CN109194150A - 模块化多电平换流器配置方法及其调制策略 - Google Patents

模块化多电平换流器配置方法及其调制策略 Download PDF

Info

Publication number
CN109194150A
CN109194150A CN201810737589.1A CN201810737589A CN109194150A CN 109194150 A CN109194150 A CN 109194150A CN 201810737589 A CN201810737589 A CN 201810737589A CN 109194150 A CN109194150 A CN 109194150A
Authority
CN
China
Prior art keywords
submodule
level
bridge arm
high level
modularization multi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810737589.1A
Other languages
English (en)
Other versions
CN109194150B (zh
Inventor
许烽
陆翌
王朝亮
杨勇
李继红
朱承治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810737589.1A priority Critical patent/CN109194150B/zh
Publication of CN109194150A publication Critical patent/CN109194150A/zh
Application granted granted Critical
Publication of CN109194150B publication Critical patent/CN109194150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了一种模块化多电平换流器配置方法及其调制策略。针对目前直流配电网子模块个数过多等问题,本发明采用的技术方案为:模块化多电平换流器含不同电平子模块,高电平子模块采用可耐受高电压等级的IGBT,高电平子模块额定电压为Uc1,假设直流极间电压为Udc,则在不考虑子模块冗余的情况下,计算每个桥臂高电平子模块个数N1个数和低电平子模块额定电压;含不同电平子模块的模块化多电平换流器调制策略采用最近电平逼近策略,高电平子模块和低电平子模块采用互补区分方式。本发明在满足系统要求,尤其是谐波要求的前提下,能够降低子模块总个数,进而降低MMC的投资成本,减少MMC的占地面积。

Description

模块化多电平换流器配置方法及其调制策略
技术领域
本发明属于柔性直流输配电控制领域,具体地说是一种含不同电平子模块的模块化多电平换流器配置方法及其调制策略。
背景技术
伴随着柔性直流技术的发展和电力电力器件制造工艺的进一步成熟,柔性直流在配电网中的应用越来越普及。模块化多电平换流器(MMC)相比于两电平换流器具有制造工艺简单,运行性能优良等优点。当MMC应用于直流配电网后,由于交直流系统电压低,若IGBT采用现有高压器件,MMC中每个桥臂的子模块仅需几个便能满足。
但是,桥臂子模块个数在小于20的情况下,存在谐波量超标情况,导致现有直流配网工程中,MMC均采用桥臂子模块个数超过20个的方式,使得MMC投资成本增加,占地面积增大,不利于直流配网的推广应用。因此,需要提出一种在满足谐波不超标前提下的子模块优化配置方法,满足系统运行要求的同时,减少子模块个数和投资成本。
发明内容
针对直流配电网子模块个数过多等问题,本发明提供一种含不同电平子模块的MMC配置方法及其调制策略,其在满足谐波不超标的前提下,通过对两种电平子模块个数的优化配置,并配以合适的调制策略,实现满足系统运行要求的同时,减少子模块个数和投资成本。
为此,本发明采用如下的技术方案:模块化多电平换流器配置方法及其调制策略,所述模块化多电平换流器含不同电平子模块,每个桥臂含有两种电平不一的子模块,其中,高电平子模块采用可耐受高电压等级的IGBT,高电平子模块额定电压为Uc1,假设直流极间电压为Udc,则在不考虑子模块冗余的情况下,每个桥臂高电平子模块个数N1个数为:
低电平子模块额定电压Uc2和个数N2(无冗余)的配置按照谐波含量满足国标要求进行计算,根据现有研究成果,每个桥臂等效电平数应大于Ns=20,因而,有:
N1×(N2+1)≥Ns
将N2取满足上式的最小整数,有:
其中,floor()为向下取整函数。
低电平子模块额定电压为:
含不同电平子模块的MMC调制策略采用最近电平逼近策略,高电平子模块和低电平子模块采用互补区分方式。
进一步地,对于高电平子模块而言,每个桥臂投入的高电平子模块个数N1jk为:
其中,j=a,b,c表示A、B、C三相,k=p,n表示上、下桥臂,uj为MMC控制环输出的交流相电压参考值。
进一步地,对于低电平子模块而言,每个桥臂投入的低电平子模块个数N2jk为:
根据获得的N1jk和N2jk,对高电平子模块和低电平子模块分别进行子模块电压排序,然后根据桥臂电流的方向,自动安排每个子模块的通断。
本发明具有的有益效果如下:本发明提出的含不同电平子模块的MMC配置方法及其调制策略,在满足系统要求,尤其是谐波要求的前提下,能够降低子模块总个数,进而降低MMC的投资成本,减少MMC的占地面积。本发明能提升MMC的紧凑化和经济性,可促进直流配电网在配电系统中的推广应用。
附图说明
图1为含两种电平子模块的MMC结构示意图;
图2为本发明含两种电平子模块的MMC调制策略流程图;
图3为本发明调制策略的仿真结果示意图。
具体实施方式
为了更为具体地描述本发明,下面结合说明书附图及具体实施方式对本发明的技术方案及其相关原理进行详细说明。
如图1所示,含不同电平子模块的MMC中,每个桥臂含有两种电平不一的子模块,其中,高电平子模块采用可耐受高电压等级的IGBT,高电平子模块额定电压为Uc1,低电平子模块额定电压为Uc2
假设直流极间电压为Udc,在不考虑子模块冗余的情况下,每个桥臂高电平子模块个数N1个数为
在不考虑子模块冗余的情况下,假设低电平子模块个数为N2。按照国标对MMC谐波分量的要求,根据现有研究成果,每个桥臂等效电平数应大于Ns=20,因而,有
N1×(N2+1)≥Ns
将N2取满足上式的最小整数,有
其中,floor()为向下取整函数。
两种不同电平子模块的的投切控制按照如下原则执行:高电平子模块作大阶梯动作,在高电平子模块每个投切中间,利用低电平子模块对阶梯进一步细化,从而增加电压波形的梯度数,降低谐波含量。因此,低电平子模块额定电压可取
如图2所示,含不同电平子模块的MMC调制策略采用最近电平逼近策略,高电平子模块和低电平子模块采用互补区分方式。对于高电平子模块而言,每个桥臂投入的高电平子模块个数N1jk
其中,j=a,b,c表示A、B、C三相,k=p,n表示上、下桥臂,uj为MMC控制环输出的交流相电压参考值。
对于低电平子模块而言,每个桥臂投入的低电平子模块个数N2jk
根据获得的N1jk和N2jk,利用现有技术,对高电平子模块和低电平子模块分别进行子模块电压排序,即采用电容电压均衡策略,根据桥臂电流的方向,自动安排每个子模块的通断。
假设极间电压Udc=20kV,电压调制比k=0.87,高电平子模块额定电压Uc1=4kV,则高电平子模块个数N1=5,同时,为满足谐波含量要求,低电平子模块个数N2=3,则低电平子模块额定电压Uc2=1kV。如此,利用本发明提出的调制策略,可以得到图3所示的仿真波形。
从仿真结果可以看出,桥臂等效电平为20,满足谐波要求。若仅采用一种电平子模块,那么每个桥臂需要的子模块个数为20个,子模块额定电压为1kV。相比于本发明提出的两种电平结构下每个桥臂仅需8个子模块的情况,子模块个数要增加一倍多。因此可以看出,本发明在投资成本和设备占地方面,将具有明显优势和较好的应用前景。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

Claims (3)

1.模块化多电平换流器配置方法及其调制策略,其特征在于,所述的模块化多电平换流器含不同电平子模块,每个桥臂含有两种电平不一的子模块,其中,高电平子模块采用可耐受高电压等级的IGBT,高电平子模块额定电压为Uc1,假设直流极间电压为Udc,则在不考虑子模块冗余的情况下,每个桥臂高电平子模块个数N1个数为:
低电平子模块额定电压Uc2和个数N2的配置按照谐波含量满足国标要求进行计算,每个桥臂等效电平数应大于Ns=20,因而,有:
N1×(N2+1)≥Ns
将N2取满足上式的最小整数,有
其中,floor()为向下取整函数;
低电平子模块额定电压为:
含不同电平子模块的模块化多电平换流器的调制策略采用最近电平逼近策略,高电平子模块和低电平子模块采用互补区分方式。
2.根据权利要求1所述的模块化多电平换流器配置方法及其调制策略,其特征在于,对于高电平子模块而言,每个桥臂投入的高电平子模块个数N1jk为:
其中,j=a,b,c表示A、B、C三相,k=p,n表示上、下桥臂,uj为模块化多电平换流器控制环输出的交流相电压参考值。
3.根据权利要求2所述的模块化多电平换流器配置方法及其调制策略,其特征在于,对于低电平子模块而言,每个桥臂投入的低电平子模块个数N2jk为:
根据获得的N1jk和N2jk,对高电平子模块和低电平子模块分别进行子模块电压排序,然后根据桥臂电流的方向,自动安排每个子模块的通断。
CN201810737589.1A 2018-07-06 2018-07-06 模块化多电平换流器配置方法及其调制策略 Active CN109194150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810737589.1A CN109194150B (zh) 2018-07-06 2018-07-06 模块化多电平换流器配置方法及其调制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810737589.1A CN109194150B (zh) 2018-07-06 2018-07-06 模块化多电平换流器配置方法及其调制策略

Publications (2)

Publication Number Publication Date
CN109194150A true CN109194150A (zh) 2019-01-11
CN109194150B CN109194150B (zh) 2020-12-18

Family

ID=64936131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810737589.1A Active CN109194150B (zh) 2018-07-06 2018-07-06 模块化多电平换流器配置方法及其调制策略

Country Status (1)

Country Link
CN (1) CN109194150B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003489A (zh) * 2020-09-08 2020-11-27 上海电力设计院有限公司 一种模块化多电平换流器的电平数控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611345A (zh) * 2012-03-31 2012-07-25 华北电力大学 基于循环嵌套机理的模块化多电平换流器结构的拓扑方法
CN105391313A (zh) * 2015-12-10 2016-03-09 湖南大学 一种模块化多电平换流器的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611345A (zh) * 2012-03-31 2012-07-25 华北电力大学 基于循环嵌套机理的模块化多电平换流器结构的拓扑方法
CN105391313A (zh) * 2015-12-10 2016-03-09 湖南大学 一种模块化多电平换流器的控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003489A (zh) * 2020-09-08 2020-11-27 上海电力设计院有限公司 一种模块化多电平换流器的电平数控制方法
CN112003489B (zh) * 2020-09-08 2024-05-14 上海电力设计院有限公司 一种模块化多电平换流器的电平数控制方法

Also Published As

Publication number Publication date
CN109194150B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
Albatsh et al. Fuzzy-logic-based UPFC and laboratory prototype validation for dynamic power flow control in transmission lines
Rivera et al. Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus
CN103825478B (zh) 基于工频固定开关频率模块化多电平变流器的控制方法
CN109713707B (zh) 一种降低不平衡电网电压下mmc子模块电压波动的方法
CN107465359A (zh) 模块化多电平换流器的环流抑制方法及装置
CN103914599B (zh) 一种模块化多电平换流器的戴维南等效整体建模方法
CN104993533B (zh) 模块化多电平变流器桥臂间能量平衡控制方法
CN105656330A (zh) 一种适用于高电平模块化多电平换流器的电容均压策略
Akkari Control of a multi-terminal HVDC (MTDC) system and study of the interactions between the MTDC and the AC grids.
Ebrahim et al. Optimal metaheuristic-based sliding mode control of VSC-HVDC transmission systems
CN103066567B (zh) 一种基于投切数的分层分段式电容平衡控制方法
CN105634004A (zh) 一种基于虚拟同步发电机控制的电压源换流器等值方法
CN105743360A (zh) 一种子模块分布式控制方法、装置和系统
CN109194150A (zh) 模块化多电平换流器配置方法及其调制策略
CN105978011B (zh) 用于电网调度的柔性分区互联装置稳态模型
Farasat et al. Voltage and power control for minimising converter and distribution losses in autonomous microgrids
CN109586589A (zh) 一种mmc、子模块投入个数计算方法、投入方法及装置
CN104811063B (zh) 基于多核控制器技术的模块化多电平换流器控制方法
Chilipi et al. Coordinated control of parallel operated renewable‐energy‐based DG systems
CN105515422B (zh) 适用于超低调制比应用的多重分叉的模块化多电平变换器
Govindasamy et al. Configuration and Digital Simulation of STATCOM utilizing 48-Pulse VSC for Reactive Power Reparation and Potential Reliability
CN107769264A (zh) 风力发电机组的控制方法、装置、系统、风电变流器
Wang et al. A hybrid arm‐multiplexing MMC for DC fault ride‐through without blocking
Goyal et al. A comprehensive control strategy for power quality enhancement in railway power system
CN205725505U (zh) 基于不等式约束的无辅助电容式半桥/全桥混联mmc自均压拓扑

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant