CN109143097A - It is a kind of meter and temperature and cycle-index lithium ion battery SOC estimation method - Google Patents
It is a kind of meter and temperature and cycle-index lithium ion battery SOC estimation method Download PDFInfo
- Publication number
- CN109143097A CN109143097A CN201811031989.7A CN201811031989A CN109143097A CN 109143097 A CN109143097 A CN 109143097A CN 201811031989 A CN201811031989 A CN 201811031989A CN 109143097 A CN109143097 A CN 109143097A
- Authority
- CN
- China
- Prior art keywords
- battery
- cycle
- model
- temperature
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 23
- 238000002474 experimental method Methods 0.000 claims abstract description 10
- 230000010354 integration Effects 0.000 claims abstract description 5
- 230000010287 polarization Effects 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 238000011056 performance test Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Secondary Cells (AREA)
Abstract
本发明公开了一种计及温度和循环次数的锂离子电池SOC估计方法,包括步骤:(1)建立锂电池模型,包括电池模型、温度模型和循环损失模型;(2)做锂电池恒流放电实验,对锂电池模型参数进行识别;(3)以安时积分法作为状态方程、锂电池模型作为观测方程;(4)利用EKF算法进行SOC估计。本发明考虑的影响电池SOC的因素更多,即增加考虑温度和循环次数,同时温度模型的复杂度有效降低、循环次数模型的精度得到提升;具有SOC估计的精度高、模型参数识别的难度低、计算的复杂度低、模型适用性好等特点。
The invention discloses a method for estimating the SOC of a lithium ion battery considering temperature and cycle times, which includes the steps of: (1) establishing a lithium battery model, including a battery model, a temperature model and a cycle loss model; In the discharge experiment, the parameters of the lithium battery model were identified; (3) the ampere-hour integration method was used as the state equation, and the lithium battery model was used as the observation equation; (4) the EKF algorithm was used to estimate the SOC. The present invention considers more factors affecting the SOC of the battery, that is, the consideration of temperature and cycle times is increased, the complexity of the temperature model is effectively reduced, and the accuracy of the cycle times model is improved; the SOC estimation accuracy is high, and the difficulty of model parameter identification is low. , low computational complexity and good model applicability.
Description
技术领域technical field
发明设计锂离子电池SOC预测领域,尤其是一种锂离子电池SOC估计方法,该方法通过计及锂离子电池的温度和循环次数影响进行SOC的估计。The invention relates to the field of lithium-ion battery SOC prediction, in particular to a lithium-ion battery SOC estimation method, which estimates the SOC by taking into account the influence of the temperature and cycle times of the lithium-ion battery.
背景技术Background technique
与其他(如镍铬和铅酸)电池相比,锂离子电池具有更高的能量和功率密度,更高的效率和更低的自放电率,是电动汽车(EV)青睐的动力源。EV的关键要求是估计电池的荷电状态(SOC),直接测量法(如安时积分法)是开环方法,它们易于实现,但对电流和电压测量误差敏感。基于模型的SOC估计方法是闭环方法,对测量误差不敏感,但它们依赖于精确的电池模型。因此,建立精确地电池模型是提高SOC估算精度的关键。Compared with other batteries such as nickel-chromium and lead-acid, lithium-ion batteries have higher energy and power densities, higher efficiency and lower self-discharge rates, making them a favored power source for electric vehicles (EVs). A key requirement for EVs is to estimate the state of charge (SOC) of the battery, and direct measurement methods such as ampere-hour integration are open-loop methods that are easy to implement but sensitive to current and voltage measurement errors. Model-based SOC estimation methods are closed-loop methods that are not sensitive to measurement errors, but they rely on accurate battery models. Therefore, establishing an accurate battery model is the key to improving the accuracy of SOC estimation.
对于锂离子电池,电池温度不仅会影响开路电压,内阻和可用容量,而且如果在规定的温度限制以上运行,也可能导致电池快速老化甚至热失控。基于电化学/物理的模型涉及复杂或多维微分方程,并且已被证明能够以更高的精度表示热效应。然而,它们需要大量深入和专有的参数(如电极孔隙率,电解质厚度等)。一些用于SOC估计的电气和热耦合模型,充分考虑了电池的产热和散热机制,但其热模型的建立需要热测试室和热电偶,且对于圆柱电池来说很难获取其内部温度。一些SOC的估计方法(如神经网络法(NN))能避免使用热测试室和热电偶,尽管这些模型能反映热效应,但参数识别过程也受到复杂性的影响,并且对可用的电池数据(训练数据)量敏感。此外,这些模型忽略了准确的电池循环次数(老化)因素对于预测可用电池容量和内阻的影响。For Li-ion batteries, battery temperature not only affects open circuit voltage, internal resistance, and usable capacity, but can also cause rapid battery aging and even thermal runaway if operated above specified temperature limits. Electrochemical/physics-based models involve complex or multidimensional differential equations and have been shown to represent thermal effects with greater accuracy. However, they require a lot of in-depth and proprietary parameters (such as electrode porosity, electrolyte thickness, etc.). Some electrical and thermal coupled models for SOC estimation fully consider the heat generation and heat dissipation mechanisms of the battery, but the establishment of the thermal model requires a thermal test chamber and thermocouples, and it is difficult to obtain its internal temperature for cylindrical batteries. Some SOC estimation methods, such as neural network methods (NN), can avoid the use of thermal test chambers and thermocouples. Although these models can reflect thermal effects, the parameter identification process is also affected by complexity, and the available battery data (training). data) is sensitive to the amount of data. Furthermore, these models ignore the influence of accurate battery cycle times (aging) factors in predicting usable battery capacity and internal resistance.
发明内容SUMMARY OF THE INVENTION
本发明目的就是为了解决现有技术的不足,提供了一种耦合了简化的温度模型和准确的循环损失的锂离子电池SOC估计方法,提高SOC估计的精度。The purpose of the present invention is to solve the deficiencies of the prior art, to provide a method for estimating the SOC of a lithium ion battery coupled with a simplified temperature model and an accurate cycle loss, so as to improve the accuracy of SOC estimation.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种计及温度和循环次数的锂离子电池SOC估计方法,包括步骤:A method for estimating the SOC of a lithium-ion battery considering temperature and cycle times, comprising the steps of:
(1)建立锂电池模型,包括电池模型、温度模型和循环损失模型;(1) Establish a lithium battery model, including battery model, temperature model and cycle loss model;
(2)做锂电池恒流放电实验,对锂电池模型参数进行识别;(2) Do the lithium battery constant current discharge experiment to identify the model parameters of the lithium battery;
(3)以安时积分法作为状态方程、锂电池模型作为观测方程;(3) The ampere-hour integration method is used as the state equation, and the lithium battery model is used as the observation equation;
(4)利用EKF算法进行SOC估计。(4) Using the EKF algorithm to estimate the SOC.
所述步骤(1),锂电池模型分为三个部分,分别为:In the step (1), the lithium battery model is divided into three parts, which are:
1)电池模型:1) Battery model:
其中,Vbatt为电池端电压,E0为电池恒压(V),K为极化常数V/(Ah),C为电池可用容量(Ah),it=∫idt为电池实际电量(Ah),i*为滤波后的电池电流(A),Ab为指数区振幅(V),B为指数区时间常数逆(Ah)-1,D为极化电压斜率V/(Ah),R分别为电池欧姆内阻(Ω),i为电池电流(A)。Among them, V batt is the battery terminal voltage, E 0 is the battery constant voltage (V), K is the polarization constant V/(Ah), C is the battery available capacity (Ah), it=∫idt is the actual battery power (Ah) , i * is the filtered battery current (A), A b is the exponential region amplitude (V), B is the exponential region time constant inverse (Ah) -1 , D is the polarization voltage slope V/(Ah), and R are respectively is the ohmic internal resistance (Ω) of the battery, and i is the battery current (A).
2)温度模型:2) Temperature model:
其中,T是电池温度(K),Tref为电池参考温度(K),Ta是环境温度,为开路电压温度系数(V/K),α和β是Arrhenius常数,是电池容量温度系数(Ah/K)。where T is the battery temperature (K), T ref is the battery reference temperature (K), T a is the ambient temperature, is the temperature coefficient of open circuit voltage (V/K), α and β are Arrhenius constants, is the temperature coefficient of battery capacity (Ah/K).
3)循环损失模型:3) Cycle loss model:
R=Rinitial+Rcycle (6)R=R initial +R cycle (6)
C=Cinitial-Ccycle (7)C=C initial -C cycle (7)
其中Rinitial、Rcycle分别为新电池或零循环电池内阻、电池循环内阻(Ω),Cinitial、Ccycle分别为新电池或零循环电池容量(在标称温度下等于标称容量)、电池循环衰减容量(Ah)。Among them, R initial and R cycle are the internal resistance of the new battery or zero-cycle battery, and the battery cycle internal resistance (Ω), respectively, and C initial and C cycle are the capacity of the new battery or zero-cycle battery (equal to the nominal capacity at the nominal temperature) , Battery cycle decay capacity (Ah).
所述步骤(1)的电池模型中,极化内阻和滤波电流如下建立:In the battery model of the step (1), the polarization internal resistance and the filter current are established as follows:
1)充、放电过程极化内阻(Rpol)分别表示如下:1) The polarization internal resistance (R pol ) during charging and discharging is expressed as follows:
2)描述锂电池动态特性而引入滤波电流i*,其在下式给出:2) The filter current i * is introduced to describe the dynamic characteristics of the lithium battery, which is given in the following formula:
其中,I(s)为电池电流的的拉普拉斯变换(A),td是电池响应时间(s),可以实验测得。Among them, I(s) is the Laplace transform of the battery current (A), and t d is the battery response time (s), which can be measured experimentally.
所述步骤(1)的循环损失模型中,循环内阻和循环衰减容量如下建立:In the cycle loss model of step (1), the cycle internal resistance and cycle decay capacity are established as follows:
Rcycle=kcycle(N)1/2 (11)R cycle = k cycle (N) 1/2 (11)
Ccycle=Cinitial·ζ (12)C cycle =C initial ·ζ (12)
其中,N为电池循环次数,kcycle是定义的系数(Ω/cycle1/2),ζ为容量损失系数(%), Lcalendar(%)为日历寿命损失,Lcycle(%)循环次数损失,A为常数,Ea为电池活化能(J/mol),Rg为气体常数(J/K/mol),T为电池温度(K),z为幂因子。Among them, N is the number of battery cycles, k cycle is the defined coefficient (Ω/cycle 1/2 ), ζ is the capacity loss coefficient (%), L calendar (%) is the calendar life loss, and L cycle (%) The cycle number loss , A is a constant, E a is the battery activation energy (J/mol), R g is the gas constant (J/K/mol), T is the battery temperature (K), and z is a power factor.
所述步骤(2),恒流放电实验为:Described step (2), constant current discharge experiment is:
基于两个不同环境温度下的恒流放电实验曲线,每条曲线上取四个点,每个点的信息包括电池端电压Vi j、已使用电量和电池温度Ti j。其中i表示第i条曲线,j表示第j个点。如电池产商提供电池数据表,则其中一条曲线的实验条件可设定为该数据表所在的条件。Based on the constant current discharge experimental curves at two different ambient temperatures, four points are taken on each curve, and the information of each point includes the battery terminal voltage V i j , the used power and battery temperature T i j . where i represents the ith curve and j represents the jth point. If the battery manufacturer provides a battery data sheet, the experimental conditions for one of the curves can be set to the conditions in which the data sheet is located.
所述步骤(2),模型参数识别步骤为:Described step (2), the model parameter identification step is:
1)极化电压斜率D通过下式计算:1) The polarization voltage slope D is calculated by the following formula:
2)系数kcycle可由下式计算:2) The coefficient k cycle can be calculated by the following formula:
kcycle=(8×10-6)T+1.3×10-3 (16)k cycle = (8×10 -6 )T+1.3×10 -3 (16)
3)参数A、和z根据锂电池类型不同而有所差别,实验测定。3) Parameter A, and z vary according to the type of lithium battery, and are determined experimentally.
4)电池响应时间td通过性能测试得出,即在电池充/放电过程中中断电流时开始,到电池电压达到稳定状态的这段时间。4) The battery response time t d is obtained through the performance test, that is, the period from when the current is interrupted during the battery charging/discharging process until the battery voltage reaches a stable state.
5)参数可根据式(5)以及解得。5) Parameters According to formula (5) and Solutions have to.
6)参数α、β如下求解:6) Parameters α, β is solved as follows:
定义模型误差:Define model error:
其中,in,
令:make:
f(x)=eT(x)*e(x)=0 (18)f(x)=e T (x)*e(x)=0 (18)
代入放电实验获得的6个数据即可通过Levenberg-Marquardt(L-M)法求解非线性最小二乘法问题的目标函数f(x),及最优解x。Substitute the six data obtained from the discharge experiment to solve the objective function f(x) of the nonlinear least squares problem and the optimal solution x by the Levenberg-Marquardt (L-M) method.
所述步骤(3),建立SOC估计的状态方程和观测方程:In the step (3), the state equation and the observation equation for SOC estimation are established:
状态方程为:The equation of state is:
xk+1=f(xk,uk)+wk (19)x k+1 = f(x k , u k )+w k (19)
观测方程为:The observation equation is:
yk+1=g(xk,uk)+vk (20)y k+1 =g(x k ,u k )+v k (20)
其中,in,
xk为状态变量,yk+1为观测变量,wk、vk为相互独立的高斯白噪声,ts为采样周期。x k is the state variable, y k+1 is the observation variable, w k and v k are independent Gaussian white noises, and t s is the sampling period.
另外,系统输入求解方程式为:In addition, the system input solution equation is:
uk=ik (23)u k = i k (23)
所述步骤(5),用EKF算法估计电池SOC步骤如下:In the step (5), the steps of estimating the battery SOC with the EKF algorithm are as follows:
1)定义协方差:1) Define the covariance:
E(wkwk T)=Mk E(vkvk T)=Hk E(w k w k T )=M k E(v k v k T )=H k
2)计算2) Calculate
3)初始化3) Initialize
4)for k=1,2,3,…4) for k=1,2,3,…
a)预测:a) Predict:
状态变量预测:State variable prediction:
协方差预测:Covariance prediction:
P- k+1=Ak*Pk*Ak T+Mk P − k+1 =A k *P k *A k T +M k
b)修正;b) amend;
预测误差:Forecast error:
增益:Gain:
Kg=P- k+1*Ck+1 T*(Ck+1*Pk+1*CT k+1+Hk)-1 K g =P - k+1 *C k+1 T *(C k+1 *P k+1 *C T k+1 +H k ) -1
更新:renew:
Pk+1=(I-Kg*Ck+1)*P- k+1。P k+1 =(IK g *C k+1 )*P − k+1 .
本发明的优点是:本发明考虑的影响电池SOC的因素更多,即增加考虑温度和循环次数,同时温度模型的复杂度有效降低、循环次数模型的精度得到提升;具有SOC估计的精度高、模型参数识别的难度低、计算的复杂度低、模型适用性好等特点。The advantages of the present invention are: the present invention considers more factors affecting the SOC of the battery, that is, the temperature and the number of cycles are increased, the complexity of the temperature model is effectively reduced, and the accuracy of the cycle number model is improved; It has the characteristics of low difficulty in model parameter identification, low computational complexity, and good model applicability.
附图说明Description of drawings
图1为锂电池模型图。Figure 1 is a model diagram of a lithium battery.
图2为参数识别时恒流放电示意曲线。Figure 2 is a schematic diagram of constant current discharge during parameter identification.
图3为SOC估计流程图。FIG. 3 is a flowchart of SOC estimation.
具体实施方式Detailed ways
下面结合附图和实例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and examples.
一种计及温度和循环次数的锂离子电池SOC估计方法,包括步骤:A method for estimating the SOC of a lithium-ion battery considering temperature and cycle times, comprising the steps of:
(1)建立锂电池模型,包括电池模型、温度模型和循环损失模型;(1) Establish a lithium battery model, including battery model, temperature model and cycle loss model;
(2)做锂电池恒流放电实验,对锂电池模型参数进行识别;(2) Do the lithium battery constant current discharge experiment to identify the model parameters of the lithium battery;
(3)以安时积分法作为状态方程、锂电池模型作为观测方程;(3) The ampere-hour integration method is used as the state equation, and the lithium battery model is used as the observation equation;
(4)利用EKF算法进行SOC估计。(4) Using the EKF algorithm to estimate the SOC.
图1位锂离子电池模型图,用公式表达可分为三个部分,分别为:Figure 1 is a lithium-ion battery model diagram, which can be divided into three parts by formula, which are:
1)电池模型:1) Battery model:
其中,Vbatt为电池端电压,E0为电池恒压(V),K为极化常数V/(Ah),C为电池可用容量(Ah),it=∫idt为电池实际电量(Ah),i*为滤波后的电池电流(A),Ab为指数区振幅(V),B为指数区时间常数逆(Ah)-1,D为极化电压斜率V/(Ah),R分别为电池欧姆内阻(Ω),i为电池电流(A)。Among them, V batt is the battery terminal voltage, E 0 is the battery constant voltage (V), K is the polarization constant V/(Ah), C is the battery available capacity (Ah), it=∫idt is the actual battery power (Ah) , i * is the filtered battery current (A), A b is the exponential region amplitude (V), B is the exponential region time constant inverse (Ah) -1 , D is the polarization voltage slope V/(Ah), and R are respectively is the ohmic internal resistance (Ω) of the battery, and i is the battery current (A).
2)温度模型:2) Temperature model:
其中,T是电池温度(K),Tref为电池参考温度(K),Ta是环境温度,为开路电压温度系数(V/K),α和β是Arrhenius常数,是电池容量温度系数(Ah/K)。where T is the battery temperature (K), T ref is the battery reference temperature (K), T a is the ambient temperature, is the temperature coefficient of open circuit voltage (V/K), α and β are Arrhenius constants, is the temperature coefficient of battery capacity (Ah/K).
3)循环损失模型:3) Cycle loss model:
R=Rinitial+Rcycle (6)R=R initial +R cycle (6)
C=Cinitial-Ccycle (7)C=C initial -C cycle (7)
其中Rinitial、Rcycle分别为新电池或零循环电池内阻、电池循环内阻(Ω),Cinitial、Ccycle分别为新电池或零循环电池容量(在标称温度下等于标称容量)、电池循环衰减容量(Ah)。Among them, R initial and R cycle are the internal resistance of the new battery or zero-cycle battery, and the battery cycle internal resistance (Ω), respectively, and C initial and C cycle are the capacity of the new battery or zero-cycle battery (equal to the nominal capacity at the nominal temperature) , Battery cycle decay capacity (Ah).
所述步骤(1)的电池模型中,极化内阻和滤波电流如下建立:In the battery model of the step (1), the polarization internal resistance and the filter current are established as follows:
1)充、放电过程极化内阻(Rpol)分别表示如下:1) The polarization internal resistance (R pol ) during charging and discharging is expressed as follows:
2)描述锂电池动态特性而引入滤波电流i*,其在下式给出:2) The filter current i * is introduced to describe the dynamic characteristics of the lithium battery, which is given in the following formula:
其中,I(s)为电池电流的的拉普拉斯变换(A),td是电池响应时间(s),可以实验测得。Among them, I(s) is the Laplace transform of the battery current (A), and t d is the battery response time (s), which can be measured experimentally.
所述步骤(1)的循环损失模型中,循环内阻和循环衰减容量如下建立:In the cycle loss model of step (1), the cycle internal resistance and cycle decay capacity are established as follows:
Rcycle=kcycle(N)1/2 (11)R cycle = k cycle (N) 1/2 (11)
Ccycle=Cinitial·ζ (12)C cycle =C initial ·ζ (12)
其中,N为电池循环次数,kcycle是定义的系数(Ω/cycle1/2),ζ为容量损失系数(%),Lcalendar(%)为日历寿命损失,Lcycle(%)循环次数损失,A为常数,Ea为电池活化能(J/mol),Rg为气体常数(J/K/mol),T为电池温度(K),z为幂因子。Among them, N is the number of battery cycles, k cycle is the defined coefficient (Ω/cycle 1/2 ), ζ is the capacity loss coefficient (%), L calendar (%) is the calendar life loss, and L cycle (%) The cycle number loss , A is a constant, E a is the battery activation energy (J/mol), R g is the gas constant (J/K/mol), T is the battery temperature (K), and z is a power factor.
所述步骤(2),恒流放电实验为:Described step (2), constant current discharge experiment is:
基于两个不同环境温度下的恒流放电实验曲线,每条曲线上取四个点,每个点的信息包括电池端电压Vi j、已使用电量和电池温度Ti j。其中i表示第i条曲线,j表示第j个点。如电池产商提供电池数据表,则其中一条曲线的实验条件可设定为该数据表所在的条件。Based on the constant current discharge experimental curves at two different ambient temperatures, four points are taken on each curve, and the information of each point includes the battery terminal voltage V i j , the used power and battery temperature T i j . where i represents the ith curve and j represents the jth point. If the battery manufacturer provides a battery data sheet, the experimental conditions for one of the curves can be set to the conditions in which the data sheet is located.
所述步骤(2),模型参数识别步骤为:Described step (2), the model parameter identification step is:
1)极化电压斜率D通过下式计算:1) The polarization voltage slope D is calculated by the following formula:
2)系数kcycle可由下式计算:2) The coefficient k cycle can be calculated by the following formula:
kcycle=(8×10-6)T+1.3×10-3 (16)k cycle = (8×10 -6 )T+1.3×10 -3 (16)
3)参数A、和z根据锂电池类型不同而有所差别,实验测定。3) Parameter A, and z vary according to the type of lithium battery, and are determined experimentally.
接下来的步骤4)5)6)配合图2来计算:The next steps 4) 5) 6) are calculated according to Figure 2:
4)电池响应时间td通过性能测试得出,即在电池充/放电过程中中断电流时开始,到电池电压达到稳定状态的这段时间。4) The battery response time t d is obtained through the performance test, that is, the period from when the current is interrupted during the battery charging/discharging process until the battery voltage reaches a stable state.
5)参数可根据式(5)以及解得。5) Parameters According to formula (5) and Solutions have to.
6)参数α、β如下求解:6) Parameters α, β is solved as follows:
定义模型误差:Define model error:
其中,in,
令:make:
f(x)=eT(x)*e(x)=0 (18)f(x)=e T (x)*e(x)=0 (18)
代入放电实验获得的6个数据即可通过Levenberg-Marquardt(L-M)法求解非线性最小二乘法问题的目标函数f(x),及最优解x。这里,MATLAB软件中的 OptimizationToolbox工具集有专门用上述解法解决目标函数为f(x)的函数 lsqnonlin,可以很便捷得出最优解。Substitute the six data obtained from the discharge experiment to solve the objective function f(x) of the nonlinear least squares problem and the optimal solution x by the Levenberg-Marquardt (L-M) method. Here, the OptimizationToolbox toolset in the MATLAB software specifically uses the above solution to solve the function lsqnonlin whose objective function is f(x), which can easily obtain the optimal solution.
所述步骤(3),建立SOC估计的状态方程和观测方程:In the step (3), the state equation and the observation equation for SOC estimation are established:
状态方程为:The equation of state is:
xk+1=f(xk,uk)+wk (19)x k+1 = f(x k , u k )+w k (19)
观测方程为:The observation equation is:
yk+1=g(xk,uk)+vk (20)y k+1 =g(x k ,u k )+v k (20)
其中,in,
xk为状态变量,yk+1为观测变量,wk、vk为相互独立的高斯白噪声,ts为采样周期。x k is the state variable, y k+1 is the observation variable, w k and v k are independent Gaussian white noises, and t s is the sampling period.
另外,系统输入求解方程式为:In addition, the system input solution equation is:
uk=ik (23)u k = i k (23)
所述步骤(5),用EKF算法估计电池SOC步骤如下:图3展示了这一过程流程图:In the step (5), the steps of estimating the battery SOC with the EKF algorithm are as follows: Figure 3 shows the flow chart of this process:
1)定义协方差:1) Define the covariance:
E(wkwk T)=Mk E(vkvk T)=Hk E(w k w k T )=M k E(v k v k T )=H k
2)计算2) Calculate
3)初始化3) Initialize
4)for k=1,2,3,…4) for k=1,2,3,…
c)预测:c) Predict:
状态变量预测:State variable prediction:
协方差预测:Covariance prediction:
P- k+1=Ak*Pk*Ak T+Mk P − k+1 =A k *P k *A k T +M k
d)修正;d) amendment;
预测误差:Forecast error:
增益:Gain:
Kg=P- k+1*Ck+1 T*(Ck+1*Pk+1*CT k+1+Hk)-1更新:K g =P - k+1 *C k+1 T *(C k+1 *P k+1 *C T k+1 +H k ) -1 update:
Pk+1=(I-Kg*Ck+1)*P- k+1 。P k+1 =(IK g *C k+1 )*P − k+1 .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811031989.7A CN109143097B (en) | 2018-09-05 | 2018-09-05 | Lithium ion battery SOC estimation method considering temperature and cycle number |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811031989.7A CN109143097B (en) | 2018-09-05 | 2018-09-05 | Lithium ion battery SOC estimation method considering temperature and cycle number |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109143097A true CN109143097A (en) | 2019-01-04 |
CN109143097B CN109143097B (en) | 2021-05-04 |
Family
ID=64827008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811031989.7A Active CN109143097B (en) | 2018-09-05 | 2018-09-05 | Lithium ion battery SOC estimation method considering temperature and cycle number |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109143097B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110687462A (en) * | 2019-11-04 | 2020-01-14 | 北京理工大学 | A joint estimation method of power battery SOC and capacity full life cycle |
CN110780201A (en) * | 2019-12-02 | 2020-02-11 | 苏州易来科得科技有限公司 | Method for determining highest tolerance temperature of battery |
CN110795851A (en) * | 2019-10-30 | 2020-02-14 | 西安理工大学 | Lithium ion battery modeling method considering environmental temperature influence |
CN111239630A (en) * | 2020-03-09 | 2020-06-05 | 江苏中兴派能电池有限公司 | Energy storage battery service life prediction method and management system |
CN111581904A (en) * | 2020-04-17 | 2020-08-25 | 西安理工大学 | Lithium battery SOC and SOH collaborative estimation method considering influence of cycle number |
CN111999669A (en) * | 2020-08-21 | 2020-11-27 | 北京车和家信息技术有限公司 | Method and device for calculating remaining cycle number of battery |
CN112415409A (en) * | 2019-08-23 | 2021-02-26 | 比亚迪股份有限公司 | Method and device for estimating battery capacity, storage medium and vehicle |
CN116298991A (en) * | 2023-05-25 | 2023-06-23 | 湖南锂汇通新能源科技有限责任公司 | Method and system for rapidly detecting and evaluating capacity of retired battery |
WO2025002046A1 (en) * | 2023-06-29 | 2025-01-02 | 厦门新能达科技有限公司 | Soc-ocv curve calibration method and apparatus for battery pack, device, medium, and product |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103529399A (en) * | 2013-10-28 | 2014-01-22 | 湖南大学 | Simulation method of lead acid battery-based improved PNGV model |
KR101529515B1 (en) * | 2014-06-12 | 2015-06-17 | 국방과학연구소 | Apparatus and method for estimating battery charge state using mmae-ekf |
CN104965179A (en) * | 2015-07-06 | 2015-10-07 | 首都师范大学 | Lithium ion storage battery temperature combinational circuit model and parameter identification method thereof |
CN105510829A (en) * | 2014-09-29 | 2016-04-20 | 山东大学 | Novel lithium ion power cell SOC estimation method |
CN105676134A (en) * | 2016-01-08 | 2016-06-15 | 中国第一汽车股份有限公司 | SOH estimation method for vehicle lithium-ion power battery |
CN105699910A (en) * | 2016-04-21 | 2016-06-22 | 中国计量大学 | Method for on-line estimating residual electric quantity of lithium battery |
CN106443471A (en) * | 2016-09-20 | 2017-02-22 | 首都师范大学 | System on chip (SOC) estimation method for lithium ion battery and hardware implementation of estimation method |
CN106909716A (en) * | 2017-01-19 | 2017-06-30 | 东北电力大学 | The ferric phosphate lithium cell modeling of meter and capacity loss and SOC methods of estimation |
WO2017135075A1 (en) * | 2016-02-01 | 2017-08-10 | 株式会社デンソー | Battery state estimation apparatus |
-
2018
- 2018-09-05 CN CN201811031989.7A patent/CN109143097B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103439668A (en) * | 2013-09-05 | 2013-12-11 | 桂林电子科技大学 | Charge state evaluation method and system of power lithium ion battery |
CN103529399A (en) * | 2013-10-28 | 2014-01-22 | 湖南大学 | Simulation method of lead acid battery-based improved PNGV model |
KR101529515B1 (en) * | 2014-06-12 | 2015-06-17 | 국방과학연구소 | Apparatus and method for estimating battery charge state using mmae-ekf |
CN105510829A (en) * | 2014-09-29 | 2016-04-20 | 山东大学 | Novel lithium ion power cell SOC estimation method |
CN104965179A (en) * | 2015-07-06 | 2015-10-07 | 首都师范大学 | Lithium ion storage battery temperature combinational circuit model and parameter identification method thereof |
CN105676134A (en) * | 2016-01-08 | 2016-06-15 | 中国第一汽车股份有限公司 | SOH estimation method for vehicle lithium-ion power battery |
WO2017135075A1 (en) * | 2016-02-01 | 2017-08-10 | 株式会社デンソー | Battery state estimation apparatus |
CN105699910A (en) * | 2016-04-21 | 2016-06-22 | 中国计量大学 | Method for on-line estimating residual electric quantity of lithium battery |
CN106443471A (en) * | 2016-09-20 | 2017-02-22 | 首都师范大学 | System on chip (SOC) estimation method for lithium ion battery and hardware implementation of estimation method |
CN106909716A (en) * | 2017-01-19 | 2017-06-30 | 东北电力大学 | The ferric phosphate lithium cell modeling of meter and capacity loss and SOC methods of estimation |
Non-Patent Citations (5)
Title |
---|
OLIVIER TREMBLAY 等: "Experimental Validation of a Battery Dynamic Model for EV Applications", 《WORLD ELECTRIC VEHICLE JOURNAL》 * |
XUEBING HAN 等: "A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation", 《JOURNAL OF POWER SOURCES》 * |
YANNIC TROXLER 等: "The effect of thermal gradients on the performance of lithium-ion batteries", 《JOURNAL OF POWER SOURCES》 * |
何耀 等: "基于可变温度模型的锂电池SOC估计方法", 《电机与控制学报》 * |
魏克新 等: "基于自适应无迹卡尔曼滤波算法的锂离子动力电池状态估计", 《中国电机工程学报》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112415409B (en) * | 2019-08-23 | 2022-04-15 | 比亚迪股份有限公司 | Method and device for estimating battery capacity, storage medium and vehicle |
CN112415409A (en) * | 2019-08-23 | 2021-02-26 | 比亚迪股份有限公司 | Method and device for estimating battery capacity, storage medium and vehicle |
CN110795851A (en) * | 2019-10-30 | 2020-02-14 | 西安理工大学 | Lithium ion battery modeling method considering environmental temperature influence |
CN110795851B (en) * | 2019-10-30 | 2024-05-14 | 西安理工大学 | Lithium ion battery modeling method considering environmental temperature influence |
CN110687462A (en) * | 2019-11-04 | 2020-01-14 | 北京理工大学 | A joint estimation method of power battery SOC and capacity full life cycle |
CN110687462B (en) * | 2019-11-04 | 2020-09-04 | 北京理工大学 | A joint estimation method of power battery SOC and capacity full life cycle |
CN110780201B (en) * | 2019-12-02 | 2021-08-17 | 苏州易来科得科技有限公司 | Method for determining highest tolerance temperature of battery |
CN110780201A (en) * | 2019-12-02 | 2020-02-11 | 苏州易来科得科技有限公司 | Method for determining highest tolerance temperature of battery |
CN111239630A (en) * | 2020-03-09 | 2020-06-05 | 江苏中兴派能电池有限公司 | Energy storage battery service life prediction method and management system |
CN111581904B (en) * | 2020-04-17 | 2024-03-22 | 西安理工大学 | Lithium battery SOC and SOH collaborative estimation method considering cycle number influence |
CN111581904A (en) * | 2020-04-17 | 2020-08-25 | 西安理工大学 | Lithium battery SOC and SOH collaborative estimation method considering influence of cycle number |
CN111999669A (en) * | 2020-08-21 | 2020-11-27 | 北京车和家信息技术有限公司 | Method and device for calculating remaining cycle number of battery |
CN116298991A (en) * | 2023-05-25 | 2023-06-23 | 湖南锂汇通新能源科技有限责任公司 | Method and system for rapidly detecting and evaluating capacity of retired battery |
CN116298991B (en) * | 2023-05-25 | 2023-09-12 | 湖南锂汇通新能源科技有限责任公司 | Method and system for rapidly detecting and evaluating capacity of retired battery |
WO2025002046A1 (en) * | 2023-06-29 | 2025-01-02 | 厦门新能达科技有限公司 | Soc-ocv curve calibration method and apparatus for battery pack, device, medium, and product |
Also Published As
Publication number | Publication date |
---|---|
CN109143097B (en) | 2021-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109143097B (en) | Lithium ion battery SOC estimation method considering temperature and cycle number | |
Qays et al. | Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: A review | |
CN107402353B (en) | Method and system for carrying out filtering estimation on state of charge of lithium ion battery | |
Shen et al. | The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles | |
CN112615075B (en) | Battery quick charging method and computer equipment | |
CN106909716B (en) | Lithium iron phosphate battery modeling and SOC estimation method considering capacity loss | |
CN104569835B (en) | A kind of method of the state-of-charge for the electrokinetic cell for estimating electric automobile | |
Lin et al. | Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring | |
CN110795851B (en) | Lithium ion battery modeling method considering environmental temperature influence | |
CN106443478B (en) | The evaluation method of ferric phosphate lithium cell remaining capacity based on closed loop hybrid algorithm | |
CN108445402A (en) | A kind of lithium-ion-power cell state-of-charge method of estimation and system | |
CN104577242B (en) | A kind of batteries management system and method | |
CN111208438B (en) | Method for cooperatively estimating residual capacity of lithium-ion battery and sensor deviation based on neural network and unscented Kalman filter | |
CN116113837A (en) | Method for estimating the state of charge of a battery | |
CN113777510A (en) | Method and device for estimating state of charge of lithium battery | |
CN109950661A (en) | A device and method for simultaneously heating the inside and outside of a power battery pack | |
CN107843847A (en) | A kind of battery SOC estimation online methods based on EKF algorithms | |
LeBel et al. | Lithium-ion cell equivalent circuit model identification by galvanostatic intermittent titration technique | |
CN110031772B (en) | Real-time estimation method for equivalent internal resistance of lithium ion battery | |
CN114609523A (en) | Online battery capacity detection method, electronic equipment and storage medium | |
CN115389936A (en) | An online prediction method for continuous peak power capability of lithium battery driven by digital-analog hybrid drive | |
CN110488203A (en) | A kind of aging lithium battery group SOC On-line Estimation method | |
US10908219B2 (en) | Battery management system with mixed electrode | |
CN115877232A (en) | Lithium ion battery internal temperature estimation method based on Kalman filtering | |
Shen et al. | State of charge, state of health and state of function co-estimation of lithium-ion batteries for electric vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |