CN109164705A - 一种动态双足步行机器人鲁棒控制方法 - Google Patents

一种动态双足步行机器人鲁棒控制方法 Download PDF

Info

Publication number
CN109164705A
CN109164705A CN201810928523.0A CN201810928523A CN109164705A CN 109164705 A CN109164705 A CN 109164705A CN 201810928523 A CN201810928523 A CN 201810928523A CN 109164705 A CN109164705 A CN 109164705A
Authority
CN
China
Prior art keywords
dynamic
walking robot
robot
bipod walking
bipod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810928523.0A
Other languages
English (en)
Inventor
张可
韩载道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810928523.0A priority Critical patent/CN109164705A/zh
Publication of CN109164705A publication Critical patent/CN109164705A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种针对动态动态双足步行机器人步态优化控制的鲁棒控制方法,具体涉及动态双足步行机器人鲁棒控制方法。针对动态双足步行机器人最优鲁棒控制问题,结合快速指数稳定控制Lyapunov函数和混合零动态,充分考虑控制扭矩饱和条件,提出一类具有充分下降特性的投影Dai‑Yuan等式约束优化算法。本发明通过对具有非线性、欠驱动、脉冲混杂特性的3连杆动态双足步行机器人模型进行数值模拟实验,数值结果表明虽然动态双足步行机器人动力学模型的参数摄动3倍,但是投影Dai‑Yuan等式约束优化算法求解的最优鲁棒控制器仍然可以实现动态双足步行机器人高效、稳定行走步态。本发明提高了动态双足机器人动态步行的稳定性和鲁棒性。

Description

一种动态双足步行机器人鲁棒控制方法
技术领域
本发明涉及动态双足步行机器人技术领域,特别是一种动态双足步行机器人鲁棒控制方法。
背景技术
伴随着人类对深海、深空、深地探测能力增强,单纯依赖人类本身是不可能实现深海、深空、深地探测,从而,人们研发了适应于各种功能的机器人辅助人类完成这些不可能完成的任务。由于外部工况信息复杂性或者内部参数摄动实时性将导致动态双足步行机器人产生不稳定行走步态,因此,人们希望致动态双足步行机器人可以更好的处理干扰,实现高效稳定工作状态。密歇根大学Grizzle教授首次提出混合零动态思想初步解决了动态双足步行机器人稳定行走问题。通过选取输出函数,利用反馈线性化技术为动态双足步行机器人设计反馈控制器,实现了该类机器人的动态稳定行走。随后,加州理工学院Ames团队结合快速指数稳定控制Lyapunov函数和混合零动态,设计了一类快速指数稳定控制器,实现了动态双足步行机器人的高效稳定行走步态,然而,他们在控制器设计过程中,需要通过调整控制器参数,如果参数选取不当时,动态双足步行机器人将不能产生稳定的行走步态。为了实现动态双足步行机器人能够在更加复杂的工况下实现稳定的周期运动,Galloway等人利用快速指数稳定性和控制扭矩饱和条件下构造了求解最优鲁棒控制器的二次规划模型,实现了动态双足步行机器人的动态稳定行走。但是,二次规划模型设计过程中,要求目标函数必须是二次型,并且约束条件只能是线性形式,限制了控制器设计要求。
本发明针对前述问题,提出了一种动态双足步行机器人鲁棒控制方法。
发明内容
有鉴于现有技术的上述缺陷,本发明的目的就是提供一种动态双足步行机器人鲁棒控制方法,在于利用本发明投影Dai-Yuan线性等式约束优化算法实现了动态双足步行机器人的最优鲁棒控制;本发明基于处理非线性无约束优化问题中的Dai-Yuan思想,设计了动态 双足步行机器人步态优化算法,从而,通过算法求解动态双足步行机器人的最优鲁棒控制器,提高了动态双足机器人动态步行的稳定性和鲁棒性。
本发明的目的是通过这样的技术方案实现的,一种动态双足步行机器人鲁棒控制方法,它包括有:
S1:建立动态双足步行机器人动力学模型;
S2:进行鲁棒控制器的设计;
S3:进行Dai-Yuan线性等式约束优化算法的设计。
进一步,所述步骤S1中动态双足步行机器人动力学模型如下:
其中,向量场为局部Lipschit连续函数,为碰撞前的状态变量,为碰撞后的状态变量,S为摆动腿与地面接触时的碰撞切换曲面,Δ为碰撞代数映射,q为机器人的状态变量,u∈Rm为控制信号输入;定义输出函数为y(q)=H0(q)-yd(θ(q));θ(q)是关于变量q严格单调函数,yd(θ(q))是机器人期望运动轨迹。
进一步,所述步骤S2中在对鲁棒控制器的设计前还包括有:
S21:构造快速指数稳定控制Lyapunov函数如下:
其中,P为Lyapunov方程ATP+PA+Q=0的解,Q为任意正定矩阵。
进一步,所述鲁棒控制器的设计具体过程如下:
S22:由快速指数稳定控制Lyapunov函数定义,计算Lyapunov函数关于η的导数,有:
其中,
为了满足Lyapunov函数的下降条件,有:
S23:以低能耗作为性能指标,通过优化方法在线求解鲁棒控制器,实现动态双足步行机器人的动态稳定行走;求解优化模型如下:
其中,J(μ)是关于μ连续可微函数,umin和umax分别为机器人电机的最小、最大扭矩,
进一步,还包括有:
将式(6)转化为标准的等式约束优化问题:
其中,分别为变量和目标函数,为线性约束矩阵,为常数项。
进一步,还包括有:步骤S3中所述进行Dai-Yuan线性等式约束优化算法的设计具体过程如下:
S31:选择一个初始点x0∈Rn,ε>0,令k:=0;
S32:计算由下面计算公式得到:
其中,
P=I-AT(AAT)-1A,yk-1=gk-gk-1
S33:确定终止停止迭代条件;如果||Pgk||<ε停止;否则,执行S34;
S34:给出一些常数δ∈(0,1/2),ρ∈(0,1),确定一个步长,αk=max(ρj|j=0,1,2,...);
满足Wofle线性搜索条件:
S35:迭代k:=k+1,返回S32。
由于采用了上述技术方案,本发明具有如下的优点:
(1)本发明通过设计投影Dai-Yuan线性等式优化算法求解动态双足步行机器人的最优鲁棒控制器,克服了传统控制器设计局限,为最优鲁棒控制器设计提供了一个新的解决方案。
(2)本发明中非线性等式约束优化问题解决了已有方法中目标函数必须为二次型的缺 陷问题。
(3)本发明的投影Dai-Yuan线性等式优化算法是一类在线求解算法,可为动态双足步行机器人在线进行参数修正。
(4)本发明的投影Dai-Yuan线性等式优化算法适用范围广,适用于各类动态双足步行机器人的步态优化控制,该方法还可以为机械臂路径规划提供理论参考和算法框架。
(5)本发明在不增加任何硬件的前提下,有效的提高了动态双足步行机器人的稳定性和鲁棒性。
(6)通过算法求解动态双足步行机器人的最优鲁棒控制器,提高了动态双足机器人动态步行的稳定性和鲁棒性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。
附图说明
本发明的附图说明如下:
图1为动态双足步行机器人的控制框图。
图2为带上肢的3连杆双足机器人示意图。
图3为Dai-Yuan优化算法流程示意图。
图4a和图4b为参数不摄动情况下控制输入与时间关系曲线图。
图5a和图5b为参数不摄动情况下输出函数与时间关系曲线图。
图6为参数不摄动情况下关节角位移1与角速度1的极限环。
图7为参数不摄动情况下关节角位移2与角速度2的极限环。
图8a和图8b为参数摄动3倍情况下控制输入与时间关系曲线图。
图9a和图9b为参数摄动3倍情况下输出函数与时间关系曲线。
图10为参数摄动3倍情况下关节角位移1与角速度1的极限环。
图11为参数摄动3倍情况下关节角位移2与角速度2的极限环。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例:如图1至图11所示;一种动态双足步行机器人鲁棒控制方法,它包括有:
S1:建立动态双足步行机器人动力学模型;
S2:进行鲁棒控制器的设计;
S3:进行Dai-Yuan线性等式约束优化算法的设计。
所述步骤S1中动态双足步行机器人动力学模型如下:
其中,向量场为局部Lipschit连续函数,为碰撞前的状态变量,为碰撞后的状态变量,S为摆动腿与地面接触时的碰撞切换曲面,Δ为碰撞代数映射,q为机器人的状态变量,u∈Rm为控制信号输入;定义输出函数为y(q)=H0(q)-yd(θ(q));θ(q)是关于变量q严格单调函数,yd(θ(q))是机器人期望运动轨迹。
所述步骤S2中在对鲁棒控制器的设计前还包括有:
S21:构造快速指数稳定控制Lyapunov函数如下:
其中,P为Lyapunov方程ATP+PA+Q=0的解,Q为任意正定矩阵。
所述鲁棒控制器的设计具体过程如下:
S22:由快速指数稳定控制Lyapunov函数定义,计算Lyapunov函数关于η的导数,有:
其中,
为了满足Lyapunov函数的下降条件,有:
S23:以低能耗作为性能指标,通过优化方法在线求解鲁棒控制器,实现动态双足步行机器人的动态稳定行走;求解优化模型如下:
其中,J(μ)是关于μ连续可微函数,umin和umax分别为机器人电机的最小、最大扭矩,
还包括有:
将式(6)转化为标准的等式约束优化问题:
其中,别为变量和目标函数,为线性约束矩阵,为常数项。
还包括有:步骤S3中所述进行Dai-Yuan线性等式约束优化算法的设计具体过程如下:
S31:选择一个初始点x0∈Rn,ε>0,令k:=0;
S32:计算由下面计算公式得到:
其中,
P=I-AT(AAT)-1A,yk-1=gk-gk-1
S33:确定终止停止迭代条件;如果||Pgk||<ε停止;否则,执行S34;
S34:给出一些常数δ∈(0,1/2),ρ∈(0,1),确定一个步长,αk=max(ρj|j=0,1,2,...);
满足Wofle线性搜索条件:
S35:迭代k:=k+1,返回S32。
具体计算过程如下:本实验是以带上肢的3连杆双足机器人为实验对象,具体模型参数选取如下数值:
r=1m,m=5kg,Mh=15kg,Mt=10kg,L=0.5m。
KP=100I和KD=15I,期望上肢关节角位移为地面角度为α=0.05,期望轨迹为:
Grizzle等利用非线性优化算法求解的上述参数值到一组最优参数值,即
a*=[0.5120.0730.035-0.819-2.273.263.111.89];
角位移θ1对应的初始角速度ω=1.55rad/s以最小能耗为双足机器人动态行走的性能指标泛函,
算法终止条件为ε<10-6,求解如下Lyapunov方程
ATP+PA+Q=0;
其中A由上式计算,Q为任意对称正定矩阵,取Q=100I4×4,利用Matlab软件工具箱求解知,
本发明利用处理非线性无约束优化问题中的Dai-Yuan思想提出一类新的投影Dai-Yuan线性等式约束优化算法;对最优鲁棒控制器建立非线性等式约束优化模型,通过设计投影类Dai-Yuan优化算法实现动态双足步行机器人的步态优化控制;解决了动态双足步行机器人步态优化过程中存在的参数摄动问题,提高了动态双足机器人动态步行的稳定性和鲁棒性。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种动态双足步行机器人鲁棒控制方法,其特征在于,所述方法步骤如下:
S1:建立动态双足步行机器人动力学模型;
S2:进行鲁棒控制器的设计;
S3:进行Dai-Yuan线性等式约束优化算法的设计。
2.如权利要求1所述的动态双足步行机器人鲁棒控制方法,其特征在于,所述步骤S1中动态双足步行机器人动力学模型如下:
其中,向量场为局部Lipschit连续函数,为碰撞前的状态变量,为碰撞后的状态变量,S为摆动腿与地面接触时的碰撞切换曲面,Δ为碰撞代数映射,q为机器人的状态变量,u∈Rm为控制信号输入;定义输出函数为y(q)=H0(q)-yd(θ(q));θ(q)是关于变量q严格单调函数,yd(θ(q))是机器人期望运动轨迹。
3.如权利要求1所述的动态双足步行机器人鲁棒控制方法,其特征在于,所述步骤S2中在对鲁棒控制器的设计前还包括有:
S21:构造快速指数稳定控制Lyapunov函数如下:
其中,P为Lyapunov方程ATP+PA+Q=0的解,Q为任意正定矩阵。
4.如权利要求3所述的动态双足步行机器人鲁棒控制方法,其特征在于,所述鲁棒控制器的设计具体过程如下:
S22:由快速指数稳定控制Lyapunov函数定义,计算Lyapunov函数关于η的导数,有:
其中,
为了满足Lyapunov函数的下降条件,有:
S23:以低能耗作为性能指标,通过优化方法在线求解鲁棒控制器,实现动态双足步行机器人的动态稳定行走;求解优化模型如下:
其中,J(μ)是关于μ连续可微函数,umin和umax分别为机器人电机的最小、最大扭矩,
5.如权利要求4所述的动态双足步行机器人鲁棒控制方法,其特征在于,还包括有:
将式(6)转化为标准的等式约束优化问题:
其中,分别为变量和目标函数,为线性约束矩阵,为常数项。
6.如权利要求5所述的动态双足步行机器人鲁棒控制方法,其特征在于,还包括有:步骤S3中所述进行Dai-Yuan线性等式约束优化算法的设计具体过程如下:
S31:选择一个初始点x0∈Rn,ε>0,令k:=0;
S32:计算由下面计算公式得到:
其中,
P=I-AT(AAT)-1A,yk-1=gk-gk-1
S33:确定终止停止迭代条件;如果||Pgk||<ε停止;否则,执行S34;
S34:给出一些常数δ∈(0,1/2),ρ∈(0,1),确定一个步长,αk=max(ρj|j=0,1,2,...);
满足Wofle线性搜索条件:
S35:迭代k:=k+1,返回S32。
CN201810928523.0A 2018-08-15 2018-08-15 一种动态双足步行机器人鲁棒控制方法 Pending CN109164705A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810928523.0A CN109164705A (zh) 2018-08-15 2018-08-15 一种动态双足步行机器人鲁棒控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810928523.0A CN109164705A (zh) 2018-08-15 2018-08-15 一种动态双足步行机器人鲁棒控制方法

Publications (1)

Publication Number Publication Date
CN109164705A true CN109164705A (zh) 2019-01-08

Family

ID=64895740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810928523.0A Pending CN109164705A (zh) 2018-08-15 2018-08-15 一种动态双足步行机器人鲁棒控制方法

Country Status (1)

Country Link
CN (1) CN109164705A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969289A (zh) * 2019-11-18 2020-04-07 青岛科技大学 一种无人船气象航线连续动态优化方法和系统
CN112947065A (zh) * 2021-01-25 2021-06-11 河南大学 一种双足机器人行走实时步态的azr调节方法
CN117272596A (zh) * 2023-08-24 2023-12-22 中国兵器装备集团自动化研究所有限公司 一种动力学模型建模方法、装置、设备及存储介质
CN117272596B (zh) * 2023-08-24 2024-06-25 中国兵器装备集团自动化研究所有限公司 一种动力学模型建模方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759923A (zh) * 2012-04-13 2012-10-31 中国科学院合肥物质科学研究院 仿生双足水上行走机器人控制方法
CN104331081A (zh) * 2014-10-10 2015-02-04 北京理工大学 一种双足机器人斜面行走的步态规划方法
CN106814610A (zh) * 2017-01-23 2017-06-09 长春工业大学 基于非线性模型预测控制的双足机器人步态优化的信赖域‑sqp方法
CN108089578A (zh) * 2017-12-07 2018-05-29 东莞深圳清华大学研究院创新中心 一种用于双足步行机器人的步行运动规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759923A (zh) * 2012-04-13 2012-10-31 中国科学院合肥物质科学研究院 仿生双足水上行走机器人控制方法
CN104331081A (zh) * 2014-10-10 2015-02-04 北京理工大学 一种双足机器人斜面行走的步态规划方法
CN106814610A (zh) * 2017-01-23 2017-06-09 长春工业大学 基于非线性模型预测控制的双足机器人步态优化的信赖域‑sqp方法
CN108089578A (zh) * 2017-12-07 2018-05-29 东莞深圳清华大学研究院创新中心 一种用于双足步行机器人的步行运动规划方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QIAO BAOMING 等: "A Mixed Conjugate Gradient Method for Unconstrained Optimization Problem", 《IEEE XPLORE》 *
ZHONGBO SUN 等: "A novel projected Fletcher-Reeves Conjugate Application to finite-time optimal robot controller of linear constraints optimization problem: Application to bipedal walking robots", 《OPTIMAL CONTROL APPLICATIONS AND METHODS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110969289A (zh) * 2019-11-18 2020-04-07 青岛科技大学 一种无人船气象航线连续动态优化方法和系统
CN110969289B (zh) * 2019-11-18 2023-06-23 青岛科技大学 一种无人船气象航线连续动态优化方法和系统
CN112947065A (zh) * 2021-01-25 2021-06-11 河南大学 一种双足机器人行走实时步态的azr调节方法
CN112947065B (zh) * 2021-01-25 2022-09-16 河南大学 一种双足机器人行走实时步态的azr调节方法
CN117272596A (zh) * 2023-08-24 2023-12-22 中国兵器装备集团自动化研究所有限公司 一种动力学模型建模方法、装置、设备及存储介质
CN117272596B (zh) * 2023-08-24 2024-06-25 中国兵器装备集团自动化研究所有限公司 一种动力学模型建模方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
Yuguang et al. Dynamic modeling and adaptive fuzzy sliding mode control for multi-link underwater manipulators
Liu et al. Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints
Mu et al. Nonlinear sliding mode control of a two-wheeled mobile robot system
CN105773623A (zh) 基于预测型间接迭代学习的scara机器人轨迹跟踪控制方法
CN110181510B (zh) 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
Fankhauser et al. Reinforcement learning of single legged locomotion
CN102554938A (zh) 机器人的机械手末端轨迹跟踪方法
CN106406098A (zh) 一种机器人系统在未知环境下的人机交互控制方法
CN109164705A (zh) 一种动态双足步行机器人鲁棒控制方法
CN111515938B (zh) 一种继承型迭代学习控制的下肢外骨骼行走轨迹跟踪方法
Liu et al. A simultaneous learning and control scheme for redundant manipulators with physical constraints on decision variable and its derivative
Figueroa et al. A dynamical system approach for adaptive grasping, navigation and co-manipulation with humanoid robots
Smit-Anseeuw et al. Walking with confidence: Safety regulation for full order biped models
Cui et al. Coupled multiple dynamic movement primitives generalization for deformable object manipulation
Dong et al. On-line gait adjustment for humanoid robot robust walking based on divergence component of motion
CN107398903A (zh) 工业机械手臂执行端的轨迹控制方法
Ying-Shi et al. Online minimum-acceleration trajectory planning with the kinematic constraints
CN114740735A (zh) 单关节机器人的变长度反馈辅助pd型迭代学习控制方法
Sankaranarayanan et al. Configuration constrained stabilization of a wheeled mobile robot—theory and experiment
Xie et al. Gait optimization and energy-based stability for biped locomotion using large-scale programming
Harata et al. Efficiency analysis of telescopic-legged bipedal robots
Zhang et al. Trajectory planning and control of handling robot manipulator
Mu et al. Trajectory tracking control of a two-wheeled mobile robot using sliding mode techniques
Jacak et al. A graph-searching approach to trajectory planning of robots
Shuhua et al. Trajectory planning of 6-DOF manipulator based on combination function method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190108

RJ01 Rejection of invention patent application after publication