CN109136916B - A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer - Google Patents

A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer Download PDF

Info

Publication number
CN109136916B
CN109136916B CN201811086625.9A CN201811086625A CN109136916B CN 109136916 B CN109136916 B CN 109136916B CN 201811086625 A CN201811086625 A CN 201811086625A CN 109136916 B CN109136916 B CN 109136916B
Authority
CN
China
Prior art keywords
powder
graphene oxide
control
mixed
laser melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811086625.9A
Other languages
Chinese (zh)
Other versions
CN109136916A (en
Inventor
闫洪
吴庆捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201811086625.9A priority Critical patent/CN109136916B/en
Publication of CN109136916A publication Critical patent/CN109136916A/en
Application granted granted Critical
Publication of CN109136916B publication Critical patent/CN109136916B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A kind of method of the graphene oxide alloys magnesium primary surface wearing layer of laser melting coating preparation adsorbs Ti ion using hydro-thermal high pressure, and in the case where graphene oxide carries functional group's effect, and anatase titanium dioxide GO@TiO is obtained in after baking in water-less environment2(anatase titanium dioxide).Gained powder and alumina powder, fine silica powder, atomized aluminium and glycerine certain proportion adjust the mixed-powder for being mixed to get gluing state.Matrix magnesium alloy plate is polished with sand paper, and gluing state mixed-powder is uniformly applied to matrix face.Again with flame gun Quick uniform presintering powder in matrix surface.Then material is handled using laser melting coating.Magnesium alloy plate surface cladding material abrasion loss is low handled by the present invention and has had both the features such as surface hardness is high, and there are many reinforced phase such as Al2O3, SiC and GO etc., meanwhile, the present invention has many advantages, such as that simple, safety, low cost are easily operated and controllable.

Description

A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer
Technical field
The invention belongs to technical field of material.
Background technique
Graphene nanometer sheet is by sp2The two-dimensional material of the monoatomic layer thickness of hydbridized carbon atoms composition, shows one The unusual physical property of series.Graphene nanometer sheet causes physics, chemistry and materialogy because of its special two-dimensional structure The great interest of boundary researcher, basic research and engineering Application Research in relation to graphene become research hotspot in recent years. Since graphene has high intensity, tensile strength up to 130GPa, imply graphene have in material application study it is huge Big application space.
Due to physical characteristics such as graphene intensity extremely outstanding, the increasing of its mechanical property is focused in current research more By force, its excellent attribute in material abrasiveness and hardness is ignored.A large number of studies show that the correct selection of reinforced phase can be straight Connect the wear-resisting property and hardness for improving composite material.And graphene oxide (GO) is due to the essential attribute of its carbon material, it is natural after The speciality that its self-lubricating and preferable thermal diffusivity etc. are different from other reinforcing materials is held.Thus correctly use can be effectively Reduce the loss of material.
Magnesium alloy is as a kind of light material, the advantages that due to its specific strength height and good earthquake-proof function, increasingly by and Attention by industrial circle.However its disadvantage is also more prominent, since its surface oxidation is reticular structure, this makes magnesium alloy Its corrosion resistance and polishing machine are poor, and which prevent further applying for magnesium alloy.To expand application field, magnesium is improved The soft of alloy, corrosion resistance and wear-resisting property, this patent propose a kind of Laser Surface Modification Technology, pass through matching for alloyed powder Than adjusting, graphene oxide is added in alloyed powder, cooperateed in technique ultrasound dispersion and ultrasound to the fragmentation of crystal grain with Improve the hardness and wear-resisting property of Mg alloy surface.
However graphene oxide shows very poor wetability similar to the structure of CNT, this is directly resulted in and alloy-based Body interface associativity is not strong, is unfavorable for the preparation of composite material.Thus, improve the wetability of itself and matrix and selects correct work Process becomes the key using graphene oxide enhancing metal base grinding abrasion.
Graphene oxide, which improves wetability method, at present overlay coating etc., and such as chemical nickel plating, this method is mainly by carboxylic The graphene of base is through sensitization plays, after activation, is put into plating in chemical plating fluid, as the progress of reaction can be in graphene oxide table Face obtains graininess coating, but expensive, and commonly uses toxic reagent, not environmentally and high production cost, is not suitable for extensive Production.
In publication CN106148949A, title are as follows: a kind of " laser-induction composite cladding graphene enhancing Ni3Ti In the method for composite material ".Graphene is pre-processed using chemical plating to obtain the graphene of nickel plating.Powder is mixed again carries out routine It is laser sintered.In fact this method due to chemical plating limitation, it is larger to human injury, and it also requires individually to graphene Carboxylated, the production cycle is long, while utilizing is sintering process of dusting, higher for such powder waste degree, has certain office It is sex-limited.
Therefore, still lack a kind of preparation skill of cost-effective mg-based material surface plating graphene oxide wearing layer at present Art.
Summary of the invention
In order to overcome conventional oxidation graphene composite material to prepare molding technological difficulties, the object of the present invention is to provide one The new deposition technology using graphene oxide enhancing mg-based material of kind.It is to add the methods of mixed-powder in substrate surface, It is acted synergistically using laser melting coating and high-energy ultrasonic so that powder itself forms one layer of basis material protective layer with matrix, to reach The corrosion resistance of reinforcing material and the process of polishing machine.The conventional surfaces treatment process such as plating are compared to, it has all More advantages, such as applicable basis material range of choice is wide, cladding layer controllability is high, customization performance is strong, excellent bonding performance.
Laser cladding technology includes selection proportion, the control of environment and the determination of the technological parameter three crucial rings of powder Section, these three links are all linked with one another, all directly affect the quality of product.
In the present invention, graphene oxide is pre-processed using hydro-thermal method, the rear gluing state for recycling glycerine is protected The adhesion for holding its dispersibility and material reaches during the mixed powder of reduction due to inhomogeneities caused by different densities.
Concrete principle of the invention is to be increased by introducing titanium oxide or titanium elements in surface of graphene oxide with reaching Carbon and magnesium alloy wetability, using the self-lubricating and extremely strong thermal conductivity of graphene oxide, so that the surface hardness of material is straight Line improves, and simultaneously effective reduces the coefficient of friction of material surface and increases the wear stability of material.In addition, oxidation stone Black alkene has TiO due to surface2Coating has a degree of high temperature protection to graphene oxide.Meanwhile under high temperature, silicon phase (Si) Micro SiC is generated in situ with graphene oxide, and since it is generated to be internal, thus interfacial cleanliness binding performance is preferable.In addition, Due to the effect of high-energy ultrasonic, pool depth can be increased to a certain extent, improve the dispersibility of reinforced phase and improve wetting.And Due to the lasting progress of ultrasound, crystal grain itself is refined and rounding, can directly improve the hardness of material.And the oxidation being added Then the surface in cladding process forms micro spinelle to alumina particles, further increases the wearability and hardness of material.
The present invention is achieved by the following technical solutions.
The method that a kind of laser melting coating of the present invention prepares graphene oxide alloys magnesium primary surface wearing layer, including with Lower step.
(1) by graphene oxide in analysis straight alcohol the pre-dispersed 1~3h of ultrasound, temperature is room temperature, and whole-process control is anhydrous Vapour.Proportion is strict controlled in 0.2~0.4g:50mL.
(2) glycerine and tetraisopropyl titanate composition will be poured into through step (1) pretreated graphene oxide dispersion Precursor liquid in seal, and again be ultrasonically treated 1~1.5h.Among these, glycerine and tetraisopropyl titanate volume ratio are 10: 0.4~1.2.
(3) forerunner's suspension through step (2) is imported in hydrothermal reaction kettle, wherein suspension volume accounts for the molten product of reaction kettle 35%~70%.Reaction kettle is integrally put into reacting furnace again and is heated, is warming up to 70~110 DEG C with 1~5 DEG C/min, heat preservation 1~ 2h, then after being warming up to 175~180 DEG C with 1~3 DEG C/min, take out reaction kettle after keeping the temperature 10~15h;Reaction kettle should be air-cooled to Room temperature rear is openable.
(4) being taken out through solution obtained by step (3), centrifugal treating, and be repeatedly centrifuged by pouring into analysis straight alcohol to molten Body is colourless, and revolving speed is controlled in 9000~16000rpm.Whole process sealing guarantees without steam.
(5) the mixed-powder vacuum drying that step (4) is obtained, after will be in the powder under protection of argon gas 450~500 DEG C Roasting.The graphene oxide that surface has needle-shaped anatase type titanium oxide coating can be obtained in 1~3h in time control.
(6) powder obtained by step (5) is put into beaker and is added a certain amount of aluminium oxide, fine silica powder, atomized aluminium, and add Entering a certain amount of glycerine, silicon powder control among these is total powder quality 4~8%, the mass ratio of graphene oxide is 5~ 7.5%, alumina powder control is 1.5~3%, and size Control is 2~7 μm.Surplus is atomized aluminium, and size Control is 5~15 μ m.Glycerine is the 3~5% of total volume ratio, this is crucial for stomata control, then with 1~3h of ultrasonic treatment, mixes powder process and keeps Preferable aridity finally obtains the mixed-powder of gluing state.
(7) mg-based material alloy sheets are polished repeatedly with 1500~2000# sand paper, alcohol is cleaned by ultrasonic and dries.Afterwards will Gluing state mixed-powder obtained by step (6) is uniformly applied to magnesium material surface, prefabricated thickness control is 0.5~1.2mm.Again with fire Flame rifle Quick uniform presintering powder is in matrix surface.
(8) mg-based material alloy sheets obtained by step (7) are put into argon gas guard box, magnesium plate should be fixed on bottom among these Have on the titanium alloy plate of high-energy ultrasonic and is fixed with fixture.
(9) step (8) resulting materials are put into argon gas guard box, material is handled using laser melting coating.Its work Skill state modulator are as follows: laser power is 0.9~1.2kW, and scanning speed is 8~15mm/s, and spot diameter is 2~6mm, this its In, inclination angle is more crucial, and controlling is 10~20 °.In cladding process, high-energy ultrasonic collaboration is carried out, and power is controllably 0.3~ 20~10kHz under 1.0kW is segmented multiple frequency ultrasonic method, and rate of change is about that the variation of 0.5s frequency is primary.
Hydrothermal reaction kettle liner described in step (3) of the present invention is polytetrafluoroethylene (PTFE).
The present invention have following technical effect that (1) the method reduce in conventional blending processes of powders since density variation causes Lamination.(2) the conventional caused dust pollution that dusts can be reduced using the viscosity of lipid itself, it is more environmentally-friendly.(3) This method reaction laser power is not high, and danger coefficient is low.(4) there is the graphene oxide of transition zone in mg-based material surface half and base Body combines, and while having more preferable interface, further reduces graphene oxide reunion probability.(5) method introduces high-energy ultrasonic, The dispersion and wetability of graphene oxide can further be improved.(6) being introduced into for high-energy ultrasonic can be in melt process of setting Further rounding magnesium matrix crystal grain, is allowed to more fine uniform, can directly improve material surface hardness.
Specific embodiment
The present invention will be described further by following embodiment.
Embodiment 1.
By graphene oxide in analysis straight alcohol the pre-dispersed 1h of ultrasound, temperature is room temperature, and whole-process control is without steam.Volume Than being strict controlled in 0.2:50, after that gained dispersion liquid poured into sealing in the precursor liquid of glycerine and tetraisopropyl titanate composition is super Sonication 1h.Among these, glycerine and tetraisopropyl titanate volume ratio are 10:0.4.Hydro-thermal process is carried out later, wherein suspended Liquid product accounts for the molten product 50% of reaction kettle.Place into reacting furnace and heat, be warming up to 90 DEG C with 5 DEG C/min, keep the temperature 2h, then with 3 DEG C/ After min is warming up to 180 DEG C, 10h is kept the temperature.It is air-cooled after taking-up reaction kettle.Gained solution takes out, centrifugal treating, and by pouring into point Analysis straight alcohol is repeatedly centrifuged colourless to solution.Whole process sealing guarantees without steam.It afterwards will be in gained powder under protection of argon gas 450 DEG C Roasting.Time controls in 2h.The graphene oxide that surface has needle-shaped anatase type titanium oxide coating can be obtained.
Later by gained powder and alumina particle, silicon powder, atomized aluminium match in beaker, and are added a certain amount of the third three Alcohol.Silicon powder control is total powder quality about 5%, and the mass ratio of graphene oxide is 5%, and alumina powder control is 1.5%, ruler Very little about 3 μm.Surplus is atomized aluminium, and size Control is about 5 μm.Glycerine is the 3% of total volume ratio, and processing is whole without steam, and Then with ultrasonic treatment 1h.Obtain the mixed-powder of gluing state.AM60 1500~2000# sand paper is polished, alcohol washes dry It is dry.Gained gluing state mixed-powder is uniformly applied to matrix surface, prefabricated thickness control is 0.7mm.It is quick with flame gun again Uniform presintering powder is in matrix surface.Material is handled using laser melting coating and ultrasound in argon gas guard box later. Its process parameter control are as follows: laser power 0.9kW, scanning speed 8mm/s, spot diameter 3mm, among these, inclination angle Control is 10 °.High-energy ultrasonic is that 0.3kW and 20~10kHz is segmented multifrequency, and rate of change is about that the variation of 0.5s frequency is primary.
Embodiment 2.
By graphene oxide in the analysis straight alcohol clock pre-dispersed 3h of ultrasound, temperature is room temperature, and whole-process control is without steam.Volume Than being strict controlled in 0.2:50, after that gained dispersion liquid poured into sealing in the precursor liquid of glycerine and tetraisopropyl titanate composition is super Sonication 1h.Among these, glycerine and tetraisopropyl titanate volume ratio are 10:0.8.Hydro-thermal process is carried out later, wherein suspended Liquid product accounts for the molten product 50% of reaction kettle.Place into reacting furnace and heat, be warming up to 90 DEG C with 3 DEG C/min, keep the temperature 1h, then with 2 DEG C/ After min is warming up to 180 DEG C, 12h is kept the temperature.It is air-cooled after taking-up reaction kettle.Gained solution takes out, centrifugal treating, and by pouring into point Analysis straight alcohol is repeatedly centrifuged colourless to solution.Whole process sealing guarantees without steam.It afterwards will be in gained powder under protection of argon gas 450 DEG C Roasting.Time controls in 1h.The graphene oxide that surface has needle-shaped anatase type titanium oxide coating can be obtained.
Later by gained powder and alumina particle, silicon powder, atomized aluminium match in beaker, and are added a certain amount of the third three Alcohol.Silicon powder control is total powder quality 7%, and the mass ratio of graphene oxide is 6%, and alumina powder control is 2%, and size is about 5μm.Surplus is atomized aluminium, and size Control is about 7 μm.Glycerine is the 4% of total volume ratio, and processing is whole without steam, and then With ultrasonic treatment 2h.Obtain the mixed-powder of gluing state.AZ61 1500~2000# sand paper is polished, alcohol washes drying. Gained gluing state mixed-powder is uniformly applied to matrix surface, and prefabricated thickness control is 0.9mm.It is pre- with flame gun Quick uniform again Powder is sintered in matrix surface.Material is handled using laser melting coating and ultrasound in argon gas guard box later.Its technique State modulator are as follows: laser power 1.2kW, scanning speed 10mm/s, spot diameter 4mm, among these, inclination angle control is 15°.High-energy ultrasonic is that 0.6kW and 20~10kHz is segmented multifrequency, and rate of change is about that the variation of 0.5s frequency is primary.

Claims (1)

1. a kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer, feature the following steps are included: (1) by graphene oxide, the pre-dispersed 1~3h of ultrasound, temperature are room temperature in analysis straight alcohol, and for whole-process control without steam, proportion is tight Lattice are controlled in 0.2~0.4g:50mL;(2) glycerine and titanium will be poured into through step (1) pretreated graphene oxide dispersion It is sealed in the precursor liquid of sour tetra-isopropyl composition, and is ultrasonically treated 1~1.5h, glycerine and tetraisopropyl titanate volume ratio again For 10:0.4~1.2;(3) forerunner's suspension through step (2) is imported in hydrothermal reaction kettle, wherein suspension volume accounts for reaction The molten product 35%~70% of kettle;Reaction kettle is integrally put into reacting furnace again and is heated, is warming up to 70~110 DEG C with 1~5 DEG C/min, 1~2h is kept the temperature, then after being warming up to 175~180 DEG C with 1~3 DEG C/min, take out reaction kettle after keeping the temperature 10~15h, reaction kettle is empty It is cooled to room temperature;(4) being taken out through solution obtained by step (3), centrifugal treating, and be repeatedly centrifuged by pouring into analysis straight alcohol to molten Body is colourless, and revolving speed is controlled in 9000~16000rpm;Whole process sealing guarantees without steam;(5) mixed-powder that step (4) is obtained Vacuum drying, after will be roasted in the powder under protection of argon gas 450~500 DEG C, the time control in 1~3h;Surface tool can be obtained There is the graphene oxide of needle-shaped anatase type titanium oxide coating;(6) powder obtained by step (5) is put into beaker and oxidation is added Aluminium, fine silica powder, atomized aluminium, and glycerine is added, in which: silicon powder control is total powder quality 4~8%, the matter of graphene oxide For amount than being 5~7.5%, alumina powder control is 1.5~3%, and size Control is 2~7 μm, and surplus is atomized aluminium, size control It is made as 5~15 μm;Glycerine is the 3~5% of total volume ratio, this is crucial for stomata control, then with 1~3h of ultrasonic treatment, is mixed Powder process keeps drying, obtains the mixed-powder of gluing state;(7) by mg-based material alloy sheets with 1500~2000# sand paper repeatedly Polishing, alcohol are cleaned by ultrasonic and dry, and then gluing state mixed-powder obtained by step (6) will be uniformly applied to magnesium material surface, Prefabricated thickness control is 0.5~1.2mm, then with flame gun Quick uniform presintering powder in matrix surface;(8) step (7) Gained mg-based material alloy sheets are put into argon gas guard box, and wherein magnesium plate is fixed on bottom and has on the titanium alloy plate of high-energy ultrasonic And it is fixed with fixture;(9) step (8) resulting materials are put into argon gas guard box, material is handled using laser melting coating; Its process parameter control are as follows: laser power is 0.9~1.2kW, and scanning speed is 8~15mm/s, and spot diameter is 2~6mm, this Wherein, inclination angle is more crucial, and controlling is 10~20 °;In cladding process, high-energy ultrasonic collaboration is carried out, and power is controllably 0.3 20~10kHz under~1.0kW is segmented multiple frequency ultrasonic method, and rate of change is that the variation of 0.5s frequency is primary;Water described in step (3) Thermal response kettle liner is polytetrafluoroethylene (PTFE).
CN201811086625.9A 2018-09-17 2018-09-17 A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer Active CN109136916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811086625.9A CN109136916B (en) 2018-09-17 2018-09-17 A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811086625.9A CN109136916B (en) 2018-09-17 2018-09-17 A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer

Publications (2)

Publication Number Publication Date
CN109136916A CN109136916A (en) 2019-01-04
CN109136916B true CN109136916B (en) 2019-11-15

Family

ID=64814826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811086625.9A Active CN109136916B (en) 2018-09-17 2018-09-17 A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer

Country Status (1)

Country Link
CN (1) CN109136916B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063951A (en) * 2020-08-13 2020-12-11 张家港润盛科技材料有限公司 Magnesium-aluminum alloy surface laser cladding self-lubricating coating and construction method thereof
CN114086175B (en) * 2021-11-24 2022-12-23 上海交通大学 Method for improving toughness of laser melting deposition aluminum alloy formed part
CN114134552B (en) * 2021-12-07 2023-06-13 徐州工程学院 Method for constructing fluorescent gradient coating on magnesium alloy surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496700A (en) * 2011-12-20 2012-06-13 中国科学院新疆理化技术研究所 Graphene-titanium dioxide nanotube composite material and preparation method thereof
CN106532014A (en) * 2016-12-26 2017-03-22 天津大学 Method for preparing composite material that stannic oxide nano-particles attach to graphene oxide
KR20180057323A (en) * 2016-11-22 2018-05-30 재단법인 한국탄소융합기술원 Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
CN108127123A (en) * 2018-01-16 2018-06-08 武汉理工大学 A kind of composite coating material applied to semimetal iron-based brake block and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496700A (en) * 2011-12-20 2012-06-13 中国科学院新疆理化技术研究所 Graphene-titanium dioxide nanotube composite material and preparation method thereof
KR20180057323A (en) * 2016-11-22 2018-05-30 재단법인 한국탄소융합기술원 Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
CN106532014A (en) * 2016-12-26 2017-03-22 天津大学 Method for preparing composite material that stannic oxide nano-particles attach to graphene oxide
CN108127123A (en) * 2018-01-16 2018-06-08 武汉理工大学 A kind of composite coating material applied to semimetal iron-based brake block and preparation method thereof

Also Published As

Publication number Publication date
CN109136916A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
CN109136916B (en) A kind of method that laser melting coating prepares graphene oxide alloys magnesium primary surface wearing layer
US9945034B2 (en) Metal-based/diamond laser composite coating and preparation method thereof
Liu et al. Effect of high dilution on the in situ synthesis of Ni–Zr/Zr–Si (B, C) reinforced composite coating on zirconium alloy substrate by laser cladding
CN109016728B (en) Fe-Cu-HEA high-toughness bionic composite material based on shell structure and preparation method thereof
CN102021557B (en) Preparation method of Al2O3 and TiB2 compound coating synthesized by aluminium alloy surface stirring rubbing processing and heating reaction
CN109183024A (en) A kind of laser cladding on alumina-coated graphene oxide/mg-based material surface
Liu et al. In-situ reactive fabrication and effect of phosphorus on microstructure evolution of Ni/Ni–Al intermetallic composite coating by laser cladding
CN102465294A (en) Method for carrying out laser-cladding on high-hardness nickel-based alloy material in large area
CN102787252B (en) Method for preparing TiB2 reinforced aluminium matrix composite in situ
CN112708883B (en) Preparation method of superhard boron carbide ceramic reinforced iron-based alloy composite wear-resistant coating
CN109182822A (en) A kind of die forging method of 7075 aluminium alloy of high-performance
CN109182821B (en) Die casting method for graphene-reinforced ADC12 aluminum alloy
CN103774139A (en) Method for strengthening surface of laser-clad titanium alloy
CN109207780A (en) A kind of milling method enhancing AZ31 magnesium alloy
CN109112533A (en) A kind of method that laser melting coating prepares graphene oxide alloy aluminum primary surface wearing layer
CN109385551A (en) A kind of coated with titanium oxide/graphene oxide enhancing preparation method for material of substrate containing magnalium
CN109136915B (en) A kind of method of titanium-oxide-coated graphene oxide/aluminum matrix composite surface laser cladding
CN109136914B (en) A kind of method of the laser melting coating of titanium-oxide-coated graphene oxide/surface of steel plate
CN109161887B (en) A kind of coated with titanium oxide/graphene oxide surface of steel plate coating cladding ultrasonic method
CN114393209A (en) Titanium-based composite powder with core-shell structure and preparation method and application thereof
CN101942593B (en) Alloy powder, coating for surface laser alloying of nodular cast iron and laser alloying method
Wang et al. Recent advances in wear-resistant steel matrix composites: A review of reinforcement particle selection and preparation processes
CN109207993A (en) A kind of wear-resistant coating preparation method of titanium alloy surface
CN109136913B (en) A method of improving titanium base material surface property
CN109338355B (en) A kind of wear-resisting cladding layer preparation method on copper sheet surface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant