CN109134874B - 一种具有磁制冷效应的二维钆基化合物及其制备方法 - Google Patents

一种具有磁制冷效应的二维钆基化合物及其制备方法 Download PDF

Info

Publication number
CN109134874B
CN109134874B CN201810861783.0A CN201810861783A CN109134874B CN 109134874 B CN109134874 B CN 109134874B CN 201810861783 A CN201810861783 A CN 201810861783A CN 109134874 B CN109134874 B CN 109134874B
Authority
CN
China
Prior art keywords
dimensional
gadolinium
ipo
based compound
magnetic refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810861783.0A
Other languages
English (en)
Other versions
CN109134874A (zh
Inventor
王凯
郭柯柯
黄生学
梁福沛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201810861783.0A priority Critical patent/CN109134874B/zh
Publication of CN109134874A publication Critical patent/CN109134874A/zh
Application granted granted Critical
Publication of CN109134874B publication Critical patent/CN109134874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种具有磁制冷效应的二维钆基化合物及其制备方法。二维钆基化合物为结晶于三斜晶系
Figure DDA0001749855530000011
空间群的二维配位聚合物;其结构中H3ipO配体的酚氧原子桥连两个分别为单帽三棱柱与单帽四方反棱柱配位几何构型的Gd3+离子而形成[Gd2(ipO)2(DMF)(H2O)]次级结构单元,随后相邻的双核单元通过羧氧原子与Gd3+离子间的配位键而形成二维层状结构;以Gd(NO3)3·6H2O与H3ipO配体为原料,以水与DMF为混合溶剂,以吡啶作为脱质子碱,通过高温溶剂热法而制得。本发明二维钆基化合物原料易得、制备简单、稳定性好,且表现出优良的磁制冷效应,在分子基磁制冷材料领域中具有潜在的应用前景。

Description

一种具有磁制冷效应的二维钆基化合物及其制备方法
技术领域
本发明涉及分子基磁制冷材料的制备,特别是一种具有优良磁致冷效应的二维钆基配位聚合物及其制备方法。
技术背景
磁致冷效应,又称磁卡效应,即绝热过程中铁磁体或顺磁体的温度随外加磁场强度的改变而变化的现象。当顺磁性材料处于零外场时,其离子或原子磁矩处于无序态,若施加外磁场,原子的磁矩将沿外场取向排列,系统磁有序度加强,磁熵减小,对外放热量;若将其去磁,则磁有序度下降,磁熵增大,此时需从外界吸收热量,因而表现出制冷效应。
磁制冷技术最早使用的材料是顺磁性的盐类,随后发展到多种类型的金属单质、金属间化合物与合金等。而自2000年,Torres及其合作者首次报道了具有磁致冷效应的的{Mn12}配合物以来,以此类金属配合物为主要表现形式的分子基磁性材料,相对于传统磁制冷材料合金,其独特的结构组成可以通过实现长程有序避免磁熵变(ΔSm)的减小,具有潜在的磁冷效应,更容易实现超低温,表现出巨大的应用前景。
稀土Gd3+离子的居里温度(293K)恰好在室温附近,表现为磁各向同性,在弱磁场作用下即可以实现分子的自旋极化。同时其4f电子层上有7个未成对电子,形成配合物后能保证较高的自旋基态值,因而成为合成磁制冷配合物的最佳候选金属离子之一。另一方面,为尽可能获得高的金属离子与配体的质量比,保证系统具有较大的磁密度,采用体积小且含磁传递基团的有机配体来进行配位聚合物的组装是获得优良分子基磁致冷材料的有效策略。
发明内容
本发明的目的是针对上述现状,提供一种具有磁制冷效应的二维钆基化合物及其制备方法。
本发明涉及的具有磁制冷效应的二维钆基化合物,其化学式组成为[Gd2(ipO)2(DMF)(H2O)]n,其中H3ipO为2-羟基异酞酸配体,DMF为N,N-二甲基甲酰胺。该钆基二维配位聚合物属于三斜晶系,空间群为Pi-,晶胞参数为:
Figure BDA0001749855510000011
Figure BDA0001749855510000012
α=84.075(5)°,β=79.637(5)°,γ=72.954(5)°;
Figure BDA0001749855510000013
Z=2,Dc=2.497g·cm-3,μ=6.544mm-1,爪000)=720,R1=0.0277[I>2σ(I)],wR2=0.0688[I>2σ(I)]。
所述化合物为基于[Gd2(ipO)2(DMF)(H2O)4]次级结构单元的二维配位聚合物结构。其中两Gd3+离子被H3ipO配体的酚氧原子桥来在一起而形成[Gd2(ipO)2(DMF)(H2O)4]次级结构单元。而这些次级结构单元则进一步通过每个单元间的Gd-O配位键而连接成二维层状的配位聚合物结构。其[Gd2(ipO)2(DMF)(H2O)4]次级结构单元中,距离为
Figure BDA0001749855510000022
的2个Gd3+存在不同的配位几何构型:Gd1为七配位的单帽三棱柱配位几何构型;而Gd2则呈现出扭曲的单帽四方反棱柱配位几何构型;二维钆基化合物的晶体学数据见表1。
表1:二维钆基化合物的晶体学数据
Figure BDA0001749855510000021
本发明涉及的磁制冷效应的二维钆基化合物,以Gd(NO3)3·6H2O与H3ipO配体为原料,以水与DMF为混合溶剂,以吡啶作为脱质子碱,通过高温溶剂热法而制得。
具体步骤为:
(1)将0.05mmol的Gd(NO3)3·6H2O和0.15mmol的H3ipO放入聚四氟乙烯衬底的25mL不锈钢反应釜中。
(2)在步骤(1)所得产物中加入7.5mL水与0.5mL分析纯N,N-二甲基甲酰胺(DMF)作为溶剂,室温搅拌30分钟后滴加分析纯吡啶3滴,继续搅拌30分钟;所述溶剂水(H2O)、分析纯N,N-二甲基甲酰胺(DMF)和分析纯吡啶(Py)的体积比为75∶5∶1。
(3)将步骤(2)完成搅拌的反应釜密封,置于140℃的烘箱中恒温反应3天后,缓慢冷却至室温,取出产物后将固体分离。
(4)用无水甲醇将步骤(3)所得固体洗涤3次,制得的无色四边形状晶体即为二维钆基化合物。
本发明优点在于:该钆基化合物原料易得、制备简单、稳定性好,且表现出优良的磁制冷效应,在磁制冷材料领域中具有潜在的应用前景。
附图说明
图1为本发明二维钆基化合物的晶体结构图。
图2为本发明H3ipO即2-羟基异酞酸配体结构图。
图3为本发明实施例二维钆基化合物在不同的温度和场强下的M-H曲线。
图4为本发明实施例二维钆基化合物通过磁化强度数据计算出的ΔSm-T图。
具体实施方式
实施例:
1、具有磁制冷效应的二维钆基化合物的制备方法,合成步骤如下
(1)将0.05mmol的Gd(NO3)3·6H2O和0.15mmol的H3ipO放入聚四氟乙烯衬底的25mL不锈钢反应釜中。
(2)在步骤(1)所得产物中加入7.5mL水与0.5mL分析纯N,N-二甲基甲酰胺(DMF)作为溶剂,室温搅拌30分钟后滴加分析纯吡啶3滴,继续搅拌30分钟。
(3)将步骤(2)完成搅拌的反应釜密封,置于140℃的烘箱中恒温反应3天后,缓慢冷却至室温,取出产物后将固体分离。
(4)用无水甲醇将步骤(3)所得固体洗涤3次,制得的无色四边形状晶体即为二维钆基化合物。
2、该具有磁制冷效应的二维钆基化合物的结构表征:
挑选0.2mm×0.2mm×0.1mm的晶体用于单晶结构衍射分析,单晶衍射数据是使用Bruker Smart Apex CCD单晶衍射仪,用经石墨单色化的Mo-Kα射线
Figure BDA0001749855510000031
Figure BDA0001749855510000032
Figure BDA0001749855510000033
扫描方式收集数据。全部数据经经验吸收校正,由直接法解出配合物结构,混合加氢,并用全矩阵最小二乘法对结构进行修正。计算工作在PC机上用SHELXS-2015、SHELXL-2015与OLEX2程序完成。
图1的结构图表明:该二维Gd基化合物为基于[Gd2(ipO)2(DMF)(H2O)4]次级结构单元的聚合物结构。其[Gd2(ipO)2(DMF)(H2O)4]次级结构单元由2个ipO3-配体利用其酚氧原子桥连两Gd3+离子而形成。其中,Gd1为七配位的单帽三棱柱配位几何构型;而Gd2则呈现出扭曲的单帽四方反棱柱配位几何构型,两离子距离为
Figure BDA0001749855510000041
呈现两种配位模式η1:η1:η2:η1:η1:μ5与η1:η2:η2:η2:η1:μ4的配体不仅桥连Gd3+离子形成双核次级结构单元,且通过其羧氧原子与相邻单元的Gd3+离子配位将这些单元连接在一起,形成二维层状结构。
3、具有磁制冷效应的二维钆基化合物的磁制冷性质表征:
图3为所述二维Gd基化合物变场磁化强度曲线。在各温度下的M值随外场的增加而增大,最终在2K与50kOe时达到最大值11.42Nβ。磁熵变值(-ΔSm)可通过Maxwell公式
Figure BDA0001749855510000043
Figure BDA0001749855510000042
基于图3中不同的温度和场强下的M-H数据进行换算而得。从图4中可看出:该化合物具有很大的磁热效用,-ASm在ΔH=50kOe与2K表现出最大值,为30.04J·kg-1·K-1

Claims (2)

1.一种具有磁制冷效应的二维钆基化合物,其特征在于具有磁制冷效应的二维钆基化合物化学式组成为:[Gd2(ipO)2(DMF)(H2O)]n,其中H3ipO为配体2-羟基异酞酸,DMF为N,N-二甲基甲酰胺;H3ipO结构如下:
Figure FDA0001749855500000011
具有磁制冷效应的二维钆基化合物属于三斜晶系,空间群为
Figure FDA0001749855500000012
晶胞参数为:
Figure FDA0001749855500000013
Figure FDA0001749855500000014
α=84.075(5)°,β=79.637(5)°,γ=72.954(5)°;
Figure FDA0001749855500000015
Figure FDA0001749855500000016
Z=2,Dc=2.497g·cm–3,μ=6.544mm–1,F(000)=720,R1=0.0277[I>2σ(I)],wR2=0.0688[I>2σ(I)];
具有磁制冷效应的二维钆基化合物为基于[Gd2(ipO)2(DMF)(H2O)4]次级结构单元的二维配位聚合物结构:两Gd3+离子被H3ipO配体的酚氧原子桥来在一起而形成[Gd2(ipO)2(DMF)(H2O)4]次级结构单元;而这些次级结构单元则进一步通过每个单元间的Gd-O配位键而连接成二维层状的配位聚合物结构;其[Gd2(ipO)2(DMF)(H2O)4]次级结构单元中,距离为
Figure FDA0001749855500000017
的2个Gd3+存在不同的配位几何构型:Gd1为七配位的单帽三棱柱配位几何构型;而Gd2则呈现出扭曲的单帽四方反棱柱配位几何构型;配体的配位模式分别为η112115与η122214;二维钆基化合物的晶体学数据见表1;
表1:二维钆基化合物的晶体学数据
Figure FDA0001749855500000018
Figure FDA0001749855500000021
2.根据权利要求1所述的具有磁制冷效应的二维钆基化合物的制备方法,其特征在于具体步骤为:
(1)将0.05mmol的Gd(NO3)3·6H2O和0.15mmol的H3ipO放入聚四氟乙烯衬底的25mL不锈钢反应釜中;
(2)在步骤(1)所得产物中加入7.5mL水与0.5mL分析纯N,N-二甲基甲酰胺作为溶剂,室温搅拌30分钟后滴加分析纯吡啶3滴,继续搅拌30分钟;所述溶剂水、分析纯N,N-二甲基甲酰胺和分析纯吡啶的体积比为75:5:1;
(3)将步骤(2)完成搅拌的反应釜密封,置于140℃的烘箱中恒温反应3天后,缓慢冷却至室温,取出产物后将固体分离;
(4)用无水甲醇将步骤(3)所得固体洗涤3次,制得的无色四边形状晶体即为具有磁制冷效应的二维钆基化合物。
CN201810861783.0A 2018-07-29 2018-07-29 一种具有磁制冷效应的二维钆基化合物及其制备方法 Active CN109134874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810861783.0A CN109134874B (zh) 2018-07-29 2018-07-29 一种具有磁制冷效应的二维钆基化合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810861783.0A CN109134874B (zh) 2018-07-29 2018-07-29 一种具有磁制冷效应的二维钆基化合物及其制备方法

Publications (2)

Publication Number Publication Date
CN109134874A CN109134874A (zh) 2019-01-04
CN109134874B true CN109134874B (zh) 2021-04-09

Family

ID=64798551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810861783.0A Active CN109134874B (zh) 2018-07-29 2018-07-29 一种具有磁制冷效应的二维钆基化合物及其制备方法

Country Status (1)

Country Link
CN (1) CN109134874B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647163A (zh) * 2020-06-18 2020-09-11 湖北科技学院 一种具有高磁热效应的钆基框架配位材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010210593B2 (en) * 2009-02-04 2015-09-03 The Brigham And Women's Hospital, Inc. Nanoscale platinum compounds and methods of use thereof
CN106190052B (zh) * 2016-07-11 2019-02-12 商丘师范学院 一种晶态钆基磁制冷材料及其制备方法
CN106710763B (zh) * 2016-12-16 2019-04-05 商丘师范学院 一种晶态钆基磁制冷材料及其制备方法
CN107863214B (zh) * 2017-10-01 2020-01-21 桂林理工大学 一种钆簇配合物磁制冷材料及合成方法

Also Published As

Publication number Publication date
CN109134874A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
Gil de Muro et al. Study of the Two-Dimensional [MM ‘(C3H2O4) 2 (H2O) 4](M= Ba, Sr and M ‘= Cu, Mn) Systems: Synthesis, Structure, Magnetic Properties, and Thermal Decomposition
Chen et al. Study of a magnetic-cooling material Gd (OH) CO 3
Sumithra et al. Negative thermal expansion in rare earth molybdates
Zheng et al. Large magnetic entropy changes in three Gd III coordination polymers containing Gd III chains
Wang et al. Anionic NaCl-type frameworks of [Mn II (HCOO) 3−], templated by alkylammonium, exhibit weak ferromagnetism
Han et al. An excellent cryogenic magnetic cooler: magnetic and magnetocaloric study of an inorganic frame material
Sun et al. Searching for novel materials via 4f chemistry
Li et al. A large magnetocaloric effect in two hybrid Gd-complexes: the synergy of inorganic and organic ligands towards excellent cryo-magnetic coolants
Bourouina et al. Phase separation and magnetocaloric effect in Pr0. 5− xGdx Sr0. 5MnO3 system
Jhu et al. Two new series of rare-earth organic frameworks involving two structural architectures: syntheses, structures and magnetic properties
Assoudi et al. Effect of synthesis route on structural, magnetic and magnetocaloric aspects and critical behavior of La0. 6Ca0. 3Ag0. 1MnO3
Gaffoor et al. Impact of transition metal ion doping on electrical properties of lithium ferrite nanomaterials prepared by auto combustion method
CN109134874B (zh) 一种具有磁制冷效应的二维钆基化合物及其制备方法
Chen et al. Network topology and property studies for two binodal self-penetrated coordination polymers
Li et al. A series of new octanuclear Ln 8 clusters: magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation
Zou et al. Lanthanide nonanuclear clusters with sandglass-like topology and the SMM behavior of dysprosium analogue
Wu et al. A new approach to fabricate the Mn (ii)-based magnetic refrigerant through incorporation of a diamagnetic {LiO 4} spacer
CN113963881A (zh) 一种钆基高熵钙钛矿氧化物磁致冷材料及其制备方法
CN110372752B (zh) 一种具有抗铁磁性锰配合物及其制备方法和应用
Zhao et al. Ligand-directed assembly of cyanide-bridged bimetallic Mn II Fe III coordination polymers based on the pentacyanoferrite (III) building blocks
Han et al. Constructing [Co II6] hexagon-centered heterometallic {Ln 6 Co 6}(Ln= Y, Eu and Dy) clusters with a calix [8] arene ligand
Wang et al. Two-dimensional metal-organic framework constructed from 4, 4′-bipydine and 1, 2, 4-benzenetricarboxylate: synthesis, structure and magnetic properties
Wu et al. Effect of synthetic conditions on the structures and properties of metal complexes with chelidamic acid and 4, 4′-bipyridyl
CN101723660A (zh) 一种BiFeO3基多铁复合材料的制备方法
Zhang et al. Structural, magnetic and magnetocaloric properties of the rare earth (RE) molybdate RE2MoO6 (RE= Dy, Tb and Gd) oxides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant