CN109165456A - 一种基于分段曲线拟合的线性化方法 - Google Patents

一种基于分段曲线拟合的线性化方法 Download PDF

Info

Publication number
CN109165456A
CN109165456A CN201811026082.1A CN201811026082A CN109165456A CN 109165456 A CN109165456 A CN 109165456A CN 201811026082 A CN201811026082 A CN 201811026082A CN 109165456 A CN109165456 A CN 109165456A
Authority
CN
China
Prior art keywords
predistorter
power amplifier
predistortion
linearization technique
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811026082.1A
Other languages
English (en)
Inventor
万发雨
缪翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Publication of CN109165456A publication Critical patent/CN109165456A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及基于分段曲线拟合的线性化方法,包括如下步骤:步骤1)通过对实际的功率放大器进行测试,记录下该功率放大器输入功率与输出功率的关系;步骤2)在MATLAB平台上,以记录的功放的数据为基础,建立功放模型,并以所述功放模型为基础,通过间接预失真模块,进行预失真仿真;步骤3)在所述预失真仿真的基础上,将分段处理进行优化的LS自适应算法替换普通的LS算法进行进一步仿真。有益效果:相比于一般的用级数来实现预失真的方法,输入与输出之间拥有更高线性相关度。并且通过加入理想化直线进行比对可以发现,在加入分段处理后,最大误差从0.05V降至0.01V,其精度等级提升至原来的5倍。

Description

一种基于分段曲线拟合的线性化方法
技术领域
本发明涉及识别技术领域,尤其涉及一种基于分段曲线拟合的线性化方法。
背景技术
功率放大器(PA)是现在无线通信系统中非常重要的部件,一般位于通信系统中信号调制模块之后和发射天线之前,用于放大输入端的已调信号,以便于射频天线有效的传输信号。但功率放大器的非线性特性会直接影响发射端发射信号的质量,不仅会使信号的失真还会使主信道中的信号能量逸散至邻近信道中,在预期频带之外产生电磁信号,进而对自身设备或其他设备产生干扰。因此,如何让功放系统始终工作于理想线性状态始终是无线通信中的一个重要问题。
目前为止,针对于功放的线性化问题,已提出了很多处理方法。功率回退法、反馈法、前馈法、预失真法这几种方法是目前比较具有代表性的四种方法。并且随着现代处理芯片技术的不断提高,计算器件的计算能力也随之增强,完成计算更加复杂的预失真计算成为可能,与其他方法不同的是,数字预失真方法的线性化效果是受自适应算法和器件的计算能力影响的,现在计算芯片的制程已经可以达到14nm,采用该精度或更高精度的芯片的预失真系统将拥有更高的预失真精度,更小的体积及更低的功耗。
发明内容
本发明目的在于克服上述现有技术的不足,提供了一种基于分段曲线拟合的线性化方法,具体由以下技术方案实现:
所述基于分段曲线拟合的线性化方法,包括如下步骤:
步骤1)通过对实际的功率放大器进行测试,记录下该功率放大器输入功率与输出功率的关系;
步骤2)在MATLAB平台上,以记录的功放的数据为基础,建立功放模型,并以所述功放模型为基础,通过间接预失真模块,进行预失真仿真;
步骤3) 在所述预失真仿真的基础上,对特性曲线进行分割,通过分段处理的方式提高预失真器的精度,并根据出现的跳变现象,通过各分段部分重叠的方式进行消除,得到最终的分段化线性化方法。
所述基于分段曲线拟合的线性化方法的进一步设计在于,所述步骤2)中的间接预失真模块包括第一预失真器、第二预失真器、数模转换器、模数转换器、计算单元、功率放大器,所述第一预失真器的输出端通过数模转换器与功率放大器的输入端连接,功率放大器依次通过模数转换器、第二预失真器、计算单元将数据反馈至第一预失真器,第一预失真器通过计算单元与第二预失真器连接。
所述基于分段曲线拟合的线性化方法的进一步设计在于,所述计算单元基于第二预失真器的输出信号和数模转换器的输入信号的差值通过最小二乘法或最小均方算法计算第二预失真器的模型参数。
所述基于分段曲线拟合的线性化方法的进一步设计在于,第一预失真器的模型参数为第二预失真器的模型参数或由模数转换器连接第二预失真器而成支路来确定。
本发明的优点如下:
本发明的基于分段曲线拟合的线性化方法通过分段处理的预失真方法,相比于一般的用级数来实现预失真的方法,输入与输出之间拥有更高线性相关度。并且通过加入理想化直线进行比对可以发现,在加入分段处理后,最大误差从0.05V降至0.01V,其精度等级提升至原来的5倍。
另一方面,通过对图5和图6中的数据进行对比和计算可以得知,加入分段化处理的预失真结构相比于先前对于邻近信道功率的抑制效果提高了约8~9dB,同时也意味着电磁谐波的幅度降低为普通级数方法的近1/9。
附图说明
图1为实际功率放大器输入功率与输出功率的对应关系示意图。
图2为间接数字预失真的逻辑结构示意图。
图3为低精度预失真前后输入输出对比示意图。
图4为分段预失真前后输入输出对比示意图。
图5为低精度预失真邻近信道功率抑制效果示意图。
图6为分段预失真抑制邻近信道功率效果示意图。
图7为采用不完善的分段方法的输入输出对比示意图。
具体实施方式
下面结合附图与具体实施例对本发明的技术方案进一步说明。
如图2,本实施例提供的基于分段曲线拟合的线性化方法,包括如下步骤:
步骤1)通过对实际的功率放大器进行测试,记录下该功率放大器输入功率与输出功率的关系.
步骤2)在MATLAB平台上,以记录的功放的数据为基础,建立功放模型,并以所述功放模型为基础,通过间接预失真模块,进行预失真仿真。
步骤3) 在所述预失真仿真的基础上,对特性曲线进行分割,通过分段处理的方式提高预失真器的精度,并根据出现的跳变现象,通过各分段部分重叠的方式进行消除,得到最终的分段化线性化方法。
仿真所使用的功放输入输出关系图,即图1,采集自一个工作频率范围为10MHz`750MHz,最大功率5W的实际的功率放大器,由于仿真所使用的输入信号为以频率上限为100MHz的16QAM-OFDM调制信号,所以采用100MHz时的工作状态为参考建立模型。
如图2,步骤2)中的间接预失真模块包括第一预失真器、第二预失真器、数模转换器(后文简称DAC)、模数转换器(后文简称ADC)、计算单元以及功率放大器。第一预失真器的输出端通过数模转换器与功率放大器的输入端连接,功率放大器依次通过模数转换器、第二预失真器、计算单元将数据反馈至第一预失真器,第一预失真器通过计算单元与第二预失真器连接。
预失真器方法流程为:信号会首先通过第一预失真器,进行预失真处理,并由DAC转化成模拟信号,最终由功率放大器进行放大。第一预失真中的模型参数由包含ADC和第二预失真器支路来确定。间接预失真结构的特点在于,第一预失真的模型参数可以直接照搬线性处理后的第二功率放大器的模型参数,计算单元则基于第二预失真器的输出信号和DAC输入信号的差值来计算第二预失真的模型参数,计算参数所用的方法则为最小二乘法或最小均方算法。
本实施例的基于分段曲线拟合的线性化方法为了达到更好的预失真效果,对预失真方法中的自适应算法进行优化,提升了整个功放系统的输入输出线性相关程度,进而在一般拟合级数方法的基础上,将邻近信道功率的抑制效果提升了8~9dB。
通过传统的级数方法拟合,会不可避免地出现对曲线细节的丢失,并且在输入信号进度提升时,曲线的拟合难度也会不断加大。
在通过LMS算法对于普通的1/4正弦波的拟合的过程中,当横轴范围(可与输入信号精度挂钩)从0至1变为0至2时,能保证收敛的最大步长需从0.7变为0.09,同时收敛时长更是变为原来的8至10倍,当进一步,横轴范围提升至0至5时,则需取0.005左右的收敛步长才能保持收敛,收敛时长也变为原来的120倍左右。
图3与图4中,都分别加入了一条理想的输入输出关系曲线作为标准,普通级数方法,本身已经达到了一个可观的线性化效果,与理想曲线之间的差距最大为0.05V左右,而采用分段拟合的方法则更进一步地将最大误差降低至了0.01V。
为了更好的验证该方法在抑制电磁谐波方面的作用,将占用一定频段的OFDM信号作为参考,通过对预失真前后的OFDM信号进行傅里叶变换,观察其在频域的分布,从而观察预失真方法对抑制电磁谐波的效果。
图5中共有两个频域的分布,一个未进行预失真的信号在经过功率放大器之后的频域分布,一个是经过普通级数预失真之后的输出信号的频域分布。通过比对可以发现,电磁谐波的幅度相比于原来的未进行预失真的时候下降了16dB左右。
图6的内容构成与图5相似,显示的用分段方法对电磁谐波抑制的效果,明显抑制效果是优于普通方法的。由于OFDM信号本身极强的随机性,两组试验存在一定不稳定性,但通过多次实验的反复对比,可综合得出,分段后的级数方法相比于级数方法,抑制效果提升了8至9dB左右。
综上,基于分段曲线拟合的线性化方法则是:在间接预失真器结构基础上,把图1中的输入信号与输出信号的对应关系曲线进行分割,并用多个低阶的级数模型代替一个高阶的级数模型,每个低阶级数模型对应处理图1中的一部分特性曲线。此外还包括针对在发现实际将分段处理加入到线性化实验中出现的跳变现象后,如图7,通过每个分段进行一部分交叠,从而消除跳变,如图4,进而完善分段处理的效果。
本实施例的基于分段曲线拟合的线性化方法通过分段处理的预失真方法,相比于一般的用级数来实现预失真的方法,输入与输出之间拥有更高线性相关度。并且通过加入理想化直线进行比对可以发现,在加入分段处理后,最大误差从0.05V降至0.01V,其精度等级提升至原来的5倍。
另一方面,通过对图5和图6中的数据进行对比和计算可以得知,加入分段化处理的预失真结构相比于先前对于邻近信道功率的抑制效果提高了约8~9dB,同时也意味着电磁谐波的幅度降低为普通级数方法的近1/9。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (4)

1.一种基于分段曲线拟合的线性化方法,其特征在于包括如下步骤:
步骤1)通过对实际的功率放大器进行测试,记录下该功率放大器输入功率与输出功率的关系;
步骤2)在MATLAB平台上,以记录的功放的数据为基础,建立功放模型,并以所述功放模型为基础,通过间接预失真模块,进行预失真仿真;
步骤3) 在所述预失真仿真的基础上,对特性曲线进行分割,通过分段处理的方式提高预失真器的精度,并根据出现的跳变现象,通过各分段部分重叠的方式进行消除,得到最终的分段化线性化方法。
2.根据权利要求1所述的基于分段曲线拟合的线性化方法,其特征在于所述步骤2)中的间接预失真模块包括第一预失真器、第二预失真器、数模转换器、模数转换器、计算单元、功率放大器,所述第一预失真器的输出端通过数模转换器与功率放大器的输入端连接,功率放大器依次通过模数转换器、第二预失真器、计算单元将数据反馈至第一预失真器,第一预失真器通过计算单元与第二预失真器连接。
3.根据权利要求2所述的基于分段曲线拟合的线性化方法,其特征在于所述计算单元基于第二预失真器的输出信号和数模转换器的输入信号的差值通过最小二乘法或最小均方算法计算第二预失真器的模型参数。
4.根据权利要求3所述的基于分段曲线拟合的线性化方法,其特征在于第一预失真器的模型参数为第二预失真器的模型参数或由模数转换器连接第二预失真器而成支路来确定。
CN201811026082.1A 2018-04-28 2018-09-04 一种基于分段曲线拟合的线性化方法 Pending CN109165456A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810403325 2018-04-28
CN2018104033252 2018-04-28

Publications (1)

Publication Number Publication Date
CN109165456A true CN109165456A (zh) 2019-01-08

Family

ID=64894147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811026082.1A Pending CN109165456A (zh) 2018-04-28 2018-09-04 一种基于分段曲线拟合的线性化方法

Country Status (1)

Country Link
CN (1) CN109165456A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055323A (zh) * 2021-03-03 2021-06-29 青岛矽昌通信技术有限公司 一种通信系统的数字预失真处理的方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656434A (zh) * 2015-12-31 2016-06-08 东南大学 基于修改分段线性函数的功放数字预失真装置及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105656434A (zh) * 2015-12-31 2016-06-08 东南大学 基于修改分段线性函数的功放数字预失真装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贾冰等: "基于分段线性函数的功放模型及数字预失真应用", 《计算机工程与科学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055323A (zh) * 2021-03-03 2021-06-29 青岛矽昌通信技术有限公司 一种通信系统的数字预失真处理的方法及系统

Similar Documents

Publication Publication Date Title
CN105119578B (zh) 一种包络跟踪自适应预失真功率放大器
CN102143107B (zh) 一种实现数字基带预失真的方法及装置
CN102904532B (zh) 传送电路、调节偏压的方法及适配偏压信息提供的方法
CN102801392B (zh) 一种射频功率放大装置
CN106253861B (zh) 用于动态预失真中自适应波峰因子减小的设备和方法
JP4033794B2 (ja) 高効率線形電力増幅器
CN107359864B (zh) 频率捷变功率放大器的自适应捷变数字预失真方法
CN101562478B (zh) 一种自适应调整cfr门限的方法及射频拉远系统
CN105393452B (zh) 用于多频带功率放大器中数字预失真器的基带等效伏尔泰拉级数
Quindroit et al. Concurrent dual-band digital predistortion for power amplifier based on orthogonal polynomials
CN103891137A (zh) 一种多频段功率放大装置
CN105656434A (zh) 基于修改分段线性函数的功放数字预失真装置及方法
CN111585608A (zh) 用于宽带扩跳频系统的自适应数字预失真方法
CN206349988U (zh) 一种利用dpd反馈控制增益的发射链路
CN102710220B (zh) 一种基于预失真和Doherty的前馈功率放大器
CN109165456A (zh) 一种基于分段曲线拟合的线性化方法
CN102983820B (zh) 一种非线性注入式线性化系统及数字预失真方法
CN114400979A (zh) 一种改善短波互调和谐波失真的数字预失真的系统及方法
CN102983824A (zh) 一种自适应预失真功率放大器
CN103888395B (zh) 一种数字预失真方法和数字预失真器
CN110086438B (zh) 一种针对无源多波束发射机的数字预失真系统及方法
CN203301426U (zh) 模拟预失真电路
Kim et al. A new architecture for frequency-selective digital predistortion linearization for RF power amplifiers
CN105720931A (zh) 一种自适应前馈预失真系统及方法
CN103139120B (zh) 数字预失真处理方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108