CN109172517A - 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法 - Google Patents

一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法 Download PDF

Info

Publication number
CN109172517A
CN109172517A CN201811252722.0A CN201811252722A CN109172517A CN 109172517 A CN109172517 A CN 109172517A CN 201811252722 A CN201811252722 A CN 201811252722A CN 109172517 A CN109172517 A CN 109172517A
Authority
CN
China
Prior art keywords
apiolin
micro emulsion
microemulsion
gellan gum
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811252722.0A
Other languages
English (en)
Other versions
CN109172517B (zh
Inventor
王仲妮
赵新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Xiangyuan Information Technology Co ltd
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN201811252722.0A priority Critical patent/CN109172517B/zh
Publication of CN109172517A publication Critical patent/CN109172517A/zh
Application granted granted Critical
Publication of CN109172517B publication Critical patent/CN109172517B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Oncology (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法,该微乳水凝胶包含芹菜素微乳和结冷胶溶液。该微乳水凝胶载药量大且具有良好的pH敏感性。

Description

一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法
技术领域
本发明涉及医药领域,具体涉及一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法。
背景技术
水凝胶是一种聚合物在三维空间中交联形成的新型材料。由于其结构可以承受大量水掺入的优点,水凝胶已广泛用于药物输送和组织工程。最近,pH敏感水凝胶作为口服药物递送系统得到迅速发展,因为它可以控制药物在胃肠道环境中的释放行为。考虑到食品和药品安全,天然多糖由于具有良好的生物相容性和大量的pH敏感基团而被广泛用于构建pH响应性水凝胶。近年来,在水凝胶网络中引入自组装体可以引入疏水位点来包载疏水性药物而引起了特别关注。
芹菜素(API)是一种常见的生物活性类黄酮,广泛存在于水果、植物和蔬菜中。芹菜素具有多种药理活性,如抗氧化、抗炎、抗菌、抗病毒、抗癌等。但是芹菜素在水中的溶解度仅为2.16μg/mL,其水溶性差的缺点限制了芹菜素的进一步临床应用,导致生物利用度不高。近年来,以表面活性剂为主构筑的聚集体,例如,环糊精修饰的微乳液、脂质体、聚合物胶束、纳米粒子等作载体提高芹菜素的溶解度和利用度,而被广泛研究。
发明内容
因此,本发明的目的是提供一种具有pH响应的微乳液水凝胶作为芹菜素载体及其制备方法。
本发明以吐温40/S1570/椰子油/甘油/水体系构筑了O/W微乳液来增溶芹菜素。然后将这些API负载的微乳液加入到结冷胶水凝胶中以获得载药复合水凝胶。由此得到的水凝胶具有良好的载药量及pH敏感性。在模拟的胃肠道释药实验中,将释放介质由pH 1.2的模拟胃部环境更换为pH 7.4的模拟肠道环境后,本发明的微乳液凝胶由6h累积释放率48%左右提升至2.5小时内完成释药达到平衡状态,这表明释放介质的pH值对本发明的芹菜素微乳液水凝胶的释放行为有显著影响,酸性和中性条件可以控制复合水凝胶中药物的释放,因此,有望用于制备pH响应的口服药物释放系统。
具体地,本发明是通过如下所述的技术方案实现的:
在本发明的第一方面,本发明提供了一种芹菜素微乳水凝胶,其包含芹菜素微乳液和结冷胶溶液。
优选地,所述微乳液包含活性成分和药物载体,所述药物活性成分为芹菜素,所述药物载体为O/W型微乳液,所述药物载体包括表面活性剂、油相和双蒸去离子水,其中,所述表面活性剂和油相的质量比为3-9:1。
优选地,所述表面活性剂和油相的质量比为9:1。
优选地,所述表面活性剂为硬脂酸蔗糖酯和吐温。
优选地,硬脂酸蔗糖酯和吐温作为表面活性剂时两者的质量比为9:1;混合方式为:将两者量置于比色管中,水浴加热至55±5℃,磁力搅拌至均匀。
优选地,所述硬脂酸蔗糖酯中单酯的含量为70%,HLB为15。
优选地,所述吐温为吐温40。
优选地,所述油相为甘油和椰子油。
优选地,甘油和椰子油作为油相时两者的质量比为1:1;混合方式为将两者置于比色管中,室温下磁力搅拌至均匀。
优选地,上述O/W型微乳液为吐温/硬脂酸蔗糖酯/椰子油/甘油/水体系构筑的O/W微乳液。
优选地,所述芹菜素微乳液的水含量为70~90wt%,优选为70wt%。
优选地,所述结冷胶溶液包含结冷胶和双蒸去离子水;所述结冷胶溶液的浓度为3wt%。
优选地,所述微乳水凝胶中,芹菜素微乳液和结冷胶溶液的质量比为1:2。
优选地,所述微乳水凝胶的含水量为70-94.2wt%,优选为88.0wt%,
优选地,所述微乳水凝胶中结冷胶的含量为0.8-3wt%,优选为2wt%,
优选地,所述微乳水凝胶中表面活性剂和油相的含量为5-27wt%,其中,表面活性剂和油相的质量比为3-9:1,优选为9:1,
优选地,所述微乳水凝胶对芹菜素的载药量为0.8-8.7mg/g。
优选地,所用芹菜素微乳液为饱和溶液时可获得最大载药量,最大载药量为2.9-8.7mg/g。
在本发明的第二方面,本发明提供了一种制备芹菜素微乳水凝胶的方法,所述方法包括以下步骤:
(1)微乳水凝胶的制备:将表面活性剂与油相按比例混合后,加入芹菜素,置于50℃下进行磁搅拌过夜,然后加入双蒸去离子水,得到芹菜素微乳液,置于37℃平衡24h待用;或者,
所述芹菜素微乳为芹菜素微乳饱和溶液:将表面活性剂与油相按比例混合后,加入芹菜素,置于50℃下进行磁搅拌过夜,然后加入双蒸去离子水,得到芹菜素悬浮液,置于37℃磁力搅拌48h,用高速离心机在10000rpm的转速下离心5分钟,取上清液重复离心两次,得到澄清透明的液体为芹菜素饱和微乳液,置于37℃恒温平衡24h待用。
使用芹菜素饱和微乳液制备微乳水凝胶时可获得相同条件下对芹菜素的最大的载药量。
(2)将结冷胶溶解在双蒸馏去离子水中,制得结冷胶溶液,然后将该结冷胶溶液加热至80-90℃,磁力搅拌30分钟,随后,将上述溶液冷却至50-60℃,待用。
(3)将步骤(2)得到的结冷胶溶液与步骤(1)得到的微乳液按比例混合,将混合溶液轻轻搅拌10分钟,以避免气泡;然后将清澈的混合溶液快速倒入模具中,在室温下固化24小时,即得。
在本发明的第三方面,本发明还提供了上述微乳水凝胶在制备pH响应的口服药物释放系统中的应用。
优选地,所述pH响应表现为在pH 5-8的PBS溶液中,微乳水凝胶对芹菜素的体外累积释放分数在7-23小时内达到平衡状态。
优选地,所述pH响应表现为pH 5的环境中,累积释放分数在23小时内达到平衡状态,在pH 6的环境中,累积释放分数在10小时内达到平衡状态,在pH 7的环境中,累积释放分数在8小时内达到平衡状态,以及在pH 8的环境中,累积释放分数在7小时内达到平衡状态。
优选地,所述pH响应表现为在模拟胃肠环境中,即微乳水凝胶首先在pH 1.2的PBS溶液中释放6小时,然后更换释放介质为pH 7.4的PBS溶液,在pH 1.2的PBS溶液中时,微乳水凝胶对芹菜素的释放速率较慢,在6h的累积释放率为46.6-56.0%;当释放介质变为pH7.4的PBS溶液,药物迅速释放,在2.5小时后达到平衡状态。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为API-Me-Gel样品S1在不同pH环境下的扫描电镜照片。
图2为纯结冷胶和API-Me-Gel样品S1在pH 1.2环境下的红外光谱。
图3为API-Me-Gel样品S1在不同pH环境下的体外释放曲线。
图4为API-Me-Gel样品S2在不同pH环境下的体外释放曲线。
图5为API-Me-Gel样品S3在不同pH环境下的体外释放曲线。
图6为API-Me-Gel样品S1、S2和S3在模拟胃肠道环境下的体外释放曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
试剂及药品:芹菜素(API,≥95%)购自南京泽朗生物科技有限公司。结冷胶由斯比凯可(CP Kelco)公司提供。硬脂酸蔗糖酯(S1570)由70%单酯和30%的二酯、三酯和聚酯组成,其HLB为15,由日本三菱化学株式会社提供。吐温40(CP)和椰子油(AR)购自上海麦克林生化有限公司。甘油(AR)购自中国上海中药化学试剂有限公司。水为双蒸去离子水。
如无特殊说明,本发明下述实施例中使用的表面活性剂为硬脂酸蔗糖酯S1570和吐温40,质量比为9:1,其混合方式为:准确称量硬脂酸蔗糖酯S1570和吐温40置于比色管中,水浴加热至55±5℃,磁力搅拌至混匀;使用的油相为椰子油和甘油,质量比为1:1,其混合方式为:准确称量椰子油和甘油置于比色管中,室温下磁力搅拌至混匀。
制备例芹菜素微乳液水凝胶(API-Me-Gel)的制备
预先将表面活性剂与油相分别按9:1、4:1和3:1的质量比混合,分别取3g上述混合液,加入10mg的API,置于55±5℃磁力搅拌直至API完全溶解。然后分别加入7g双蒸去离子水,制备得到最终水含量为70wt%,芹菜素浓度为1mg/g的芹菜素微乳液,置于37℃平衡24h待用。采用马尔文激光粒度仪测定了芹菜素微乳液的粒径,制备得到的芹菜素微乳液的粒径z为18.31-23.95nm,PDI值为0.439-0.602。
将0.6g结冷胶溶解在19.4g双蒸馏去离子水中,制得结冷胶最终浓度为3.0wt%的结冷胶溶液。然后将该结冷胶溶液加热至85±5℃,磁力搅拌30分钟至完全溶解。随后,将上述溶液冷却至55±5℃待用。
将上述结冷胶溶液分别与制备好的芹菜素微乳液以2:1的质量比混合。在55±5℃下缓慢的磁力搅拌10分钟,以避免产生气泡。然后趁热分别将清澈的混合溶液快速倒入圆柱形模具(直径1.8cm,高度1.0cm)中,在室温下固化24小时,最终得到API-Me-Gel样品S1、S2、S3,其组成和载药量列于表1中。
载药量根据如下公式计算:
其中:微乳水凝胶的干重为样品冻干后的质量。
最大载药量的测定方法:将过量的芹菜素加入到按上述方法制备的微乳液中,得到芹菜素悬浮液,将该悬浮液置于37℃磁力搅拌48h,用高速离心机在10000rpm的转速下离心5分钟,取上清液重复离心两次。最终所得澄清透明的液体即为芹菜素饱和微乳液。将该芹菜素饱和微乳液按照上述方法制得芹菜素饱和微乳水凝胶。将其冻干后,取适量冻干的样品溶于水,待完全溶解后利用紫外分光光度法测得其芹菜素含量。最大载药量按如下公式计算:
表1 API-Me-Gel样品组成和载药量
实验例芹菜素微乳液水凝胶(API-Me-Gel)的pH敏感特性
1、pH敏感API-Me-Gel的形貌变化和结构变化
将API-Me-Gel样品(S1、S2、S3)浸泡在pH值为1.2和7.4的PBS中,分别于1h、2h、6h和24h时取出冻干。S1、S2、S3体现出相似的变化,以下以S1为例进行具体说明。
(1)pH敏感API-Me-Gel的形貌变化
用扫描电子显微镜(SEM,日立SU8010,日本)观察样品断裂表面的形貌变化。
图1所示,用SEM研究了API-Me-Gel样品(S1)在pH 1.2和7.4的PBS溶液中浸泡不同时间的形貌,放大倍数为50和200。如图1所示,在pH为1.2的PBS中API-Me-Gel体系的截面上清楚地观察到网状结构。在1h和2h时,凝胶结构松散,具有不同大小的孔径。在6h时,凝胶结构变得致密并且网状尺寸均匀,表明水凝胶中的交联区数目增加。这可能是因为酸性介质中的氢离子(H+)可以抵消凝胶羧基的负电荷,减弱了聚合物分子间的静电斥力,进一步促进了结冷胶分子之间形成双螺旋结构。随着浸泡时间达到24小时,API-Me-Gel的形态保持不变。
在pH 7.4的PBS中,仅在1h时能够从电镜照片中看到不完整的网状结构。随着浸泡时间的延长,API-Me-Gel的结构变得无定形(2h和6h的电镜照片),直到24h,API-Me-Gel在PBS中完全降解。这可能是由于凝胶胶分子在pH 7.4环境下羧基静电排斥作用增强,导致聚合物链之间的双螺旋解离,凝胶完全降解。
(2)pH敏感复合水凝胶的结构变化(红外表征)
为了进一步探究引起凝胶形貌变化的原因,用傅立叶变换红外光谱仪(Alpha,Bruker,德国)测定冻干样品的FT-IR光谱变化。光谱范围为400~4000cm-1,分辨率为2cm-1。如图2所示。
FT-IR用于研究API-Me-Gel体系释放过程中各组分间的分子间键的变化。图2显示的是纯结冷胶和API-Me-Gel样品(S1)在pH值为1.2的PBS中浸泡1小时、2小时、6小时和24小时的FT-IR光谱(在图片中以1h→24h表示变化)。从纯结冷胶的FT-IR光谱中可以看出,在3900-3000cm-1处发现一个宽的吸收带,对应着葡萄糖的O-H轴向拉伸带。分别在1600和1400cm-1处发现羧基的不对称和对称拉伸振动峰;在1023cm-1处则是C-O键的角变形吸收峰。
与纯结冷胶相比,API-Me-Gel(S1)在吸收峰的形状、位置和强度均存在一定的差异。在3385cm-1附近的吸收区域为吡喃葡萄糖单元的O-H轴向拉伸吸收带。随着浸泡时间从1小时增加到24小时,O-H轴向拉伸带的强度大大增强,表明聚合物链之间的氢键度增加。同时,O-H伸缩吸收带向低频方向移动。一般来说,氢键的形成可以降低拉伸振动的频率。因此,O-H拉伸带的强度和频率的这些变化证实了在pH 1.2中浸泡时聚合物链之间的氢键度增加。此外,在1030cm-1附近的吸收峰是羟基化的C-O伸缩振动峰。它们的强度增加,频率降低,意味着在聚合物链之间形成更多的氢键。
2、药物体外释放研究
(1)pH体外控释
API-Me-Gel样品(S1、S2、S3)在不同pH介质中的体外释放实验,步骤如下:
将一定质量的API-Me-Gel样品(S1、S2、S3)分别置于50mL磷酸盐缓冲溶液(PBS,pH分别为1、2、3、4、5、6、7、8,0.1mol/L)中,恒温37℃下磁力搅拌(100转/分)。在一定的时间间隔取3毫升释放液,然后用空白的PBS代替,以保持原始体积。采用紫外-可见光谱分析法测定释放液中的API浓度。
API-Me-Gel在不同pH环境下的释放行为能够反映复合水凝胶的pH敏感性,结果如图3-5所示。
图3显示的是,API-Me-Gel样品S1分别在pH为1-8的PBS中的体外释放曲线。可见,不同pH环境下API的累积释放率和释放速率存在明显差异。在释放初期(0-2h),随着pH从1增加到4,API的累积释放分数略有下降,然后随着pH进一步增加到8,API的累积释放分数显著增加。随着释放过程的进行,发现在pH 1-3的PBS中释放的API的释放行为相似,表明可能具有相同的释放机制。特别是,在pH 4释放的API的累积分数被发现略高于pH 1-3随着时间的推移。明显不同的是,API-Me-Gel在pH为5、6、7、8中的API的累积释放分数分别在约23小时、10小时、8小时和7小时达到平衡状态,且释放率达到100%,表明随着释放的进行,复合水凝胶完全降解。图4和5分别是API-Me-Gel样品S2和S3在pH为1-8的PBS中的体外释放曲线。从图中可以看出S2和S3具有与样品S1相似的释放行为,这表明同样具有pH敏感的特性。
(2)模拟胃肠道环境下的体外释放
为了模拟API-Me-Gel系统在胃肠道环境中的释放行为,先分别将样品(S1、S2、S3)置于pH为1.2的PBS进行体外释放实验,6小时后,分别将释放介质更换为pH 7.4的PBS继续释放。
为探讨API-Me-Gel作为口服药物递送系统的可能性,研究了API-Me-Gel在模拟胃肠环境中的动态释放行为。从图6可以看出,样品在pH 1.2的环境下,释放速率较慢,样品S1、S2和S3在6h的累计释放率分别为56.0%,48.5%和46.6%。当释放介质变为pH 7.4时,药物迅速释放,在2.5小时后达到平衡状态。显然,释放介质的pH值对API-Me-Gel的释放行为有显著影响,酸性和中性条件可以控制复合水凝胶中药物的释放。因此,本发明的pH敏感的复合水凝胶有望成为pH响应的口服药物释放系统。

Claims (10)

1.一种芹菜素微乳水凝胶,其包含芹菜素微乳液和结冷胶溶液。
2.根据权利要求1所述的微乳水凝胶,其特征在于,所述芹菜素微乳液包含活性成分和药物载体,所述药物活性成分为芹菜素,所述药物载体为O/W型微乳液,所述药物载体包括表面活性剂、油相和双蒸去离子水,其中,所述表面活性剂和油相的质量比为3-9:1;
优选地,所述表面活性剂和油相的质量比为9:1。
3.根据权利要求1或2所述的微乳水凝胶,其特征在于,所述表面活性剂为硬脂酸蔗糖酯和吐温;
优选地,硬脂酸蔗糖酯和吐温作为表面活性剂时两者的质量比为9:1;
优选地,所述硬脂酸蔗糖酯中单酯的含量为70%,HLB为15;
优选地,所述吐温为吐温40;
优选地,所述油相为甘油和椰子油;
优选地,甘油和椰子油作为油相时两者的质量比为1:1。
4.根据权利要求1至3中任一项所述的微乳水凝胶,其特征在于,所述芹菜素微乳液的水含量为70~90wt%;
优选地,所述芹菜素微乳液的水含量为70wt%。
5.根据权利要求1所述的微乳水凝胶,其特征在于,所述结冷胶溶液包含结冷胶和双蒸去离子水;
优选地,所述结冷胶溶液的浓度为3wt%。
6.根据权利要求1至5中任一项所述的微乳水凝胶,其特征在于,所述芹菜素微乳液和结冷胶溶液的质量比为1:2。
7.根据权利要求1至5中任一项所述的微乳水凝胶,其特征在于,所述微乳水凝胶的含水量为70-94.2wt%,优选为88.0wt%;
优选地,所述微乳水凝胶中结冷胶的含量为0.8-3wt%,优选为2wt%;
优选地,所述微乳水凝胶中表面活性剂和油相的含量为5-27wt%,其中,表面活性剂和油相的质量比为3-9:1,优选为9:1;
优选地,所述微乳水凝胶对芹菜素的载药量为0.8-8.7mg/g。
8.一种制备芹菜素微乳水凝胶的方法,所述方法包括以下步骤:
(1)芹菜素微乳液制备:将表面活性剂与油相按比例混合后,加入芹菜素,置于50℃下进行磁搅拌过夜,然后加入双蒸去离子水,得到芹菜素微乳液,置于37℃平衡24h待用;或者,
所述芹菜素微乳液为芹菜素微乳饱和溶液:将表面活性剂与油相按比例混合后,加入芹菜素,置于50℃下进行磁搅拌过夜,然后加入双蒸去离子水,得到芹菜素悬浮液,置于37℃磁力搅拌48h,用高速离心机在10000rpm的转速下离心5分钟,取上清液重复离心两次,得到澄清透明的液体为芹菜素饱和微乳液,置于37℃恒温平衡24h待用;
(2)将结冷胶溶解在双蒸馏去离子水中,制得结冷胶溶液,然后将该结冷胶溶液加热至80-90℃,磁力搅拌30分钟,随后,将上述溶液冷却至50-60℃,待用;
(3)将步骤(2)得到的结冷胶溶液与步骤(1)得到的微乳液按比例混合,将混合溶液轻轻搅拌10分钟,以避免气泡;然后将清澈的混合溶液快速倒入模具中,在室温下固化24小时,即得。
9.权利要求1至7中任一项所述的微乳水凝胶在制备pH响应的口服药物释放系统中的应用。
10.根据权利要求9所述的应用,其特征在于,所述pH响应表现为在pH 5-8的PBS溶液中,微乳水凝胶对芹菜素的体外累积释放分数在7-23小时内达到平衡状态;
优选地,所述pH响应表现为pH 5的环境中,累积释放分数在23小时内达到平衡状态,在pH 6的环境中,累积释放分数在10小时内达到平衡状态,在pH 7的环境中,累积释放分数在8小时内达到平衡状态,以及在pH 8的环境中,累积释放分数在7小时内达到平衡状态;
优选地,所述pH响应表现为在模拟胃肠环境中,即微乳水凝胶首先在pH 1.2的PBS溶液中释放6小时,然后更换释放介质为pH 7.4的PBS溶液,在pH 1.2的PBS溶液中时,微乳水凝胶对芹菜素的释放速率较慢,在6h的累积释放率为46.6-56.0%;当释放介质变为pH 7.4的PBS溶液,药物迅速释放,在2.5小时后达到平衡状态。
CN201811252722.0A 2018-10-25 2018-10-25 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法 Active CN109172517B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811252722.0A CN109172517B (zh) 2018-10-25 2018-10-25 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811252722.0A CN109172517B (zh) 2018-10-25 2018-10-25 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法

Publications (2)

Publication Number Publication Date
CN109172517A true CN109172517A (zh) 2019-01-11
CN109172517B CN109172517B (zh) 2021-08-17

Family

ID=64943552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811252722.0A Active CN109172517B (zh) 2018-10-25 2018-10-25 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法

Country Status (1)

Country Link
CN (1) CN109172517B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820815A (zh) * 2019-02-15 2019-05-31 山东师范大学 一种具有pH响应的姜黄素胶束水凝胶及其制备方法
CN113786382A (zh) * 2021-11-04 2021-12-14 浙江得恩德制药股份有限公司 一种盐酸特比萘酚凝胶及制备方法
CN114698843A (zh) * 2022-03-25 2022-07-05 华南农业大学 一种紫苏籽油微乳液-水凝胶体系及其制备方法和应用
CN113786382B (zh) * 2021-11-04 2024-05-28 浙江得恩德制药股份有限公司 一种盐酸特比萘芬凝胶及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641237A (zh) * 2012-05-15 2012-08-22 山东大学 鼻腔给药姜黄素微乳离子敏感原位凝胶制剂及其制备方法
CN107661295A (zh) * 2017-11-14 2018-02-06 山东师范大学 一种芹菜素的药物载体及制备方法
CN108113964A (zh) * 2018-02-27 2018-06-05 山东师范大学 基于Tween 80生物相容微乳液的构筑,载芹菜素的体外释放和抗氧化性能研究

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641237A (zh) * 2012-05-15 2012-08-22 山东大学 鼻腔给药姜黄素微乳离子敏感原位凝胶制剂及其制备方法
CN107661295A (zh) * 2017-11-14 2018-02-06 山东师范大学 一种芹菜素的药物载体及制备方法
CN108113964A (zh) * 2018-02-27 2018-06-05 山东师范大学 基于Tween 80生物相容微乳液的构筑,载芹菜素的体外释放和抗氧化性能研究

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
雷伟等: "微乳液凝胶经皮给药新载体研究进展", 《中国药师》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820815A (zh) * 2019-02-15 2019-05-31 山东师范大学 一种具有pH响应的姜黄素胶束水凝胶及其制备方法
CN109820815B (zh) * 2019-02-15 2022-02-08 山东师范大学 一种具有pH响应的姜黄素胶束水凝胶及其制备方法
CN113786382A (zh) * 2021-11-04 2021-12-14 浙江得恩德制药股份有限公司 一种盐酸特比萘酚凝胶及制备方法
CN113786382B (zh) * 2021-11-04 2024-05-28 浙江得恩德制药股份有限公司 一种盐酸特比萘芬凝胶及制备方法
CN114698843A (zh) * 2022-03-25 2022-07-05 华南农业大学 一种紫苏籽油微乳液-水凝胶体系及其制备方法和应用
CN114698843B (zh) * 2022-03-25 2023-05-12 华南农业大学 一种紫苏籽油微乳液-水凝胶体系及其制备方法和应用

Also Published As

Publication number Publication date
CN109172517B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Gómez-Mascaraque et al. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients
TWI306869B (en) Amphiphilic block copolymers and nano particles comprising the same
Shah et al. pH-responsive CAP-co-poly (methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation
Samed et al. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: an efficient system for oral anti-diabetic formulation
KR100918092B1 (ko) 약물 함유 고분자 미립구의 제조방법 및 그 방법에 의해제조된 약물 함유 고분자 미립구
US6878693B2 (en) Hydrophilic complexes of lipophilic materials and an apparatus and method for their production
Wu et al. Polymeric micelle composed of PLA and chitosan as a drug carrier
EP1285021A1 (fr) Materiau a base de polymeres biodegradables et son procede de preparation
Peng et al. Methoxy poly (ethylene glycol)-grafted-chitosan based microcapsules: Synthesis, characterization and properties as a potential hydrophilic wall material for stabilization and controlled release of algal oil
CN105232459B (zh) 一种复溶自组装的水难溶性药物聚合物胶束组合物及其制备方法
Wei et al. Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin
Garg et al. Coadministration of polypeptide-k and curcumin through solid self-nanoemulsifying drug delivery system for better therapeutic effect against diabetes mellitus: formulation, optimization, biopharmaceutical characterization, and pharmacodynamic assessment
Gopi et al. Preparation, characterization and in vitro study of liposomal curcumin powder by cost effective nanofiber weaving technology
Zhu et al. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)‐graft‐chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats
CN106727309A (zh) 含有槲皮素的聚合物胶束溶液及其制备方法和应用
Li et al. Melatonin loaded with bacterial cellulose nanofiber by Pickering-emulsion solvent evaporation for enhanced dissolution and bioavailability
CN109453378A (zh) 一种光控纳米粒子组装体及其制备方法与应用
CN109172517A (zh) 一种具有pH响应的微乳液水凝胶作为芹菜素载体的制备方法
Tang et al. In situ rapid conjugation of chitosan-gum Arabic coacervated complex with cinnamaldehyde in cinnamon essential oil to stabilize high internal phase Pickering emulsion
Rosselgong et al. Synthesis and self-assembly of Xylan-based amphiphiles: from bio-based vesicles to antifungal properties
Hu et al. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin
Wang et al. Preparation of core-shell microcapsules based on microfluidic technology for the encapsulation, protection and controlled delivery of phycocyanin
Yu et al. Fabrication of core/sheath PCL/PEG–PNIPAAm fibers as thermosensitive release carriers by a new technique combining blend electrospinning and ultraviolet-induced graft polymerization
Saboktakin et al. Synthesis and characterization of modified starch hydrogels for photodynamic treatment of cancer
Sui et al. Self-assembly of an amphiphilic derivative of chitosan and micellar solubilization of puerarin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240326

Address after: 2081, building a, 88 Jianghai West Road, Liangxi District, Wuxi City, Jiangsu Province, 214000

Patentee after: Wuxi Xiangyuan Information Technology Co.,Ltd.

Country or region after: China

Address before: 250014 No. 88 East Wenhua Road, Shandong, Ji'nan

Patentee before: SHANDONG NORMAL University

Country or region before: China

TR01 Transfer of patent right