CN105515422B - 适用于超低调制比应用的多重分叉的模块化多电平变换器 - Google Patents

适用于超低调制比应用的多重分叉的模块化多电平变换器 Download PDF

Info

Publication number
CN105515422B
CN105515422B CN201610018464.4A CN201610018464A CN105515422B CN 105515422 B CN105515422 B CN 105515422B CN 201610018464 A CN201610018464 A CN 201610018464A CN 105515422 B CN105515422 B CN 105515422B
Authority
CN
China
Prior art keywords
bridge arm
branch
voltage
sub
ultralow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610018464.4A
Other languages
English (en)
Other versions
CN105515422A (zh
Inventor
蔡旭
常怡然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610018464.4A priority Critical patent/CN105515422B/zh
Publication of CN105515422A publication Critical patent/CN105515422A/zh
Application granted granted Critical
Publication of CN105515422B publication Critical patent/CN105515422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/497Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode sinusoidal output voltages being obtained by combination of several voltages being out of phase
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明提供了一种适用于超低调制比应用的多重分叉的模块化多电平变换器,包括3组上桥臂和下桥臂,其中:上桥臂的最上端连接至直流母线,上桥臂的一个串联分支经过n重分叉后得到2n个子分支,子分支按照相位顺序连接至交流侧三相电源;由所述上桥臂构成的多重分叉结构MMC具有2n个交流端口(n>1);下桥臂与上桥臂结构呈对称关系;各层中各子分支产生的交流电压满足电压合成需求,同时满足能量平衡条件,以维持分支中的能量平衡。本发明适用于超低调制比的应用,减小了导通损耗、功率器件整体容量和变换器电容总量。

Description

适用于超低调制比应用的多重分叉的模块化多电平变换器
技术领域
本发明涉及电力系统中柔性直流输电、电力电子技术领域,具体地,涉及一种适用于超低调制比应用的多重分叉结构模块化多电平变换器(MMC)。
背景技术
单分叉结构MMC(模块化多电平变换器)如图1所示,具有六个分叉结构的桥臂和两个交流端口,该变换器适用于调制比较低的AC/DC电能变换应用场合,在采用半桥结构模块作为子模块时,其调制比要求小于0.5,能够将低压交流源连接至高压直流源,但随着调制比的减小,如在超低调制比(调制比小于0.1)应用场合,单分叉结构MMC面临着损耗增加、电容量增加、开关器件容量增加等问题。
经检索,“模块组合多电平变换器的研究综述”,中国电机工程学报,第33卷,第6期,2013。该文的技术要点是:传统MMC的桥臂由子模块串联构成,常应用在调制比接近于1的场合,当调制比减小时,桥臂电流和电容电压波动均会增大,导致需要选取较大的功率器件和较大子模块电容。
检索中还发现,中国专利申请号为CN201510435580.1、公开号为105024569A的发明专利,提供了一种适用于低调制比应用的分叉结构模块化多电平变换器,但该发明的结构仅适用于调制比小于0.5的应用,其技术有进一步改善的空间。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种适用于超低调制比应用的多重分叉的模块化多电平变换器,减小了所需功率器件的额定电流,减小了整体功率器件容量和导通损耗,也减小了子模块电容的总量。
为实现以上目的,本发明提供一种适用于超低调制比应用的多重分叉的多电平矩阵变换器,包括3组上桥臂和下桥臂,每组中的上桥臂与下桥臂呈对称关系,并通过桥臂电感相互连接,连接处引出作为交流端口的连接点;上桥臂的顶端连接至正直流母线,下桥臂的底端连接至负直流母线;其中:上桥臂的一个串联分支经过n重分叉后得到2n个子分支,下桥臂的一个串联分支经过n重分叉后得到2n个子分支,上桥臂的子分支与下桥臂的对应子分支通过桥臂电感相连,n>1。
优选地,3组上下桥臂共引出3×2n个交流端口连接点,3×2n个连接点按照一定的相位顺序连接至交流侧三相电源,其相位顺序为A相、B相、B相、C相、A相、A相、B相、B相、C相、A相…重复循环;由所述上桥臂构成的多重分叉的多电平矩阵变换器具有2n个三相交流端口(n>1)。
优选地,所述下桥臂与上桥臂结构呈对称关系:在每个桥臂中,定义连接到直流母线的子分支为第一层分支,经过n重的分叉的子分支为第n层分支,则各层中各子分支产生的交流电压满足电压合成需求,同时满足能量平衡条件,以维持分支中的能量平衡。
优选地,所述上桥臂、下桥臂各产生1/2的直流侧电压,其中每层分支产生相同的直流电压,各层总和为1/2的直流侧电压。
优选地,多重分叉结构MMC的交流侧输出电压由各层分支共同控制得到,从而满足电压合成需求。
优选地,所述的满足能量平衡条件,满足如下公式:
式中:
mdcln+1为对应子分支的直流电压调制比,即子分支的产生直流电压与变换器直流侧电压一半的比值;
为对应分支产生的交流电压幅值;
为交流端口的合成电压幅值;
为交流端口的功率因数角;
为对应分支交流电压相对分支电流的相位角。
与现有技术相比,本发明具有如下的有益效果:
1)适用于超低调制比的应用,本发明提供的n重分叉MMC(n>1)中的各子分支中的基频交流电流为传统MMC的1/2n,与现有技术相比,在超低调制比应用(调制比小于1/2n)中可以更有效地减小导通损耗;
2)由于分支基频电流随分叉次数n的增加(n>1)呈指数减小,功率器件所额定电流可以选取也大幅减小,使得整体功率器件整体容量得以减小。
3)变换器电容量取决于桥臂能量波动,即取决于桥臂中基频电流的大小,对比现有技术,本发明的多重分叉MMC(n>1)随分叉的增加能够大幅减少桥臂电流基频分量,因此能够进一步减少变换器的电容使用量。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为单分叉结构MMC示意图;
图2为本发明一实施例的多重分叉结构MMC的一个上桥臂示意图;
图3为本发明一实施例的二重分叉结构MMC示意图;
图4为本发明一实施例的二重分叉MMC的交流端口电流仿真结果图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图1所示,为单分叉结构MMC,其面临着损耗增加、电容量增加、开关器件容量增加等问题。
如图2-图4所示,本实施例提供一种适用于超低调制比应用的多重分叉结构MMC,由呈对称关系的上桥臂与下桥臂组成;其中:
多重分叉MMC的上桥臂(如图2所示),由该上桥臂构成的多重分叉结构MMC具有2n个交流端口(n>1)。其最上端连接至直流母线,桥臂结构一个串联分支经过n重分叉之后得到了2n个子分支,子分支按照一定的相位顺序连接至交流侧三相电源;由三个上桥臂与三个下桥臂组成多重分叉MMC,因此共有3×2n个子分支连接到交流侧三相电源,从左到右的连接顺序为:A相、B相、B相、C相、C相、A相……依次类推。一个二重分叉MMC的具体结构如图3所示。
每个分支的电压调制与传统MMC调制相同,可采用多种调制方法,如载波移相PWM调制、最近电平逼近调制;传统MMC中的各种电压平衡策略也完全适用于多重分叉结构MMC。
多重分叉MMC的上桥臂、下桥臂各产生1/2的直流侧电压,对于图2所示的n重分叉的上桥臂,处于同一层中的子分支产生相同的直流电压,n层子分支产生的直流电压总和为1/2的直流侧电压。多重分叉MMC的交流侧输出电压由各层分支共同控制得到,以第n+1层中的第一个分支为例,该子分支所连接的交流侧相电压由各层中的第一个分支的交流电压合成得到。
各层中各分支产生的的交流电压除了需要满足电压合成需求,还需要满足能量平衡条件,以维持分支中的能量平衡,对于第n+1层中的第x个分支:
式中:
mdcln+1为对应分支的直流电压调制比,即分支桥臂的产生直流电压与变换器直流侧电压一半的比值;
为对应分支产生的交流电压幅值;
为交流端口的合成电压幅值;
为交流端口的功率因数角;
为对应分支交流电压相对分支电流的相位角。
采用n=2的二重分叉MMC(如图3所示),各分支均由3个子模块构成,每个模块电容额定电压为2500V,桥臂电感1mH,交流侧滤波电感为1mH,各分支桥臂采用载波移相调制,载波频率为2000Hz,直流侧电压为20000V,四个交流端口并联到同一个交流电压源,交流电压源相电压幅值为1000V,频率为50Hz,变换器按照单位功率因数运行。在RTLAB实时仿真平台中进行仿真,控制交流端口电流幅值为500A,四组交流输出电流如图4所示,图4从上到下分别为四个交流端口的电流波形,具有较好的电流控制效果。
在传输同样功率时,常规MMC的桥臂基频电流需要达到1000A,而现有技术中较好的,如中国发明专利CN105024569A,其分支基频电流也需要达到500A,而本发明上述实施例中的二重分叉MMC分支基频电流仅需要达到250A,对比之下,本发明能够使用更小容量的功率器件,由于分支的基频电流的减小,导通损耗也相应减小,并且可以使用电容量更小的电容达到相同的电容电压纹波要求。
进一步的,在n>2时,其上述对应的各种效果更为明显,对于现有技术来说,是非常巨大的改进。
本发明适用于超低调制比应用的多重分叉结构MMC,在超低调制比时,减小模块化多电平比变换器的桥臂电流,能够减小导通损耗,能够选取额定电流较小的功率器件并减小整体开关器件容量;在超低调制比时,减小模块化多电平比变换器的电容总量。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (6)

1.一种适用于超低调制比应用的多重分叉的模块化多电平变换器,包括3组上桥臂和下桥臂,每组中的上桥臂与下桥臂呈对称关系,并通过桥臂电感相互连接,连接处引出作为交流端口的连接点;上桥臂的顶端连接至正直流母线,下桥臂的底端连接至负直流母线;其特征在于,所述上桥臂的一个串联分支经过n重分叉后得到2n个子分支,所述下桥臂的一个串联分支经过n重分叉后得到2n个子分支,n>1,所述上桥臂的子分支与所述下桥臂的对应子分支通过桥臂电感相连。
2.根据权利要求1所述的适用于超低调制比应用的多重分叉的模块化多电平变换器,其特征在于,3组上桥臂和下桥臂共引出3×2n个交流端口连接点,3×2n个连接点按照相位顺序连接至交流侧三相电源,从左到右的连接顺序为:A相、B相、B相、C相、C相、A相……依次类推;3组上桥臂和下桥臂构成的多重分叉的多电平矩阵变换器具有2n个三相交流端口。
3.根据权利要求1或2所述的适用于超低调制比应用的多重分叉的模块化多电平变换器,其特征在于,所述下桥臂与上桥臂结构呈对称关系:在每个桥臂中,定义连接到直流母线的子分支为第一层分支,经过n重的分叉的子分支为第n层分支,则各层中各子分支产生的交流电压满足电压合成需求,同时满足能量平衡条件,以维持分支中的能量平衡。
4.根据权利要求3所述的适用于超低调制比应用的多重分叉的模块化多电平变换器,其特征在于,所述上桥臂、下桥臂各产生1/2的直流侧电压,其中每层分支产生相同的直流电压,各层总和为1/2的直流侧电压。
5.根据权利要求4所述的适用于超低调制比应用的多重分叉的模块化多电平变换器,其特征在于,所述多重分叉的模块化多电平变换器的交流侧输出电压由各层分支共同控制得到,从而满足电压合成需求。
6.根据权利要求3所述的适用于超低调制比应用的多重分叉的模块化多电平变换器,其特征在于,所述的满足能量平衡条件,满足如下公式:
式中:mdcln+1为对应子分支的直流电压调制比,即子分支的产生直流电压与变换器直流侧电压一半的比值;
为对应分支产生的交流电压幅值;
为交流端口的合成电压幅值;
为交流端口的功率因数角;
为对应分支交流电压相对分支电流的相位角。
CN201610018464.4A 2016-01-12 2016-01-12 适用于超低调制比应用的多重分叉的模块化多电平变换器 Active CN105515422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610018464.4A CN105515422B (zh) 2016-01-12 2016-01-12 适用于超低调制比应用的多重分叉的模块化多电平变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610018464.4A CN105515422B (zh) 2016-01-12 2016-01-12 适用于超低调制比应用的多重分叉的模块化多电平变换器

Publications (2)

Publication Number Publication Date
CN105515422A CN105515422A (zh) 2016-04-20
CN105515422B true CN105515422B (zh) 2018-04-06

Family

ID=55723152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610018464.4A Active CN105515422B (zh) 2016-01-12 2016-01-12 适用于超低调制比应用的多重分叉的模块化多电平变换器

Country Status (1)

Country Link
CN (1) CN105515422B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253728B (zh) * 2016-08-15 2019-02-22 上海交通大学 用于多端柔性直流输电应用的多端口模块化多电平变换器
SE542175C2 (en) * 2018-07-06 2020-03-10 Abb Schweiz Ag Improved modular multilevel converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904927A (zh) * 2014-04-17 2014-07-02 华北电力大学 适用于模块化多电平换流器的附加直流电压控制方法
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器
CN105119499A (zh) * 2015-07-22 2015-12-02 上海交通大学 一种适用于分叉结构模块化多电平变换器的电流控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904927A (zh) * 2014-04-17 2014-07-02 华北电力大学 适用于模块化多电平换流器的附加直流电压控制方法
CN105024569A (zh) * 2015-07-22 2015-11-04 上海交通大学 适用于低调制比应用的分叉结构模块化多电平变换器
CN105119499A (zh) * 2015-07-22 2015-12-02 上海交通大学 一种适用于分叉结构模块化多电平变换器的电流控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Voltage Balancing and Fluctuation-Suppression Methods of Floating Capacitors in a New Modular Multilevel Converter;Kui Wang et al.;《IEEE Transaction on Industrial Electronics》;20130531;第60卷(第5期);第1943-1954页 *

Also Published As

Publication number Publication date
CN105515422A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN106253728B (zh) 用于多端柔性直流输电应用的多端口模块化多电平变换器
Chivite-Zabalza et al. A large power, low-switching-frequency voltage source converter for FACTS applications with low effects on the transmission line
CN105024569B (zh) 适用于低调制比应用的分叉结构模块化多电平变换器
Laka et al. New hexagonal three-phase voltage-source converter topology for high-power applications
CN107947599A (zh) 电力电子变流器
CN102545675A (zh) 一种混合串联h桥多电平并网逆变器直流母线电压控制方法
CN105515422B (zh) 适用于超低调制比应用的多重分叉的模块化多电平变换器
Salim et al. Simplified control scheme of unified power quality conditioner based on three-phase three-level (NPC) inverter to mitigate current source harmonics and compensate all voltage disturbances
Hussain et al. Grid integration of large capacity solar PV plant using multipulse VSC with robust PLL based control
Moftah et al. Active power filter for power quality enhancement of photovoltaic renewable energy systems
Izzeldin et al. Seven-level cascaded inverter based shunt active power filter in four-wire distribution system
Karaca et al. Modeling, Simulation and Analysis of Matrix ConverterUsing Matlab&Simulink
Dang et al. Advanced integration of multilevel converters into power system
CN110048427A (zh) 一种多端柔性直流配电网潮流保护定值计算方法
Hannan et al. Development of the unified series-shunt compensator for power quality mitigation
CN105119499B (zh) 一种适用于分叉结构模块化多电平变换器的电流控制系统
Kunya et al. Voltage sag and swell alleviation in distribution network using custom power devices; D-STATCOM and DVR
Nohra et al. A control strategy in Active Power Filter for power quality improvement
Abdalla et al. Cascaded multilevel inverter based shunt active power filter in four-wire distribution system
Irannezhad et al. Using the Instantaneous Power Theory in order to control the current in the parallel active filter to compensate reactive power and reduction of harmonics
CN102694385A (zh) D-statcom的线电流不对称补偿的相电流平衡限幅方法
Shu et al. Advanced co-phase traction power supply simulation based on multilevel converter
Rao et al. Neuro-Fuzzy Five-level Cascaded Multilevel Inverter for Active Power Filter
Bathurst et al. A harmonic domain solution for systems with multiple high-power AC/DC converters
Chivite-Zabalza et al. Modulation strategies suitable for a large power voltage source converter combining 3-level neutral point clamped power electronic building blocks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant