CN109149611A - 一种牵引负荷削峰填谷的储能控制方法 - Google Patents

一种牵引负荷削峰填谷的储能控制方法 Download PDF

Info

Publication number
CN109149611A
CN109149611A CN201811171320.8A CN201811171320A CN109149611A CN 109149611 A CN109149611 A CN 109149611A CN 201811171320 A CN201811171320 A CN 201811171320A CN 109149611 A CN109149611 A CN 109149611A
Authority
CN
China
Prior art keywords
blow
current transformer
straight current
power
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811171320.8A
Other languages
English (en)
Inventor
黄小红
李群湛
唐思达
廖勤宇
杨乃琪
罗成
刘承志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201811171320.8A priority Critical patent/CN109149611A/zh
Publication of CN109149611A publication Critical patent/CN109149611A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Abstract

本发明提供了一种用于牵引负荷削峰填谷的储能控制方法,涉及电气化铁路储能领域。储能装置包括储能器和两台单相交‑直变流器。控制器通过采集a、b两侧牵引臂功率,结合削峰功率基准值和运行工况,实时储能器和两台单相交‑直变流器三者中任意二者的功率,实现牵引负荷削峰填谷,并兼顾再生制动能量回收。该发明可降低供电系统对设备容量要求,降低设备容量和运行费用,有效协调两牵引臂牵引和再生制动能量与储能装置之间的分配。该发明控制方法简单可靠,易于实施。

Description

一种牵引负荷削峰填谷的储能控制方法
技术领域
本发明涉及电气化铁路储能领域,特别涉及牵引负荷削峰填谷和节能技术。
背景技术
电气化铁路牵引负荷波动剧烈,功率平均值往往仅为最大值的10-20%,牵引变压器负载率低,导致设备利用效率低,运行成本高。削峰填谷作为电力负荷重要的管理措施,可以缓和牵引负荷波动,缓解峰值功率对系统和设备带来的压力。储能装置具有能量转移功能,即在负荷高峰时放电,在负荷低谷时充电。利用储能装置削峰填谷的特点,降低供电系统对设备容量要求,降低设备容量和运行费用。注意到牵引负荷动态变化快、波动剧烈的特点,属短时高频次储能需求,需实时控制。分析常见的储能介质得知,单一传统的化学电池不能满足充放电快速性和循环充放电次数要求,而飞轮或超级电容具有较好的适用性。
列车在制动过程中会产生很大的再生制动能量,若同时在线路中有其它列车处于牵引状态,可对再生制动能量加以吸收,有利于节能减排。然而,处于再生制动和牵引的列车往往在两个不同的供电臂,再生制动能量不能被充分利用。储能装置可兼顾列车再生制动能量利用。
专利《基于飞轮储能装置的铁路牵引供电系统及其改善电能质量的方法》(申请公布号:CN107492902A)公开了一种采用飞轮储能装置改善电能质量方法,也有一定缓和牵引负荷波动和再生制动能量利用的效果,但其控制方法是基于两供电臂电压波动情况,容易造成误判,甚至控制不当。
本发明提出了一种牵引负荷削峰填谷的储能控制方法,实现牵引负荷实时消峰,降低供电系统对设备容量要求,降低设备容量和运行费用,并兼顾列车再生制动能量利用。
发明内容
本发明的目的是提供一种牵引负荷削峰填谷的储能控制方法,它能有效地解决降低设备容量的技术问题。
本发明为实现其目的,采用以下技术方案:一种牵引负荷削峰填谷的储能控制方法,该储能控制方法适用由牵引变电所a侧的单相交-直变流器SCa、牵引变电所b侧的单相交-直变流器SCb和储能器构成的储能装置,储能装置内各器件的额定功率相同,均记为Pn;单相交-直变流器SCa和单相交-直变流器SCb直流侧背靠背连接,储能器与单相交-直变流器SCa和单相交-直变流器SCb的公共直流侧连接,单相交-直变流器SCa的交流侧与牵引变电所的a侧牵引母线BSa连接,单相交-直变流器SCb的交流侧与牵引变电所的b侧牵引母线BSb连接。电压互感器PTa与牵引变电所的a侧牵引母线连接,电流互感器CTa与a侧牵引馈线连接,电压互感器PTb与b侧牵引母线连接,电流互感器CTb与b侧牵引馈线连接,控制器通过电压互感器PTa和电流互感器CTa实时获取a侧牵引臂功率,记为pa;通过电压互感器PTb和电流互感器CTa实时获取b侧牵引臂功率,记为pb,并依据pa和pb与削峰功率基准值Pref的关系,实时控制储能装置中单相交-直变流器SCa和单相交-直变流器SCb或者单相交-直变流器SCa和储能器或者单相交-直变流器SCb和储能器的功率,实现牵引负荷削峰填谷,兼顾再生制动能量回收。
当0<pa+pb≤Pref时,控制器控制储能装置充电,即如果pa≥pb,实施由单相交-直变流器SCb向储能器充电,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCb和储能器的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCa的功率为0;如果pa<pb,实施由单相交-直变流器SCa向储能器充电,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCa和储能器的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCb的功率为0。
当pa+pb>Pref时,控制器控制储能装置放电,即如果pa≥pb,储能器通过单相交-直变流器SCa放电,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCa和储能器的功率均为Pn,单相交-直变流器SCb的功率为0;如果pa<pb,储能器通过单相交-直变流器SCb放电,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCb和储能器的功率均为Pn,单相交-直变流器SCa的功率为0。
当pa+pb<0时,控制器控制储能装置回收再生制动能量,即如果pa×pb>0,两牵引臂均为再生制动工况,储能器同时通过单相交-直变流器SCa和单相交-直变流器SCb收再生制动能量,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCa和单相交-直变流器SCb的功率均为Pn/2,储能器的功率为Pn;如果pa×pb<0,为一牵引臂牵引另一臂再生制动工况,此时,当pa>pb时,即b侧牵引臂为再生制动,储能器通过单相交-直变流器SCb吸收再生制动能量,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCb和储能器的功率均为Pn,单相交-直变流器SCa的功率为0,当pa<pb,即a侧牵引臂为再生制动,储能器通过单相交-直变流器SCa吸收再生制动能量,控制器控制储能装置中单相交-直变流器SCa、单相交-直变流器SCb和储能器三者中任意二者的功率,且满足:单相交-直变流器SCa和储能器的功率均为Pn,单相交-直变流器SCb的功率为0。
储能装置的一种工作模式为:当储能器工作于定功率模式时,单相交-直变流器SCa和单相交-直变流器SCb两者之间,其一工作于定功率模式,另一工作于定电压模式。
削峰功率基准值Pref由牵引负荷历史数据获取。
当a侧牵引馈线多于一路时,a侧牵引臂功率pa为馈线功率之和;当b侧牵引馈线多于一路时,b侧牵引臂功率pb为馈线功率之和。
本发明的工作原理是:利用牵引变电所两牵引臂功率与历史削峰功率对比,实时协调控制储能装置三者中任意二者的功率,优化储能器充放电控制,实现牵引负荷削峰填谷和再生制动能量利用。
与现有技术相比,本发明的有益效果是:
1、本发明通过实时控制储能装置充放电,实现牵引负荷削峰填谷,可降低供电系统对设备容量要求,降低设备容量和运行费用。
2、本发明可有效协调两牵引臂牵引和再生制动能量与储能装置之间的分配。
3、本发明控制方法简单可靠,易于实施。
附图说明
图1是本发明实施例的示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的描述。
一种牵引负荷削峰填谷的储能控制方法,该储能控制方法适用由牵引变电所a侧的单相交-直变流器SCa1、牵引变电所b侧的单相交-直变流器SCb2和储能器3构成的储能装置,储能装置内各器件的额定功率相同,均记为Pn;单相交-直变流器SCa1和单相交-直变流器SCb2直流侧背靠背连接,储能器3与单相交-直变流器SCa1和单相交-直变流器SCb2的公共直流侧连接,单相交-直变流器SCa1的交流侧与牵引变电所的a侧牵引母线BSa4连接,单相交-直变流器SCb2的交流侧与牵引变电所的b侧牵引母线BSb5连接。电压互感器PTa6与牵引变电所的a侧牵引母线连接,电流互感器CTa7与a侧牵引馈线连接,电压互感器PTb8与b侧牵引母线连接,电流互感器CTb9与b侧牵引馈线连接,控制器10通过电压互感器PTa6和电流互感器CTa7实时获取a侧牵引臂功率,记为pa;通过电压互感器PTb8和电流互感器CTa9实时获取b侧牵引臂功率,记为pb,并依据pa和pb与削峰功率基准值Pref的关系,实时控制储能装置中单相交-直变流器SCa1和单相交-直变流器SCb2或者单相交-直变流器SCa1和储能器3或者单相交-直变流器SCb2和储能器3的功率,实现牵引负荷削峰填谷,兼顾再生制动能量回收。
当0<pa+pb≤Pref时,控制器10控制储能装置充电,即如果pa≥pb,实施由单相交-直变流器SCb2向储能器3充电,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCb2和储能器3的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCa1的功率为0;如果pa<pb,实施由单相交-直变流器SCa1向储能器3充电,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCa1和储能器3的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCb2的功率为0。
当pa+pb>Pref时,控制器10控制储能装置放电,即如果pa≥pb,储能器3通过单相交-直变流器SCa1放电,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCa1和储能器3的功率均为Pn,单相交-直变流器SCb2的功率为0;如果pa<pb,储能器3通过单相交-直变流器SCb2放电,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCb2和储能器3的功率均为Pn,单相交-直变流器SCa1的功率为0。
当pa+pb<0时,控制器10控制储能装置回收再生制动能量,即如果pa×pb>0,两牵引臂均为再生制动工况,储能器3同时通过单相交-直变流器SCa1和单相交-直变流器SCb2吸收再生制动能量,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCa1和单相交-直变流器SCb2的功率均为Pn/2,储能器3的功率为Pn;如果pa×pb<0,为一牵引臂牵引另一臂再生制动工况,此时,当pa>pb,即b侧牵引臂为再生制动,储能器3通过单相交-直变流器SCb2吸收再生制动能量,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCb2和储能器3的功率均为Pn,单相交-直变流器SCa1的功率为0,当pa<pb,即a侧牵引臂为再生制动,储能器3通过单相交-直变流器SCa1吸收再生制动能量,控制器10控制储能装置中单相交-直变流器SCa1、单相交-直变流器SCb2和储能器3三者中任意二者的功率,且满足:单相交-直变流器SCa1和储能器3的功率均为Pn,单相交-直变流器SCb2的功率为0。
储能装置的一种工作模式为:当储能器3工作于定功率模式时,单相交-直变流器SCa1和单相交-直变流器SCb2两者之间,其一工作于定功率模式,另一工作于定电压模式。
削峰功率基准值Pref由牵引负荷历史数据获取。
当a侧牵引馈线多于一路时,a侧牵引臂功率pa为馈线功率之和;当b侧牵引馈线多于一路时,b侧牵引臂功率pb为馈线功率之和。

Claims (7)

1.一种牵引负荷削峰填谷的储能控制方法,该储能控制方法适用由牵引变电所a侧的单相交-直变流器SCa(1)、牵引变电所b侧的单相交-直变流器SCb(2)和储能器(3)构成的储能装置,储能装置内各器件的额定功率相同,均记为Pn;单相交-直变流器SCa(1)和单相交-直变流器SCb(2)直流侧背靠背连接,储能器(3)与单相交-直变流器SCa(1)和单相交-直变流器SCb(2)的公共直流侧连接,单相交-直变流器SCa(1)的交流侧与牵引变电所的a侧牵引母线BSa(4)连接,单相交-直变流器SCb(2)的交流侧与牵引变电所的b侧牵引母线BSb(5)连接,其特征在于:电压互感器PTa(6)与牵引变电所的a侧牵引母线连接,电流互感器CTa(7)与a侧牵引馈线连接,电压互感器PTb(8)与b侧牵引母线连接,电流互感器CTb(9)与b侧牵引馈线连接,控制器(10)通过电压互感器PTa(6)和电流互感器CTa(7)实时获取a侧牵引臂功率,记为pa;通过电压互感器PTb(8)和电流互感器CTa(9)实时获取b侧牵引臂功率,记为pb,并依据pa和pb与削峰功率基准值Pref的关系,实时控制储能装置中单相交-直变流器SCa(1)和单相交-直变流器SCb(2)或者单相交-直变流器SCa(1)和储能器(3)或者单相交-直变流器SCb(2)和储能器(3)的功率,实现牵引负荷削峰填谷,兼顾再生制动能量回收。
2.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:当0<pa+pb≤Pref时,控制器(10)控制储能装置充电,即如果pa≥pb,实施由单相交-直变流器SCb(2)向储能器(3)充电,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCb(2)和储能器(3)的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCa(1)的功率为0;如果pa<pb,实施由单相交-直变流器SCa(1)向储能器(3)充电,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCa(1)和储能器(3)的功率均为Pref-pa-pb与Pn相比二者的最小值,单相交-直变流器SCb(2)的功率为0。
3.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:当pa+pb>Pref时,控制器(10)控制储能装置放电,即如果pa≥pb,储能器(3)通过单相交-直变流器SCa(1)放电,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCa(1)和储能器(3)的功率均为Pn,单相交-直变流器SCb(2)的功率为0;如果pa<pb,储能器(3)通过单相交-直变流器SCb(2)放电,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCb(2)和储能器(3)的功率均为Pn,单相交-直变流器SCa(1)的功率为0。
4.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:当pa+pb<0时,控制器(10)控制储能装置回收再生制动能量,即如果pa×pb>0,两牵引臂均为再生制动工况,储能器(3)同时通过单相交-直变流器SCa(1)和单相交-直变流器SCb(2)吸收再生制动能量,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCa(1)和单相交-直变流器SCb(2)的功率均为Pn/2,储能器(3)的功率为Pn;如果pa×pb<0,为一牵引臂牵引另一臂再生制动工况,此时,当pa>pb,即b侧牵引臂为再生制动,储能器(3)通过单相交-直变流器SCb(2)吸收再生制动能量,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCb(2)和储能器(3)的功率均为Pn,单相交-直变流器SCa(1)的功率为0,当pa<pb时,即a侧牵引臂为再生制动,储能器(3)通过单相交-直变流器SCa(1)吸收再生制动能量,控制器(10)控制储能装置中单相交-直变流器SCa(1)、单相交-直变流器SCb(2)和储能器(3)三者中任意二者的功率,且满足:单相交-直变流器SCa(1)和储能器(3)的功率均为Pn,单相交-直变流器SCb(2)的功率为0。
5.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:储能装置的一种工作模式为:当储能器(3)工作于定功率模式时,单相交-直变流器SCa(1)和单相交-直变流器SCb(2)两者之间,其一工作于定功率模式,另一工作于定电压模式。
6.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:削峰功率基准值Pref由牵引负荷历史数据获取。
7.根据权利要求1所述的一种牵引负荷削峰填谷的储能控制方法,其特征在于:当a侧牵引馈线多于一路时,a侧牵引臂功率pa为馈线功率之和;当b侧牵引馈线多于一路时,b侧牵引臂功率pb为馈线功率之和。
CN201811171320.8A 2018-10-09 2018-10-09 一种牵引负荷削峰填谷的储能控制方法 Pending CN109149611A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811171320.8A CN109149611A (zh) 2018-10-09 2018-10-09 一种牵引负荷削峰填谷的储能控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811171320.8A CN109149611A (zh) 2018-10-09 2018-10-09 一种牵引负荷削峰填谷的储能控制方法

Publications (1)

Publication Number Publication Date
CN109149611A true CN109149611A (zh) 2019-01-04

Family

ID=64811004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811171320.8A Pending CN109149611A (zh) 2018-10-09 2018-10-09 一种牵引负荷削峰填谷的储能控制方法

Country Status (1)

Country Link
CN (1) CN109149611A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802393A (zh) * 2019-03-25 2019-05-24 西安开天铁路电气股份有限公司 铁路再生电能潮流控制算法
CN110601242A (zh) * 2019-10-21 2019-12-20 西南交通大学 一种牵引变电所供电储能构造及其控制方法
CN111864774A (zh) * 2020-08-10 2020-10-30 西南交通大学 一种电气化铁路同相混合储能供电构造削峰填谷控制方法
CN113263920A (zh) * 2021-04-27 2021-08-17 西南交通大学 电气化铁路车载混合式储能系统及其能量管理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160352099A1 (en) * 2010-06-16 2016-12-01 Transocean Sedco Forex Ventures Limited Hybrid power plant for improved efficiency and dynamic performance
CN107104444A (zh) * 2017-07-05 2017-08-29 西南交通大学 一种电气化铁路储能同相供电装置及其控制方法
CN107294102A (zh) * 2017-07-05 2017-10-24 西南交通大学 一种电气化铁路储能供电装置及其控制方法
CN107658868A (zh) * 2017-10-17 2018-02-02 西南交通大学 一种电气化铁路三相光伏直流侧储能系统及其控制方法
CN207166151U (zh) * 2017-08-23 2018-03-30 南方电网科学研究院有限责任公司 一种电能管理装置及牵引供电系统
CN207304021U (zh) * 2017-10-17 2018-05-01 西南交通大学 一种应用于电气化铁路的多能互补并网系统
CN108365634A (zh) * 2018-04-23 2018-08-03 西南交通大学 一种再生制动能量回收的铁路光伏储能系统及控制方法
CN108418234A (zh) * 2018-04-26 2018-08-17 成都尚华电气有限公司 一种储能牵引变电所供电构造
CN108539773A (zh) * 2018-04-24 2018-09-14 湘潭大学 基于超级电容储能的铁路功率调节器协调控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160352099A1 (en) * 2010-06-16 2016-12-01 Transocean Sedco Forex Ventures Limited Hybrid power plant for improved efficiency and dynamic performance
CN107104444A (zh) * 2017-07-05 2017-08-29 西南交通大学 一种电气化铁路储能同相供电装置及其控制方法
CN107294102A (zh) * 2017-07-05 2017-10-24 西南交通大学 一种电气化铁路储能供电装置及其控制方法
CN207166151U (zh) * 2017-08-23 2018-03-30 南方电网科学研究院有限责任公司 一种电能管理装置及牵引供电系统
CN107658868A (zh) * 2017-10-17 2018-02-02 西南交通大学 一种电气化铁路三相光伏直流侧储能系统及其控制方法
CN207304021U (zh) * 2017-10-17 2018-05-01 西南交通大学 一种应用于电气化铁路的多能互补并网系统
CN108365634A (zh) * 2018-04-23 2018-08-03 西南交通大学 一种再生制动能量回收的铁路光伏储能系统及控制方法
CN108539773A (zh) * 2018-04-24 2018-09-14 湘潭大学 基于超级电容储能的铁路功率调节器协调控制方法
CN108418234A (zh) * 2018-04-26 2018-08-17 成都尚华电气有限公司 一种储能牵引变电所供电构造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马茜 等: "一种基于超级电容储能系统的新型铁路功率调节器", 《电工技术学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802393A (zh) * 2019-03-25 2019-05-24 西安开天铁路电气股份有限公司 铁路再生电能潮流控制算法
CN110601242A (zh) * 2019-10-21 2019-12-20 西南交通大学 一种牵引变电所供电储能构造及其控制方法
CN111864774A (zh) * 2020-08-10 2020-10-30 西南交通大学 一种电气化铁路同相混合储能供电构造削峰填谷控制方法
CN111864774B (zh) * 2020-08-10 2022-06-24 西南交通大学 一种电气化铁路同相混合储能供电构造削峰填谷控制方法
CN113263920A (zh) * 2021-04-27 2021-08-17 西南交通大学 电气化铁路车载混合式储能系统及其能量管理方法

Similar Documents

Publication Publication Date Title
CN109149611A (zh) 一种牵引负荷削峰填谷的储能控制方法
CN103840450B (zh) 用于电气化铁路的电能调节装置及其方法
CN103311950B (zh) 城市轨道列车再生制动能量吸收利用系统及方法
WO2019184488A1 (zh) 城市轨道交通再生制动能量回收装置的配置方法及系统
CN109572491B (zh) 一种电气化铁路牵引网供电构造及其控制方法
CN108110877A (zh) 一种地铁用混合储能系统
CN107181273B (zh) 一种电气化铁路发电供电装置及其控制方法
CN206317824U (zh) 轨道交通再生制动能量综合回收利用装置
CN107294102B (zh) 一种电气化铁路储能供电装置及其控制方法
CN109149634A (zh) 基于飞轮储能和逆变回馈的再生能量回收系统及控制方法
CN103754124B (zh) 一种电电混合纯电动城市客车控制系统
WO2020057279A1 (zh) 一种干线混合动力机车组控制系统及方法
CN109760553A (zh) 一种跨坐式单轨车辆地面储能供电系统
CN203372079U (zh) 一种接触网和储能装置混合供电的动车组牵引系统
CN109936135A (zh) 一种电气化铁路同相储能供电构造及其控制方法
CN106099978A (zh) 用于无功补偿的地铁制动能量回馈装置、控制方法
CN111864774B (zh) 一种电气化铁路同相混合储能供电构造削峰填谷控制方法
CN109768721A (zh) 一种智能化能量双向流动的三电平变流器控制方法
CN206834784U (zh) 一种用于离网有轨电车的制动能量回收再利用系统
CN109353367A (zh) 基于飞轮储能和电阻制动的再生能量回收系统及控制方法
CN107809117A (zh) 基于pi环调节放电阈值的城轨交通地面锂离子电池储能系统控制方法
CN207200364U (zh) 光伏储能型直流牵引供电系统
CN208112249U (zh) 一种制动能量回收的牵引用光伏发电系统
CN206117177U (zh) 一种防止地铁再生回馈电能倒送电网的装置
CN207311178U (zh) 高速动车组动力牵引和再生制动的能量储放电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104