CN109206434A - 一种分离纯化青蒿素的方法 - Google Patents

一种分离纯化青蒿素的方法 Download PDF

Info

Publication number
CN109206434A
CN109206434A CN201710511576.8A CN201710511576A CN109206434A CN 109206434 A CN109206434 A CN 109206434A CN 201710511576 A CN201710511576 A CN 201710511576A CN 109206434 A CN109206434 A CN 109206434A
Authority
CN
China
Prior art keywords
qinghaosu
entrainer
purifying
isolating
acetonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710511576.8A
Other languages
English (en)
Inventor
陈海
刘大伟
刘根水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hanbon Science and Technology Co Ltd
Original Assignee
Jiangsu Hanbon Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hanbon Science and Technology Co Ltd filed Critical Jiangsu Hanbon Science and Technology Co Ltd
Priority to CN201710511576.8A priority Critical patent/CN109206434A/zh
Publication of CN109206434A publication Critical patent/CN109206434A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/20Spiro-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种分离纯化青蒿素的方法。本发明采用超临界流体色谱系统,以裸硅胶、C18、C8作为固定相,超临界CO2做流动相,甲醇、乙醇、乙腈做夹带剂,分离纯化得到青蒿素。本发明绿色环保,过程简单,易于操作。

Description

一种分离纯化青蒿素的方法
技术领域
本发明涉及一种天然产物的纯化方法,特别是青蒿素的纯化方法。
背景技术
青蒿素,英文名称为 Artemisinin,无色针状晶体。易溶于氯仿、丙酮、乙酸乙酯和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎不溶于水。因其具有特殊的过氧基团,它对热不稳定,易受湿、热和还原性物质的影响而分解。
超临界流体色谱简单介绍:超临界流体色谱兼有气相色谱和液相色谱的特点。它既可分析气相色谱不适应的高沸点、低挥发性样品,又比高效液相色谱有更快的分析速度和条件。操作温度主要决定于所选用的流体,常用的有二氧化碳。超临界流体容易控制和调节,在进入检测器前可以转化为气体、液体或保持其超临界流体状态,因此可与现有任何液相或气相的检测器相连接,能与多种类型检测器相匹配,扩大了它的应用范围和分类能力,在定性、定量方面有较大的选择范围。还可以用多种梯度技术来优化色谱条件。并且比高效液相色谱法易达到更高的柱效率。
发明内容
本发明的目的在于提供一种分离纯化青蒿素的方法,以得到一种高纯度的青蒿素。
技术方案如下:以裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶等硅胶基质类填料作为固定相,超临界CO2做流动相,甲醇、乙醇、乙腈做夹带剂,纯化的得到纯度大于98%的青蒿素。具体步骤如下:
(1)使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤;
(2)配置夹带剂,夹带剂是甲醇、乙醇、乙腈的混合物,其体积比为甲醇:乙醇:乙腈=2:3:2。;
(3)用超临界流体色谱系统对过滤后的粗品进行分离纯化,以裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶作为固定相,以带有夹带剂的超临界CO2做流动相,对过滤后的青蒿素粗品进行分离纯化;
(4)将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
本发明具有以下技术效果:使用超临界流体色谱纯化得到纯度大于98%的青蒿素。此方法将使用CO2做流动相,仅添加少量有机溶剂,减少了有机溶剂对环境的污染,绿色环保,同时,制备过程简单,易于操作。
具体实施方式:
实施例1
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,裸硅胶为固定相,超临界CO2:夹带剂=90:10的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
实施例2
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,使用十八烷基硅烷键合硅胶作为固定相,使用超临界CO2:夹带剂=95:5的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
实施例3
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,使用辛烷基硅烷键合硅胶作为固定相,使用超临界CO2:夹带剂=98:2的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。

Claims (3)

1.一种分离纯化青蒿素的方法,其特征在于:
(1)使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤;
(2)配置夹带剂;
(3)用超临界流体色谱系统对过滤后的粗品进行分离纯化,以硅胶基质类填料作为固定相,以带有夹带剂的超临界CO2做流动相,对过滤后的青蒿素粗品进行分离纯化;
(4)将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
2.根据权利要求1所述的一种分离纯化青蒿素的方法,其特征在于所述的步骤(2)中的夹带剂是甲醇、乙醇、乙腈的混合物,其体积比为甲醇:乙醇:乙腈=2:3:2。
3.根据权利要求1所述的一种分离纯化青蒿素的方法,其特征在于所述的步骤(3)种的硅胶基质类填料为裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶。
CN201710511576.8A 2017-06-29 2017-06-29 一种分离纯化青蒿素的方法 Withdrawn CN109206434A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710511576.8A CN109206434A (zh) 2017-06-29 2017-06-29 一种分离纯化青蒿素的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710511576.8A CN109206434A (zh) 2017-06-29 2017-06-29 一种分离纯化青蒿素的方法

Publications (1)

Publication Number Publication Date
CN109206434A true CN109206434A (zh) 2019-01-15

Family

ID=64960423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710511576.8A Withdrawn CN109206434A (zh) 2017-06-29 2017-06-29 一种分离纯化青蒿素的方法

Country Status (1)

Country Link
CN (1) CN109206434A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377432A (zh) * 2021-12-21 2022-04-22 江苏汉邦科技有限公司 一种超临界流体色谱分离雨生红球藻提取物的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377432A (zh) * 2021-12-21 2022-04-22 江苏汉邦科技有限公司 一种超临界流体色谱分离雨生红球藻提取物的方法
CN114377432B (zh) * 2021-12-21 2023-08-15 江苏汉邦科技有限公司 一种超临界流体色谱分离雨生红球藻提取物的方法

Similar Documents

Publication Publication Date Title
Tian et al. Separation of gallic acid from Cornus officinalis Sieb. et Zucc by high-speed counter-current chromatography
Li et al. Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography
Wei et al. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography
Liu et al. Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography
Han et al. Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography
Peng et al. Efficient new method for extraction and isolation of three flavonoids from Patrinia villosa Juss. by supercritical fluid extraction and high-speed counter-current chromatography
Yang et al. Separation and purification of anthocyanins from Roselle by macroporous resins
CN104513286B (zh) 一种分离纯化非达米星的方法
Wang et al. Application of high-speed counter-current chromatography for preparative separation of cyclic peptides from Vaccaria segetalis
Zhu et al. Preparative separation and purification of five anthraquinones from Cassia tora L. by high-speed counter-current chromatography
Yang et al. Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins
Liu et al. Determination of gastrodin, p-hydroxybenzyl alcohol, vanillyl alcohol, p-hydroxylbenzaldehyde and vanillin in tall gastrodia tuber by high-performance liquid chromatography
Wei et al. Preparative separation of rhein from Chinese traditional herb by repeated high-speed counter-current chromatography
Lafont et al. Chromatographic procedures for phytoecdysteroids
Zhang et al. Preparative isolation and purification of five steroid saponins from Dioscorea zingiberensis CH Wright by counter-current chromatography coupled with evaporative light scattering detector
Chen et al. Preparation of five high‐purity iridoid glycosides from Gardenia jasminoides Eills by molecularly imprinted solid‐phase extraction integrated with preparative liquid chromatography
Geng et al. Separation of phenolic acids from sugarcane rind by online solid‐phase extraction with high‐speed counter‐current chromatography
Peng et al. Supercritical fluid extraction of aurentiamide acetate from Patrinia villosa Juss and subsequent isolation by silica gel and high-speed counter-current chromatography
He et al. Isolation and purification of antioxidative isomeric polyphenols from the roots of Parthenocissus laetevirens by counter-current chromatography
Wu et al. Preparative isolation and purification of celastrol from Celastrus orbiculatus Thunb. by a new counter-current chromatography method with an upright coil planet centrifuge
Jin et al. Preparative isolation and purification of trans-3, 5, 4′-trihydroxystilbene-4′-O-β-d-glucopyranoside and (+) catechin from Rheum tanguticum Maxim. ex Balf. using high-speed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase
Shi et al. Preparative isolation and purification of triterpene saponins from Clematis mandshurica by high-speed counter-current chromatography coupled with evaporative light scattering detection
Zhu et al. Application of high-speed counter-current chromatography and preparative high-performance liquid chromatography mode for rapid isolation of anthraquinones from Morinda officinalis How.
CN109206434A (zh) 一种分离纯化青蒿素的方法
Yin et al. Trends in counter-current chromatography: Applications to natural products purification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190115