CN109206434A - 一种分离纯化青蒿素的方法 - Google Patents
一种分离纯化青蒿素的方法 Download PDFInfo
- Publication number
- CN109206434A CN109206434A CN201710511576.8A CN201710511576A CN109206434A CN 109206434 A CN109206434 A CN 109206434A CN 201710511576 A CN201710511576 A CN 201710511576A CN 109206434 A CN109206434 A CN 109206434A
- Authority
- CN
- China
- Prior art keywords
- qinghaosu
- entrainer
- purifying
- isolating
- acetonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/12—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
- C07D493/20—Spiro-condensed systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
Abstract
本发明公开了一种分离纯化青蒿素的方法。本发明采用超临界流体色谱系统,以裸硅胶、C18、C8作为固定相,超临界CO2做流动相,甲醇、乙醇、乙腈做夹带剂,分离纯化得到青蒿素。本发明绿色环保,过程简单,易于操作。
Description
技术领域
本发明涉及一种天然产物的纯化方法,特别是青蒿素的纯化方法。
背景技术
青蒿素,英文名称为 Artemisinin,无色针状晶体。易溶于氯仿、丙酮、乙酸乙酯和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎不溶于水。因其具有特殊的过氧基团,它对热不稳定,易受湿、热和还原性物质的影响而分解。
超临界流体色谱简单介绍:超临界流体色谱兼有气相色谱和液相色谱的特点。它既可分析气相色谱不适应的高沸点、低挥发性样品,又比高效液相色谱有更快的分析速度和条件。操作温度主要决定于所选用的流体,常用的有二氧化碳。超临界流体容易控制和调节,在进入检测器前可以转化为气体、液体或保持其超临界流体状态,因此可与现有任何液相或气相的检测器相连接,能与多种类型检测器相匹配,扩大了它的应用范围和分类能力,在定性、定量方面有较大的选择范围。还可以用多种梯度技术来优化色谱条件。并且比高效液相色谱法易达到更高的柱效率。
发明内容
本发明的目的在于提供一种分离纯化青蒿素的方法,以得到一种高纯度的青蒿素。
技术方案如下:以裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶等硅胶基质类填料作为固定相,超临界CO2做流动相,甲醇、乙醇、乙腈做夹带剂,纯化的得到纯度大于98%的青蒿素。具体步骤如下:
(1)使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤;
(2)配置夹带剂,夹带剂是甲醇、乙醇、乙腈的混合物,其体积比为甲醇:乙醇:乙腈=2:3:2。;
(3)用超临界流体色谱系统对过滤后的粗品进行分离纯化,以裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶作为固定相,以带有夹带剂的超临界CO2做流动相,对过滤后的青蒿素粗品进行分离纯化;
(4)将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
本发明具有以下技术效果:使用超临界流体色谱纯化得到纯度大于98%的青蒿素。此方法将使用CO2做流动相,仅添加少量有机溶剂,减少了有机溶剂对环境的污染,绿色环保,同时,制备过程简单,易于操作。
具体实施方式:
实施例1
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,裸硅胶为固定相,超临界CO2:夹带剂=90:10的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
实施例2
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,使用十八烷基硅烷键合硅胶作为固定相,使用超临界CO2:夹带剂=95:5的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
实施例3
使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤。配置甲醇:乙醇:乙腈=2:3:2的夹带剂,使用辛烷基硅烷键合硅胶作为固定相,使用超临界CO2:夹带剂=98:2的流动相体系平衡系统15min,然后进样,洗脱约70min后开始接收目标组分,接收约10min,然后使用高比例的夹带剂进行洗脱。将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
Claims (3)
1.一种分离纯化青蒿素的方法,其特征在于:
(1)使用乙腈溶解青蒿素粗品,然后使用0.45um的微孔滤膜进行过滤;
(2)配置夹带剂;
(3)用超临界流体色谱系统对过滤后的粗品进行分离纯化,以硅胶基质类填料作为固定相,以带有夹带剂的超临界CO2做流动相,对过滤后的青蒿素粗品进行分离纯化;
(4)将接收的液体流份使用旋转蒸发仪进行后处理,得到的白色粉末即为目标产物。
2.根据权利要求1所述的一种分离纯化青蒿素的方法,其特征在于所述的步骤(2)中的夹带剂是甲醇、乙醇、乙腈的混合物,其体积比为甲醇:乙醇:乙腈=2:3:2。
3.根据权利要求1所述的一种分离纯化青蒿素的方法,其特征在于所述的步骤(3)种的硅胶基质类填料为裸硅胶、十八烷基硅烷键合硅胶、辛烷基硅烷键合硅胶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710511576.8A CN109206434A (zh) | 2017-06-29 | 2017-06-29 | 一种分离纯化青蒿素的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710511576.8A CN109206434A (zh) | 2017-06-29 | 2017-06-29 | 一种分离纯化青蒿素的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109206434A true CN109206434A (zh) | 2019-01-15 |
Family
ID=64960423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710511576.8A Withdrawn CN109206434A (zh) | 2017-06-29 | 2017-06-29 | 一种分离纯化青蒿素的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109206434A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114377432A (zh) * | 2021-12-21 | 2022-04-22 | 江苏汉邦科技有限公司 | 一种超临界流体色谱分离雨生红球藻提取物的方法 |
-
2017
- 2017-06-29 CN CN201710511576.8A patent/CN109206434A/zh not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114377432A (zh) * | 2021-12-21 | 2022-04-22 | 江苏汉邦科技有限公司 | 一种超临界流体色谱分离雨生红球藻提取物的方法 |
CN114377432B (zh) * | 2021-12-21 | 2023-08-15 | 江苏汉邦科技有限公司 | 一种超临界流体色谱分离雨生红球藻提取物的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tian et al. | Separation of gallic acid from Cornus officinalis Sieb. et Zucc by high-speed counter-current chromatography | |
Li et al. | Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography | |
Wei et al. | Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography | |
Liu et al. | Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography | |
Han et al. | Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography | |
Peng et al. | Efficient new method for extraction and isolation of three flavonoids from Patrinia villosa Juss. by supercritical fluid extraction and high-speed counter-current chromatography | |
Yang et al. | Separation and purification of anthocyanins from Roselle by macroporous resins | |
CN104513286B (zh) | 一种分离纯化非达米星的方法 | |
Wang et al. | Application of high-speed counter-current chromatography for preparative separation of cyclic peptides from Vaccaria segetalis | |
Zhu et al. | Preparative separation and purification of five anthraquinones from Cassia tora L. by high-speed counter-current chromatography | |
Yang et al. | Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins | |
Liu et al. | Determination of gastrodin, p-hydroxybenzyl alcohol, vanillyl alcohol, p-hydroxylbenzaldehyde and vanillin in tall gastrodia tuber by high-performance liquid chromatography | |
Wei et al. | Preparative separation of rhein from Chinese traditional herb by repeated high-speed counter-current chromatography | |
Lafont et al. | Chromatographic procedures for phytoecdysteroids | |
Zhang et al. | Preparative isolation and purification of five steroid saponins from Dioscorea zingiberensis CH Wright by counter-current chromatography coupled with evaporative light scattering detector | |
Chen et al. | Preparation of five high‐purity iridoid glycosides from Gardenia jasminoides Eills by molecularly imprinted solid‐phase extraction integrated with preparative liquid chromatography | |
Geng et al. | Separation of phenolic acids from sugarcane rind by online solid‐phase extraction with high‐speed counter‐current chromatography | |
Peng et al. | Supercritical fluid extraction of aurentiamide acetate from Patrinia villosa Juss and subsequent isolation by silica gel and high-speed counter-current chromatography | |
He et al. | Isolation and purification of antioxidative isomeric polyphenols from the roots of Parthenocissus laetevirens by counter-current chromatography | |
Wu et al. | Preparative isolation and purification of celastrol from Celastrus orbiculatus Thunb. by a new counter-current chromatography method with an upright coil planet centrifuge | |
Jin et al. | Preparative isolation and purification of trans-3, 5, 4′-trihydroxystilbene-4′-O-β-d-glucopyranoside and (+) catechin from Rheum tanguticum Maxim. ex Balf. using high-speed counter-current chromatography by stepwise elution and stepwise increasing the flow-rate of the mobile phase | |
Shi et al. | Preparative isolation and purification of triterpene saponins from Clematis mandshurica by high-speed counter-current chromatography coupled with evaporative light scattering detection | |
Zhu et al. | Application of high-speed counter-current chromatography and preparative high-performance liquid chromatography mode for rapid isolation of anthraquinones from Morinda officinalis How. | |
CN109206434A (zh) | 一种分离纯化青蒿素的方法 | |
Yin et al. | Trends in counter-current chromatography: Applications to natural products purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190115 |