CN109194422A - A kind of SNR estimation method based on subspace - Google Patents
A kind of SNR estimation method based on subspace Download PDFInfo
- Publication number
- CN109194422A CN109194422A CN201811024519.8A CN201811024519A CN109194422A CN 109194422 A CN109194422 A CN 109194422A CN 201811024519 A CN201811024519 A CN 201811024519A CN 109194422 A CN109194422 A CN 109194422A
- Authority
- CN
- China
- Prior art keywords
- subspace
- signal
- covariance matrix
- dimension
- estimation method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本发明公开了一种基于子空间的SNR估计方法,包括以下步骤:步骤1:通过通信设备获得的接收信号求解协方差矩阵的估计值;步骤2:求解信号子空间的维数;步骤3:对步骤1得到的协方差矩阵的估计值进行特征值分解,并根据信号子空间维数降序排列特征值;步骤4:根据步骤3得到的特征值求解噪声功率和信号功率,从而得到SNR的估计值。本发明提供的一种基于子空间的SNR估计方法的优点在于:本申请采用的估计方法计算量较小,处理速度更快,估计性能优于目前存在的其它算法。The invention discloses a subspace-based SNR estimation method, comprising the following steps: Step 1: obtain an estimated value of a covariance matrix through a received signal obtained by a communication device; Step 2: solve the dimension of the signal subspace; Step 3: Perform eigenvalue decomposition on the estimated value of the covariance matrix obtained in step 1, and arrange the eigenvalues in descending order according to the dimension of the signal subspace; step 4: solve the noise power and signal power according to the eigenvalues obtained in step 3, thereby obtaining the estimation of SNR value. The advantages of the subspace-based SNR estimation method provided by the present invention are that the estimation method adopted in the present application has less calculation amount, faster processing speed, and better estimation performance than other existing algorithms.
Description
技术领域technical field
本发明涉及信号处理技术领域,尤其涉及一种基于子空间的SNR 估计方法。The present invention relates to the technical field of signal processing, and in particular, to a subspace-based SNR estimation method.
背景技术Background technique
火星是太阳系中被人类探测最多的行星。由于火星和地球之间距 离遥远,导致了信号传输时延长、信号衰减大。同时相对距离变化快, 探测器载荷和功耗也非常有限。这些现实的情况都给地火通信造成了 极大的困扰。通信弧段短会导致有效通信时间变少,故需更高的有效 数据传输率。再者,器间相对距离和相对姿态的实时变化也会导致接 收端接收到信号的信噪比SNR实时发生变化。这就需要实时调整码 速率进,使之尽可能的提高。SNR估计使用了参数估计理论来计算 信号的噪声功率比,并通过调制模式开关、调整速率、功率控制和信 道分配方法来提供所需的信道质量信息。此外,许多参数估计算法都 需要SNR来作为前提条件来优化性能。Mars is the most explored planet in the solar system. Due to the long distance between Mars and the Earth, the signal transmission time is prolonged and the signal attenuation is large. At the same time, the relative distance changes rapidly, and the detector load and power consumption are also very limited. All these realities have caused great trouble to the ground fire communication. A short communication arc will lead to less effective communication time, so a higher effective data transmission rate is required. Furthermore, the real-time change of the relative distance and relative attitude between the devices will also cause the signal-to-noise ratio (SNR) of the signal received by the receiver to change in real time. This requires real-time adjustment of the code rate to make it as high as possible. SNR estimation uses parameter estimation theory to calculate the signal-to-noise power ratio and provides the required channel quality information through modulation mode switching, rate adjustment, power control and channel allocation methods. Furthermore, many parameter estimation algorithms require SNR as a precondition to optimize performance.
SNR估计方法包括时域法和频域法。时域法分为数据辅助(data aided,DA)法和无数据辅助(non-data aided,NDA)法。DA法比NDA 法拥有更高的估计精度,但它需要插入周期前导序列,这将会降低传 输效率。在时域法中,基于DA的SNR估计方法包含最小均方误差法(minimum mean square error,MMSE)、最大似然估计法(maximum likelihood,ML)、分离符号矩阵估计法(separating character matrix es- timation,SSME)和高阶累积量的信噪分离法等。基于NDA的SNR 估计方法包含二阶四阶矩阵估计法(M2M4)、信号方差比估计法(Signal-to-Variation Ratio,SVR)、平方信噪方差比估计(Squared sig- nal-to-NoiseVariance,SNV)和数据拟合估计法(Data Fitting,DF)等。 经典的频域法是基于白噪声功率谱的平缓特性的,适用于加性高斯白 噪声(Additive White Gaussian Noise,AWGN)信道的SNR估计,在色 噪声环境下并不适用。SNR estimation methods include time domain method and frequency domain method. Time-domain methods are classified into data aided (DA) methods and non-data aided (NDA) methods. The DA method has higher estimation accuracy than the NDA method, but it needs to insert a periodic preamble sequence, which will reduce the transmission efficiency. In the time domain method, DA-based SNR estimation methods include minimum mean square error (MMSE), maximum likelihood (ML), and separating character matrix es- timing, SSME) and high-order cumulant signal-to-noise separation method, etc. The NDA-based SNR estimation methods include the second-order and fourth-order matrix estimation method (M2M4), the signal variance ratio estimation method (Signal-to-Variation Ratio, SVR), the squared signal-to-noise variance ratio estimation (Squared signal-to-NoiseVariance, SNV) and data fitting estimation method (Data Fitting, DF) and so on. The classical frequency domain method is based on the flat characteristic of the power spectrum of white noise, and is suitable for SNR estimation of additive white Gaussian Noise (AWGN) channel, but is not applicable in chromatic noise environment.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于提供一种性能更优的基于子空 间的SNR估计方法。The technical problem to be solved by the present invention is to provide a subspace-based SNR estimation method with better performance.
本发明是通过以下技术方案解决上述技术问题的:The present invention solves the above-mentioned technical problems through the following technical solutions:
一种基于子空间的SNR估计方法,包括以下步骤:A subspace-based SNR estimation method, comprising the following steps:
步骤1:通过通信设备获得的接收信号求解协方差矩阵的估计值;Step 1: Calculate the estimated value of the covariance matrix through the received signal obtained by the communication device;
步骤2:求解信号子空间的维数;Step 2: Solve the dimension of the signal subspace;
步骤3:对步骤1得到的协方差矩阵的估计值进行特征值分解, 并根据信号子空间维数降序排列特征值;Step 3: perform eigenvalue decomposition on the estimated value of the covariance matrix obtained in step 1, and arrange the eigenvalues in descending order according to the dimension of the signal subspace;
步骤4:根据步骤3得到的特征值求解噪声功率和信号功率,从 而得到SNR的估计值。Step 4: Calculate the noise power and the signal power according to the eigenvalues obtained in Step 3, so as to obtain the estimated value of SNR.
优选地,步骤1所述的求解协方差矩阵的估计值的方法为:Preferably, the method for solving the estimated value of the covariance matrix described in step 1 is:
从t时刻向前取L个接收信号构成t时刻的接收信号矢量r(t),则Taking L received signals from time t forward to form the received signal vector r(t) at time t, then
r(t)=[rt,rt-1,…,rt-L+1]T r(t)=[r t ,r t-1 ,...,r t - L+1 ] T
可以得到协方差矩阵为The covariance matrix can be obtained as
Rrr=E[r(t)rH(t)]R rr =E[r(t)r H (t)]
假设有K个不变的观测矢量,则协方差矩阵的估计值为Assuming there are K constant observation vectors, the estimated covariance matrix is
其中,k∈{0,1,…,L-1}。where k∈{0,1,…,L-1}.
优选地,步骤2中采用最小描述长度准则MDL估计信号子空间 的维数p,Preferably, in step 2, the minimum description length criterion MDL is used to estimate the dimension p of the signal subspace ,
k和子空间维数p满足如下关系k and the subspace dimension p satisfy the following relationship
p=argk min MDL(k)。p=arg k min MDL(k).
优选地,步骤3所述的特征值分解方法为:Preferably, the eigenvalue decomposition method described in step 3 is:
假设信号功率和噪声功率不相关,则协方差矩阵估计值可表示 为:Assuming that the signal power and noise power are not correlated, the estimated covariance matrix can be expressed as:
Rrr=Rxx+Rnn R rr =R xx +R nn
根据特征值分解理论,Rrr可分解为According to the eigenvalue decomposition theory, R rr can be decomposed into
Rrr=AΣAH R rr =AΣA H
其中,A由正交的特征向量组成;对角矩阵Σ=diag(bi)由矩阵的特 征值bi构成,其中Among them, A consists of orthogonal eigenvectors; the diagonal matrix Σ=diag(b i ) consists of the eigenvalues b i of the matrix, where
b1≥b2≥…bL b 1 ≥b 2 ≥…b L
则白噪声的自相关矩阵满足Then the autocorrelation matrix of white noise satisfies
其中,为噪声功率的方差;in, is the variance of the noise power;
降序排列得到的协方差矩阵的特征值为The eigenvalues of the covariance matrix obtained in descending order are
其中,表示第i个特征向量的信号功率,p表示信号子空间的 维数,前p个特征向量构成了信号子空间,后L-p个特征向量构成了 噪声子空间。in, Represents the signal power of the ith eigenvector, p represents the dimension of the signal subspace, the first p eigenvectors constitute the signal subspace, and the last Lp eigenvectors constitute the noise subspace.
用步骤1得到的协方差矩阵的估计值进行上述分解,得到特 征值Rrr的最大拟然估计。Use the estimate of the covariance matrix obtained in step 1 The above decomposition is carried out to obtain the maximum likelihood estimate of the eigenvalue R rr .
优选地,SNR估计值为Preferably, the SNR estimate is
ρ=10lg(Ps/Pn)ρ=10lg(P s /P n )
其中,in,
Pn为噪声功率,Ps为信号功率。P n is the noise power, and P s is the signal power.
本发明提供的一种基于子空间的SNR估计方法的优点在于:本 申请采用的估计方法计算量较小,处理速度更快,估计性能优于目前 存在的其它算法。The advantages of the subspace-based SNR estimation method provided by the present invention are that the estimation method adopted in the present application has less computation amount, faster processing speed and better estimation performance than other existing algorithms.
附图说明Description of drawings
图1是本发明的实施例所提供的基于子空间的SNR估计方法在 不同SNR情况下的估计性能;Fig. 1 is the estimation performance of the SNR estimation method based on subspace provided by the embodiment of the present invention under different SNR situations;
图2是本发明的实施例所提供的基于子空间的SNR估计方法在 不同快拍情况下的SNR估计性能;Fig. 2 is the SNR estimation performance of the subspace-based SNR estimation method provided by the embodiment of the present invention under different snapshot situations;
图3是不同算法的估计性能比较。Figure 3 is a comparison of the estimated performance of different algorithms.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具 体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
在复AWGN信道中,接收信号可以表示为In a complex AWGN channel, the received signal can be expressed as
rk=xk+nk r k =x k +n k
其中,nk为依次采样下的零均值的复高斯白噪声,其方差为以t时刻之前的L次采样数据组成的噪声列向量可表示为Among them, nk is the complex Gaussian white noise with zero mean under sequential sampling, and its variance is The noise column vector composed of L sampled data before time t can be expressed as
n(t)=[nt,nt-1,…,nt-L+1]T n(t)=[n t ,n t-1 ,...,n t - L+1 ] T
其中,()T表示转置,噪声向量的二阶矩可表示为Among them, () T represents the transposition, and the second-order moment of the noise vector can be expressed as
其中E[]表示数学期望,上标H表示共轭转置,I是一个L×L的 单位矩阵。where E[] represents the mathematical expectation, the superscript H represents the conjugate transpose, and I is an L×L identity matrix.
xk是在载波频率为fc下的带通信号,表示为x k is the band-pass signal at the carrier frequency f c , denoted as
其中,θ表示初始相位,fs表示采样频率。where θ is the initial phase and fs is the sampling frequency.
是复等效基带信号,就多进制数字相位调制(Multiple Phase Shift Keying,MPSK)信号而言, is a complex equivalent baseband signal. As far as the Multiple Phase Shift Keying (MPSK) signal is concerned,
其中,A∈R+代表信号的幅值。where A∈R + represents the amplitude of the signal.
在进行多进制正交幅度调制(Multiple Quadrature Amplitude Mod- ulation,MQAM)信号中,In performing multiple quadrature amplitude modulation (Multiple Quadrature Amplitude Modulation, MQAM) signals,
其中,Al∈C表示第l次相位对应的振幅。Among them, A l ∈ C represents the amplitude corresponding to the l-th phase.
令Ps和Pn分别表示信号功率和噪声功率,则SNR可表示为Let P s and P n denote signal power and noise power, respectively, then SNR can be expressed as
ρ=10lg(Ps/Pn)ρ=10lg(P s /P n )
基于上述分析,进行SNR估计的重点在于求出信号功率Ps和噪 声功率Pn,本发明提供的基于子空间的SNR方法包括以下步骤:Based on the above analysis, the key point of SNR estimation is to obtain the signal power P s and the noise power P n . The subspace-based SNR method provided by the present invention includes the following steps:
步骤1:通过通信设备获得的接收信号求解协方差矩阵的估计值;Step 1: Calculate the estimated value of the covariance matrix through the received signal obtained by the communication device;
从t时刻向前取L个接收信号构成t时刻的接收信号矢量r(t),则Taking L received signals from time t forward to form the received signal vector r(t) at time t, then
r(t)=[rt,rt-1,…,rt-L+1]T r(t)=[r t ,r t-1 ,...,r t - L+1 ] T
可以得到协方差矩阵为The covariance matrix can be obtained as
Rrr=E[r(t)rH(t)]R rr =E[r(t)r H (t)]
实际中要得到协方差矩阵Rrr的真实值是非常困难的,因此我们 只能通过有限长的接收信号来估计。In practice, it is very difficult to get the true value of the covariance matrix R rr , so we can only estimate it through a finite length of the received signal.
假设有K个不变的观测矢量,则协方差矩阵的估计值为Assuming there are K constant observation vectors, the estimated covariance matrix is
其中,k∈{0,1,…,L-1}。where k∈{0,1,…,L-1}.
步骤2:求解信号子空间的维数;Step 2: Solve the dimension of the signal subspace;
优选实施例中听过最小描述长度准则MDL估计信号子空间的维 数p,In the preferred embodiment, the minimum description length criterion MDL estimates the dimension p of the signal subspace,
k和子空间维数p满足如下关系k and the subspace dimension p satisfy the following relationship
p=argk min MDL(k)。p=arg k min MDL(k).
步骤3:对步骤1得到的协方差矩阵的估计值进行特征值分解, 并根据信号子空间维数降序排列特征值;Step 3: perform eigenvalue decomposition on the estimated value of the covariance matrix obtained in step 1, and arrange the eigenvalues in descending order according to the dimension of the signal subspace;
假设信号功率和噪声功率不相关,则协方差矩阵估计值可表示 为:Assuming that the signal power and noise power are not correlated, the estimated covariance matrix can be expressed as:
Rrr=Rxx+Rnn R rr =R xx +R nn
根据特征值分解理论,Rrr可分解为According to the eigenvalue decomposition theory, R rr can be decomposed into
Rrr=AΣAH R rr =AΣA H
其中,A由正交的特征向量组成;对角矩阵Σ=diag(bi)由矩阵的特 征值bi构成,其中Among them, A consists of orthogonal eigenvectors; the diagonal matrix Σ=diag(b i ) consists of the eigenvalues b i of the matrix, where
b1≥b2≥…bL b 1 ≥b 2 ≥…b L
则白噪声的自相关矩阵Rnn满足Then the autocorrelation matrix R nn of white noise satisfies
其中,为噪声功率的方差;in, is the variance of the noise power;
降序排列得到的协方差矩阵的特征值为The eigenvalues of the covariance matrix obtained in descending order are
其中,表示第i个特征向量的信号功率,p表示信号子空间的 维数,前p个特征向量构成了信号子空间,后L-p个特征向量构成了 噪声子空间,其噪声功率Pn由L-p个组成,当信号子空间的维数p 一定,SNR估计可以通过和Pn的估计值来得到。in, represents the signal power of the ith eigenvector, p represents the dimension of the signal subspace, the first p eigenvectors constitute the signal subspace, and the last Lp eigenvectors constitute the noise subspace, and the noise power P n consists of Lp composition, when the dimension p of the signal subspace is constant, the SNR estimation can be obtained by and the estimated value of P n .
用步骤1得到的协方差矩阵的估计值进行上述分解,可以得 到特征值Rrr的最大拟然估计。Use the estimate of the covariance matrix obtained in step 1 By performing the above decomposition, the maximum likelihood estimation of the eigenvalue R rr can be obtained.
步骤4:根据步骤3得到的特征值求解噪声功率和信号功率,从 而得到SNR的估计值。Step 4: Calculate the noise power and the signal power according to the eigenvalues obtained in Step 3, so as to obtain the estimated value of SNR.
由之前的分析可以知道It can be known from the previous analysis that
ρ=10lg(Ps/Pn)ρ=10lg(P s /P n )
其中,in,
Pn为噪声功率,Ps为信号功率。P n is the noise power, and P s is the signal power.
上述算法的计算量为O(L2N+L3)次乘法,其中N为符号数。The calculation amount of the above algorithm is O(L 2 N+L 3 ) multiplications, where N is the number of symbols.
利用MATLAB仿真对本发明的实施例提供的算法性能进行分 析,结果如下:Utilize MATLAB simulation to analyze the algorithm performance that the embodiment of the present invention provides, the result is as follows:
图1是基于子空间的SNR估计方法在不同SNR情况下的估计性 能;从图1可以看出子空间方法具有较好的SNR估计性能。随着SNR 提高,SNR的估计能逼近于真实值。Figure 1 shows the estimation performance of the subspace-based SNR estimation method under different SNR conditions; it can be seen from Figure 1 that the subspace method has better SNR estimation performance. As the SNR increases, the estimate of the SNR can be approximated to the true value.
图2是基于子空间的SNR估计方法在不同快拍情况下SNR估计 性能;可以看出,随着快拍数增加,SNR的估计越来越好。Figure 2 shows the SNR estimation performance of the subspace-based SNR estimation method in different snapshot situations; it can be seen that as the number of snapshots increases, the SNR estimation is getting better and better.
图3是各不同算法的估计性能比较(N=300);与DF,M2M4,SVR 和SNV算法进行对比。从图中可以看出子空间方法的估计性能好于 其他算法。Figure 3 is a comparison of the estimated performance of various algorithms (N=300); compared with DF, M2M4, SVR and SNV algorithms. It can be seen from the figure that the estimation performance of the subspace method is better than other algorithms.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果 进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实 施例而已,并不用于限制本发明,在不脱离本发明的精神和原则的前 提下,本领域普通技术人员对本发明所做的任何修改、等同替换、改 进等,均应落入本发明权利要求书确定的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above are only specific embodiments of the present invention, and are not intended to limit the present invention. Without departing from the spirit and principle of the present invention, any modification, equivalent replacement, improvement, etc. made by those of ordinary skill in the art to the present invention shall fall within the protection scope determined by the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811024519.8A CN109194422B (en) | 2018-09-04 | 2018-09-04 | A Subspace-Based SNR Estimation Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811024519.8A CN109194422B (en) | 2018-09-04 | 2018-09-04 | A Subspace-Based SNR Estimation Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109194422A true CN109194422A (en) | 2019-01-11 |
CN109194422B CN109194422B (en) | 2021-06-22 |
Family
ID=64912133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811024519.8A Active CN109194422B (en) | 2018-09-04 | 2018-09-04 | A Subspace-Based SNR Estimation Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109194422B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111294126A (en) * | 2020-03-13 | 2020-06-16 | 南京航空航天大学 | A Subspace Tracking Method for SNR Estimation |
CN113364539A (en) * | 2021-08-09 | 2021-09-07 | 成都华日通讯技术股份有限公司 | Blind estimation method for signal-to-noise ratio of digital signal in frequency spectrum monitoring equipment |
WO2023246915A1 (en) * | 2022-06-21 | 2023-12-28 | 锐捷网络股份有限公司 | Method and apparatus for determining noise power, and device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102938254A (en) * | 2012-10-24 | 2013-02-20 | 中国科学技术大学 | Voice signal enhancement system and method |
CN103854660A (en) * | 2014-02-24 | 2014-06-11 | 中国电子科技集团公司第二十八研究所 | Four-microphone voice enhancement method based on independent component analysis |
US9721582B1 (en) * | 2016-02-03 | 2017-08-01 | Google Inc. | Globally optimized least-squares post-filtering for speech enhancement |
CN107316648A (en) * | 2017-07-24 | 2017-11-03 | 厦门理工学院 | A kind of sound enhancement method based on coloured noise |
-
2018
- 2018-09-04 CN CN201811024519.8A patent/CN109194422B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102938254A (en) * | 2012-10-24 | 2013-02-20 | 中国科学技术大学 | Voice signal enhancement system and method |
CN103854660A (en) * | 2014-02-24 | 2014-06-11 | 中国电子科技集团公司第二十八研究所 | Four-microphone voice enhancement method based on independent component analysis |
US9721582B1 (en) * | 2016-02-03 | 2017-08-01 | Google Inc. | Globally optimized least-squares post-filtering for speech enhancement |
CN107316648A (en) * | 2017-07-24 | 2017-11-03 | 厦门理工学院 | A kind of sound enhancement method based on coloured noise |
Non-Patent Citations (1)
Title |
---|
牛铜: "基于子空间的语音增强算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111294126A (en) * | 2020-03-13 | 2020-06-16 | 南京航空航天大学 | A Subspace Tracking Method for SNR Estimation |
CN111294126B (en) * | 2020-03-13 | 2021-08-03 | 南京航空航天大学 | A Subspace Tracking Method for SNR Estimation |
CN113364539A (en) * | 2021-08-09 | 2021-09-07 | 成都华日通讯技术股份有限公司 | Blind estimation method for signal-to-noise ratio of digital signal in frequency spectrum monitoring equipment |
CN113364539B (en) * | 2021-08-09 | 2021-11-16 | 成都华日通讯技术股份有限公司 | Blind estimation method for signal-to-noise ratio of digital signal in frequency spectrum monitoring equipment |
WO2023246915A1 (en) * | 2022-06-21 | 2023-12-28 | 锐捷网络股份有限公司 | Method and apparatus for determining noise power, and device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN109194422B (en) | 2021-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Joint estimation of channel parameters for MIMO communication systems | |
CN109194422B (en) | A Subspace-Based SNR Estimation Method | |
KR100663525B1 (en) | Apparatus and method for measuring interference power for space-time beam forming | |
CN108512787B (en) | Hyperfine Channel Estimation Method for Massive MIMO Systems | |
Li et al. | Intelligent blind source separation technology based on OTFS modulation for LEO satellite communication | |
Arunkumar et al. | Soft symbol decoding in sweep-spread-carrier underwater acoustic communications: a novel variational Bayesian algorithm and its analysis | |
Pourkhaatoun et al. | High-resolution independent component analysis-based time-of-arrival estimation for line-of-sight multipath environments | |
EP2293482B1 (en) | Signal detecting method and device for multi-code multi-transmitting multi-receiving system | |
Bhatti et al. | Spectrum sensing using principal component analysis | |
CN100553243C (en) | Adaptive Beamforming Method for Beam Space Orthogonal Frequency Division Multiplexing Modulation System | |
Rice et al. | Phase 1 final report: Preamble assisted equalization for aeronautical telemetry (PAQ) | |
CN104601514B (en) | The disturbance restraining method of joint subspace projection and CLEAN | |
CN111901058A (en) | Sub-Nyquist sampling based multi-antenna-assisted broadband spectrum sensing method | |
CN109981497B (en) | Pilot pollution elimination method based on blind source separation and angle domain identification | |
CN103139118A (en) | Amplitude estimation method, and interference elimination method and device for data link transmission | |
Datta et al. | Deep Neural Network aided Sparse Bayesian Learning for Wireless Access Channel Estimation in mm-Wave Massive MIMO Cloud Radio Access Network Systems | |
CN106209714B (en) | A kind of rangefinder pulse interference suppression system based on soft symbol reconstruct | |
CN111327549A (en) | Orthogonal analysis normal-mode signal recovery method | |
CN105207701B (en) | For the coding/decoding method based on ICA in multiple cell multi-user multi-aerial system | |
Sun et al. | Subspace method-based blind SNR estimation for communication between orbiters in Mars exploration | |
Chih et al. | Multi-Target Integrated Sensing and Communication with MIMO In-Band Full-Duplex Systems | |
Hande et al. | Multipath delay estimation for frequency hopping systems | |
Qasaymeh et al. | Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method | |
Hofmann et al. | Spectral Correlation for Signal Presence Detection and Frequency Acquisition of Small Satellites. Aerospace 2021, 8, 57 | |
Chen et al. | Reduce the Correlation Phenomena over Massive-MIMO System by Deep Learning Algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |