的溶液;
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体进行研磨至120目,使其便于在聚合物基底溶液中分散;
其中,侧链液晶聚硅氧烷为聚硅氧烷和4-丙氧基苯甲酸-4’-羟基苯甲氧基酯聚合得到的P4
步骤3,按照质量比1:5的比例在搅拌加热100℃条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液,直到溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,将制好的溶液平铺在平整的玻璃器皿中,避免产生气泡,根据所选溶剂选择合适的温度120℃加热20个小时,制备导热高分子液晶分散膜,成膜厚度为200μm。
将本发明实施例所得检测并讨论导热高分子液晶分散膜的性能
本发明将100-200μm厚度的导热高分子液晶分散膜,放在Hot Disk导热仪中,测量样品的热扩散系数和热导率,表征并分析样品的导热性能。试验中测试了本发明所制备的四种导热高分子液晶分散膜样品的导热性能,见表2所示。
表2导热高分子液晶分散膜的性能测试
由表2可以得到,本发明制备的导热高分子液晶分散膜具有优良的导热性能,其导热率达0.4781W/mK,且导热率不小于0.4002W/mK,远高于一般高分子材料(大约为0.2W/mK);其拉伸强度可达3.74Mpa,且拉伸强度不小于2.79Mpa;断裂伸长率达338.57%,且断裂伸长率不小于288.19%。因此,本发明方法制备的导热高分子液晶分散膜是一种具有良好导热性能和优异力学性能的高分子液晶膜。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (10)

1.一种导热高分子液晶分散膜的制备方法,其特征在于,包括以下步骤:
步骤1,聚合物基底溶液的制备
将聚合物基材研磨,研磨后的固体按质量比1∶(4-6)比例与水或溶剂混合,并浸泡,然后在搅拌的状态下加热使其溶解,得到聚合物基底溶液,室温静置至溶液中的气泡自然溶出,最终得到均相澄清的溶液;
步骤2,侧链液晶聚硅氧烷的预处理
将侧链液晶聚硅氧烷的晶状体研磨,使其便于在聚合物基底溶液中分散;
步骤3,按照质量比为1:5的比例在搅拌加热条件下,将侧链液晶聚硅氧烷分散到聚合物基底溶液中,直至溶液从均相澄清的状态变为微黄乳状溶液;
步骤4,导热高分子液晶分散膜的制备
将步骤3制备的乳状溶液缓慢平铺在平整的玻璃器皿中,避免产生气泡,加热蒸干,成膜,即得导热高分子液晶分散膜。
2.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述聚合物基材为聚乙烯醇、聚氯乙烯、聚丙烯或聚丙烯腈。
3.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述溶剂为丙酮、四氢呋喃、对二甲苯或二甲基甲酰胺。
4.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤1中,对聚合物基材研磨200-600目,用溶剂将其浸泡5-20个小时;在温度为25-150℃加热0.5-2个小时。
5.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤1中,聚合物基底溶液静置2-6个小时。
6.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤2中,将侧链液晶聚硅氧烷的晶状体进行研磨至60-120目。
7.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤2中,所述侧链液晶聚硅氧烷为聚硅氧烷分别与反式-4-乙烯基-反式-4’-丙基双环己烷、反式-4-丙烯基-反式-4’-丙基双环己烷、4-烯丙氧基苯甲酸-4’-羟基苯氰酯和4-烯丙氧基苯甲酸-4’-羟基苯甲氧基酯聚合得到的。
8.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤3中,加热温度为50-120℃。
9.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤4中,成膜厚度为100-200μm。
10.根据权利要求1所述的导热高分子液晶分散膜的制备方法,其特征在于,所述步骤4中,在55-160℃下加热16-24个小时。
CN201811289057.2A 2018-10-31 2018-10-31 一种导热高分子液晶分散膜的制备方法 Active CN109206808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811289057.2A CN109206808B (zh) 2018-10-31 2018-10-31 一种导热高分子液晶分散膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811289057.2A CN109206808B (zh) 2018-10-31 2018-10-31 一种导热高分子液晶分散膜的制备方法

Publications (2)

Publication Number Publication Date
CN109206808A true CN109206808A (zh) 2019-01-15
CN109206808B CN109206808B (zh) 2021-06-08

Family

ID=64998228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811289057.2A Active CN109206808B (zh) 2018-10-31 2018-10-31 一种导热高分子液晶分散膜的制备方法

Country Status (1)

Country Link
CN (1) CN109206808B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358391A (en) * 1979-11-05 1982-11-09 Wacker-Chemie Gmbh Compositions containing liquid crystal phases
CN1230405A (zh) * 1998-12-31 1999-10-06 暨南大学 血液相容性聚合物/液晶复合膜及其制备方法
KR20000021255A (ko) * 1998-09-28 2000-04-25 권문구 전도성 고분자 조성물과 이것을 이용한 전기장치
KR20040035437A (ko) * 2002-10-22 2004-04-29 엘지전선 주식회사 감광성 고분자 및 비감광성 고분자의 혼합물로 이루어진액정 배향제 조성물, 이를 이용한 액정 배향막의 제조방법및 상기 액정 배향막을 포함하는 액정 소자
JP2006282850A (ja) * 2005-03-31 2006-10-19 Nippon Oil Corp 液晶性高分子組成物および当該組成物を含有する液晶フィルム
CN101481082A (zh) * 2009-02-23 2009-07-15 东南大学 一种透光率可调的微透镜阵列的制备方法
CN101797401A (zh) * 2009-11-17 2010-08-11 暨南大学 一种血液相容性材料及其制备方法
CN102199293A (zh) * 2011-03-25 2011-09-28 东北大学 一种液晶聚硅氧烷类β晶聚丙烯成核剂及其制备方法
CN105670647A (zh) * 2015-12-29 2016-06-15 东南大学 侧链腰接型液晶高分子导热膜材料及其制备方法
CN106661439A (zh) * 2014-08-11 2017-05-10 株式会社I.S.T 弹性体的导热性改性剂、导热性改性液晶性弹性体、液晶性高分子及其前体的使用方法、弹性体的导热性改性方法及发热体和被加热体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358391A (en) * 1979-11-05 1982-11-09 Wacker-Chemie Gmbh Compositions containing liquid crystal phases
KR20000021255A (ko) * 1998-09-28 2000-04-25 권문구 전도성 고분자 조성물과 이것을 이용한 전기장치
CN1230405A (zh) * 1998-12-31 1999-10-06 暨南大学 血液相容性聚合物/液晶复合膜及其制备方法
KR20040035437A (ko) * 2002-10-22 2004-04-29 엘지전선 주식회사 감광성 고분자 및 비감광성 고분자의 혼합물로 이루어진액정 배향제 조성물, 이를 이용한 액정 배향막의 제조방법및 상기 액정 배향막을 포함하는 액정 소자
JP2006282850A (ja) * 2005-03-31 2006-10-19 Nippon Oil Corp 液晶性高分子組成物および当該組成物を含有する液晶フィルム
CN101481082A (zh) * 2009-02-23 2009-07-15 东南大学 一种透光率可调的微透镜阵列的制备方法
CN101797401A (zh) * 2009-11-17 2010-08-11 暨南大学 一种血液相容性材料及其制备方法
CN102199293A (zh) * 2011-03-25 2011-09-28 东北大学 一种液晶聚硅氧烷类β晶聚丙烯成核剂及其制备方法
CN106661439A (zh) * 2014-08-11 2017-05-10 株式会社I.S.T 弹性体的导热性改性剂、导热性改性液晶性弹性体、液晶性高分子及其前体的使用方法、弹性体的导热性改性方法及发热体和被加热体
CN105670647A (zh) * 2015-12-29 2016-06-15 东南大学 侧链腰接型液晶高分子导热膜材料及其制备方法

Also Published As

Publication number Publication date
CN109206808B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
Wei et al. Preparation and properties of bitumen-modified polyurethane solid–solid phase change materials
US11702579B2 (en) Thermally conductive composition, thermally conductive sheet, and method for producing thermally conductive sheet
Shoji et al. Cross-linked liquid crystalline polyimides with siloxane units: their morphology and thermal diffusivity
Ishii et al. Processing of poly (2, 6-dimethyl-1, 4-phenylene ether) with epoxy resin. 1. Reaction-induced phase separation
Kang et al. Heat transfer organic materials: robust polymer films with the outstanding thermal conductivity fabricated by the photopolymerization of uniaxially oriented reactive discogens
Kang et al. Interfacial engineering for the synergistic enhancement of thermal conductivity of discotic liquid crystal composites
Wu et al. Preparation and characterization of bismaleimide-triazine/epoxy interpenetrating polymer networks
Gao et al. A novel fluid-filler/polymer composite as high-temperature thermally conductive and electrically insulating material
Tang et al. Preparation and properties of epoxy/BN highly thermal conductive composites reinforced with S i C whisker
CN109180979B (zh) 一种高导热侧链型液晶高分子膜材料的制备方法
Zhang et al. Synthesis and properties of a series of mesogen-jacketed liquid crystalline polymers with polysiloxane backbones
Chen et al. Effect of poly (ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide
He et al. Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization
Hashimoto et al. Coexistence of optical transparency, hydrophobicity, and high thermal conductivity in beads-on-string-shaped polyureas induced by disordered hydrogen-bond networks
Li et al. High thermal conductivity of liquid crystalline monomer‐poly (vinyl alcohol) dispersion films containing microscopic‐ordered structure
Feng et al. Functionalized mesoporous silica liquid crystal epoxy resin composite: an ideal low-dielectric hydrophobic material
Yuan et al. Effect of liquid crystalline texture of mesophase pitches on the structure and property of large-diameter carbon fibers
Liu et al. Fluorinated benzocyclobutene-based low-k polymer at high frequency
Zhou et al. Enhancing thermal conductivity of silicone rubber via constructing hybrid spherical boron nitride thermal network
Song et al. Carbon‐fiber‐reinforced acrylonitrile–styrene–acrylate composites: Mechanical and rheological properties and electrical resistivity
CN109206808A (zh) 一种导热高分子液晶分散膜的制备方法
Yu et al. Rheological study of epoxy systems blended with poly (ether sulfone) of different molecular weights
Zhao et al. Hybridization of polyhedral oligomeric silsesquioxane and boron nitride for epoxy composites with improved dielectric, thermal and tensile properties
Guo et al. Reinforcement in the mechanical properties of shape memory liquid crystalline epoxy composites
Rozik et al. Polyionic liquid incorporated PS/PANI-based polymer electrolytes: electrical and dielectric properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231206

Address after: Room 407-10, floor 4, building 2, Haichuang science and technology center, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province, 311100

Patentee after: Zhejiang Zhiduo Network Technology Co.,Ltd.

Address before: 710054 No. 58, Yanta Road, Shaanxi, Xi'an

Patentee before: XI'AN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right