CN109127754A - 一种超细晶镁合金挤压棒材的制备方法 - Google Patents

一种超细晶镁合金挤压棒材的制备方法 Download PDF

Info

Publication number
CN109127754A
CN109127754A CN201810996417.6A CN201810996417A CN109127754A CN 109127754 A CN109127754 A CN 109127754A CN 201810996417 A CN201810996417 A CN 201810996417A CN 109127754 A CN109127754 A CN 109127754A
Authority
CN
China
Prior art keywords
magnesium alloy
ultra
fine grained
extruded bars
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810996417.6A
Other languages
English (en)
Other versions
CN109127754B (zh
Inventor
潘复生
佘加
彭鹏
汤爱涛
蒋斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810996417.6A priority Critical patent/CN109127754B/zh
Publication of CN109127754A publication Critical patent/CN109127754A/zh
Application granted granted Critical
Publication of CN109127754B publication Critical patent/CN109127754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/12Extruding bent tubes or rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/14Twisting

Abstract

本发明公开了一种超细晶镁合金挤压棒材的制备方法,在热挤压制备镁合金棒材的过程中,挤压镁合金时同步对其进行扭转,使其在受拉应力与扭转应力形成的复合应力场的作用下产生剧烈变形,有效细化镁合金的组织,改善变形镁合金综合力学性能。本方法实现了以采用常规工艺实现晶粒细化为目标,发展低成本高性能变形镁合金,可以充分利用简单装备进行变形镁合金产品生产,有效缩短了制备过程,节约能源,降低成本,易于推广应用。

Description

一种超细晶镁合金挤压棒材的制备方法
技术领域
本发明涉及变形镁合金的制备方法,尤其涉及一种超细晶镁合金挤压棒材的制备方法,属于镁合金加工技术领域。
背景技术
镁合金作为最轻的金属结构材料,具有比强度高,散热性能和阻尼性能好、环境友好等优点,已成为最具发展潜力的金属结构材料之一。但是,镁合金具有密排六方晶体结构,具有的独立滑移系较少,室温变形能力较差;而且,镁合金在塑性变形过程中极易产生孪生变形,导致屈服强度低和拉压屈服不对称等,这些缺点都严重限制了镁合金的广泛使用。析出强化、加工硬化等可以显著提高绝对强度,但同时又进一步损害塑性。如何在提高强度的同时提高塑性是国内外镁合金发展的重点之一。
晶粒细化已证明是一种能同时提高强度和塑性的重要手段。当晶粒细化至数个微米量级时,变形过程中能够大量激活晶界滑移,协调变形,因此不仅可提高镁合金的强度还能显著改善合金的塑性。超细晶材料通常指晶粒尺寸~1μm的材料。在超细晶钢中,一般认为超细晶组织的目标是将晶粒尺寸从传统的几十微米大小细化至一个数量级,达到1μm~2μm的组织。在钢铁材料中,利用超细晶组织可使材料性能加倍。近期研究表明,超细晶镁合金也拥有良好的强度、塑性,甚至还具有低温超塑性。目前,变形镁合金实现超细晶化也是研究热点,如何枇林等在中国专利“一种纳米增强镁合金及其制备方法”(公开号为:201610026103.4)以及白晶等在中国专利“纳米晶镁合金的连续剧烈塑性变形制备方法”(公开号为:201310149560.9)中采用的等通道挤压、高压扭转加工等工艺来细化晶粒,提高合金的强度。但这些加工工艺较为复杂、设备复杂昂贵且成本极高,并且不适合用于大规格产品的制造。因此,在当前镁合金材料绝对强度较低、塑性差的情况下,发展低成本常规工艺制造的超细晶镁合金材料有极其重要的意义,对扩大镁合金应用将产生重要影响。
宋波等人在中国专利“一种镁合金棒材加工方法”(公开号为:CN104498848)中公开了一种扭转加工镁合金棒材的方法。其方法为:首先,制备棒材毛坯件;第二步,在预设扭转温度以及扭转速度下对毛坯件实施扭转应变,其扭转速度为:1~10rpm。该方法为非在线加工,即在对毛坯件进行扭转加工时,还需对毛坯件进行二次加热,较为复杂;而且该方法通过扭转之后棒材具有较大的内应力,还需对棒材进行退火处理,来提高棒材的压缩屈服强度;此外,该方法控制因素较少,只能控制扭转速度以及表层切应变,无拉应力,当扭转量过大时,容易导致棒材扭折变形。因此,该方法带来的应变量较小(最大为10rpm),无法使晶粒超细化。
发明内容
针对上述现有技术的不足,本发明的目的在于提供一种超细晶镁合金挤压棒材的制备方法,解决现有制备方法存在工艺复杂、成本高、内应力大和晶粒超细晶化困难的问题。
为了解决上述技术问题,本发明采用了如下的技术方案:一种超细晶镁合金挤压棒材的制备方法,在热挤压制备镁合金棒材的过程中,挤压镁合金时同步对其进行扭转,使其在受拉应力与扭转应力形成的复合应力场的作用下产生剧烈变形;
具体包括以下步骤:启动挤压装置,在200℃~500℃的条件下,挤压杆以0.1~10m/min的挤压速度挤压镁合金铸锭或铸态铸锭,同时以挤压方向为轴利用牵引设备对所述镁合金铸锭或铸态铸锭进行扭转,扭转速度为0.1~80r/s,使所其产生变形,获得超细晶镁合金挤压棒材。
进一步,所述镁合金铸锭或铸态铸锭在挤压前需要进行热处理;所述热处理为固溶热处理、T5峰值时效热处理和T6峰值时效热处理中的一种或多种。
进一步,所述牵引设备为转速可调的夹持工具。
进一步,所述挤压过程中对挤压比为2:1~100:1。
进一步,得到超细晶镁合金挤压棒材的单位长度扭转的圈数为0.01~5 r/cm。
进一步,所述固溶热处理中温度为350℃~500℃,保温时间为2h~24h;所述T5峰值时效热处理和T6峰值时效热处理中温度为100℃~250℃,保温时间为0.5h~48h。
相比现有技术,本发明具有如下有益效果:
1、本发明制备超细晶镁合金挤压棒材是基于现有的挤压设备,通过对挤压棒材施加同步在线扭转,利用挤压余热,调控扭转速度与挤压速度使棒材同步挤压和扭转,一次加工成形,获得剧烈变形,有效细化镁合金的组织,改善变形镁合金综合力学性能。本方法实现了以常规工艺实现晶粒细化为目标,发展低成本高性能变形镁合金,可以充分利用简单装备进行变形镁合金产品生产,有效缩短了制备过程,节约能源,降低成本,易于推广应用。
2、本发明制备的超细晶镁合金挤压棒材,在拉应力与扭转应力形成的复合应力场的作用下实现剧烈变形,获得的棒材与挤压成型的棒材一样,几乎无内应力,无须退火处理,可直接使用,得到镁合金挤压棒材的单位长度扭转的圈数为0.01~5 r/cm,应变量大,晶粒易超细晶化。可通过控制挤压速度、扭转速度、挤压比、挤压温度以及挤压前铸锭状态等多因素,不容易导致棒材扭折变形,实现了镁合金棒材晶粒细化,可制备出大尺寸的具有梯度结构的棒材以及超细晶棒材。
3、本发明在不改变现有加工方式的情况下,利用成本低廉的在线扭转方法,使变形镁合金晶粒得到细化、甚至超细化,可获得综合力学性能优异、晶粒尺寸渐变的梯度结构变形镁合金以及组织均匀的超细晶变形镁合金。
附图说明
图1为实例1制得镁合金的微观结构图;
图2为实例1制得镁合金的力学性能图;
图3为实例2制得镁合金的微观结构图;
图4为实例2制得镁合金的力学性能图;
图5为实例3制得镁合金的微观结构图;
图6为实例3制得镁合金的力学性能图;
图7为实例4制得镁合金的微观结构图;
图8为实例4制得镁合金的力学性能图。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
一、一种超细晶镁合金挤压棒材的制备方法
实施例1
1)预处理:
将镁合金ZK60于350℃,保温12h处理后,出炉空冷至室温;
2)变形加工:
启动挤压装置,在380℃条件下,挤压杆以30 mm/s的挤压速度,100:1的对挤压比挤压步骤1)得到预处理的镁合金ZK60,同时以挤压方向为轴利用牵引设备对所述镁合金ZK60进行扭转,扭转速度为0.27 r/s,使所述镁合金产生剧烈变形,获得超细晶镁合金挤压棒材的单位长度扭转的圈数为0.09 r/cm。
运用金相显微镜对制得的低成本超细晶镁合金挤压棒材进行微观结构观测,结果如图1所示。
从图1可以看出,镁合金的晶粒小于2μm的组织体积分数占40%,晶粒度大于2 μm的组织体积分数占60%。
运用拉伸和压缩试验对制得的低成本超细晶镁合金挤压棒材进行力学性能测试,结果如图2所示。
由图2可以得出,该镁合金的抗拉强度为284 MPa,屈服强度为214 MPa,延伸率为19%,抗压强度为158MPa,压缩屈服强度与拉伸屈服强度的比为0.74。
实施例2
1)预处理:
将镁合金AZ31于450℃,保温2h处理后,出炉空冷至室温;
2)变形加工:
启动挤压装置,在350℃条件下,挤压杆以28 mm/s的挤压速度,25:1的对挤压比挤压步骤1)得到预处理的镁合金AZ31,同时以挤压方向为轴利用牵引设备对所述镁合金AZ31进行扭转,扭转速度为0.42 r/ s,使所述镁合金产生剧烈变形,获得超细晶镁合金挤压棒材的单位长度扭转的圈数为0.15 r/cm。
运用金相显微镜对制得的超细晶镁合金挤压棒材进行微观结构观测,结果如图3所示。
从图3可以看出,镁合金的晶粒小于1.5μm的组织体积分数占62%,晶粒度大于1.5μm的组织体积分数占38%。
运用拉伸和压缩试验对制得的超细晶镁合金挤压棒材进行力学性能测试,结果如图4所示。
由图4可以得出,该镁合金的抗拉强度为307 MPa,屈服强度为275 MPa,延伸率为22%,抗压强度为275MPa,压缩屈服强度与拉伸屈服强度的比为1.0。
实施例3
1)预处理:
将未经过热处理的镁合金铸锭车皮;
2)变形加工:
启动挤压装置,在380℃条件下,挤压杆以10 mm/s的挤压速度,100:1的对挤压比挤压步骤1)得到预处理的镁合金AZ31,同时以挤压方向为轴利用牵引设备对所述镁合金AZ31进行扭转,扭转速度为0.33 r/s,使所述镁合金产生剧烈变形,获得超细晶镁合金挤压棒材的单位长度扭转的圈数为5 r/cm。
运用金相显微镜对制得的超细晶镁合金挤压棒材进行微观结构观测,结果如图5所示。
从图5可以看出,镁合金的晶粒小于1.2μm的组织体积分数占84%,晶粒度大于1.2μm的组织体积分数占16%。
运用拉伸和压缩试验对制得的超细晶镁合金挤压棒材进行力学性能测试,结果如图6所示。
由图6可以得出,该镁合金的抗拉强度为398 MPa,屈服强度为293 MPa,延伸率为21%,抗压强度为251MPa,压缩屈服强度与拉伸屈服强度的比为0.63。
实施例4
1)预处理:
将镁合金ZK60于350℃,保温12h处理后,出炉空冷至室温;然后在185℃条件下,时效24h;
2)变形加工:
启动挤压装置,在380℃条件下,挤压杆以40 mm/s的挤压速度,100:1的对挤压比挤压步骤1)得到预处理的镁合金ZK60,同时以挤压方向为轴利用牵引设备对所述镁合金ZK60进行扭转,扭转速度为1.32 r/s,使所述镁合金棒材产生剧烈变形,获得超细晶镁合金挤压棒材的单位长度扭转的圈数为0.33 r/cm。
运用金相显微镜对制得的超细晶镁合金挤压棒材进行微观结构观测,结果如图7所示。
从图7可以看出,镁合金的合金组织均匀,平均晶粒尺寸~1.0μm。
运用拉伸和压缩试验对制得的超细晶镁合金挤压棒材进行力学性能测试,结果如图8所示。
由图8可以得出,该镁合金的抗拉强度为347 MPa,屈服强度为244 MPa,延伸率为28%,抗压强度为227MPa,压缩屈服强度与拉伸屈服强度的比为0.93。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种超细晶镁合金挤压棒材的制备方法,其特征在于,在热挤压制备镁合金棒材的过程中,挤压镁合金时同步对其进行扭转,使其在受拉应力与扭转应力形成的复合应力场的作用下产生变形。
2.根据权利要求1所述超细晶镁合金挤压棒材的制备方法,其特征在于,具体包括以下步骤:启动挤压装置,在200℃~500℃的条件下,挤压杆以0.1~10m/min的挤压速度挤压镁合金铸锭或铸态铸锭,同时以挤压方向为轴利用牵引设备对所述镁合金铸锭或铸态铸锭进行扭转,扭转速度为0.1~80r/s,使所其产生变形,获得超细晶镁合金挤压棒材。
3.根据权利要求2所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述镁合金铸锭或铸态铸锭在挤压前需要进行热处理;所述热处理为固溶热处理、T5峰值时效热处理和T6峰值时效热处理中的一种或多种。
4.根据权利要求2所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述牵引设备为转速可调的夹持工具。
5.根据权利要求1或2所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述挤压过程中对挤压比为2:1~100:1。
6.根据权利要求2所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述得到超细晶镁合金挤压棒材的单位长度扭转的圈数为0.01~5 r/cm。
7.根据权利要求2所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述扭转速度为0.1~10r/s。
8.根据权利要求3所述超细晶镁合金挤压棒材的制备方法,其特征在于,所述固溶热处理中温度为350℃~500℃,保温时间为2h~24h;所述T5峰值时效热处理和T6峰值时效热处理中温度为100℃~250℃,保温时间为0.5h~48h。
CN201810996417.6A 2018-08-29 2018-08-29 一种超细晶镁合金挤压棒材的制备方法 Active CN109127754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810996417.6A CN109127754B (zh) 2018-08-29 2018-08-29 一种超细晶镁合金挤压棒材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810996417.6A CN109127754B (zh) 2018-08-29 2018-08-29 一种超细晶镁合金挤压棒材的制备方法

Publications (2)

Publication Number Publication Date
CN109127754A true CN109127754A (zh) 2019-01-04
CN109127754B CN109127754B (zh) 2020-08-18

Family

ID=64829101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810996417.6A Active CN109127754B (zh) 2018-08-29 2018-08-29 一种超细晶镁合金挤压棒材的制备方法

Country Status (1)

Country Link
CN (1) CN109127754B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906181A (zh) * 2020-12-30 2021-06-04 中国兵器工业第五九研究所 基于细晶的镁合金多道次成形工艺设计方法
CN117448713A (zh) * 2023-12-26 2024-01-26 华北理工大学 一种稀土镁合金的低温超塑性成形方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107019A (ja) * 2007-10-11 2009-05-21 Osaka Prefecture Univ ねじり前方押出し法およびねじり前方押出し装置
JP2009172657A (ja) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology 高性能マグネシウム合金部材及びその製造方法
CN101966536A (zh) * 2010-09-22 2011-02-09 上海交通大学 扭转式往复挤压装置及其加工方法
CN103215531A (zh) * 2013-04-25 2013-07-24 东南大学 纳米晶镁合金的连续剧烈塑性变形制备方法
CN105436228A (zh) * 2015-12-11 2016-03-30 上海交通大学 双向连续剪切变形装置及方法
CN106269971A (zh) * 2016-08-17 2017-01-04 中国兵器工业第五九研究所 一种多向压缩扭转复合挤压制备微纳米铜的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107019A (ja) * 2007-10-11 2009-05-21 Osaka Prefecture Univ ねじり前方押出し法およびねじり前方押出し装置
JP2009172657A (ja) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology 高性能マグネシウム合金部材及びその製造方法
CN101966536A (zh) * 2010-09-22 2011-02-09 上海交通大学 扭转式往复挤压装置及其加工方法
CN103215531A (zh) * 2013-04-25 2013-07-24 东南大学 纳米晶镁合金的连续剧烈塑性变形制备方法
CN105436228A (zh) * 2015-12-11 2016-03-30 上海交通大学 双向连续剪切变形装置及方法
CN106269971A (zh) * 2016-08-17 2017-01-04 中国兵器工业第五九研究所 一种多向压缩扭转复合挤压制备微纳米铜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐河 等: "《镁合金制备与加工技术》", 31 May 2007, 冶金工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906181A (zh) * 2020-12-30 2021-06-04 中国兵器工业第五九研究所 基于细晶的镁合金多道次成形工艺设计方法
CN112906181B (zh) * 2020-12-30 2023-07-21 中国兵器工业第五九研究所 基于细晶的镁合金多道次成形工艺设计方法
CN117448713A (zh) * 2023-12-26 2024-01-26 华北理工大学 一种稀土镁合金的低温超塑性成形方法
CN117448713B (zh) * 2023-12-26 2024-03-15 华北理工大学 一种稀土镁合金的低温超塑性成形方法

Also Published As

Publication number Publication date
CN109127754B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN103233190B (zh) 一种制备半固态坯料的方法
CN106756680A (zh) 一种高强度镁合金小规格棒材的加工方法
CN101927312B (zh) Tc4钛合金锻环加工工艺
CN103045974B (zh) 提高变形铝合金强度并保持其塑性的热加工方法
CN102312143B (zh) 一种高强耐热镁合金的锻造方法
CN104498848B (zh) 一种镁合金棒材的加工方法
CN108085627B (zh) 一种Mg-Al系析出强化型镁合金的形变热处理方法
CN107130197B (zh) 一种超细晶az80镁合金的形变热处理方法
CN102978552B (zh) 铸态镁-钆-钇-钕-锆稀土镁合金构件的塑性变形方法
Jiang et al. Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi-pass equal channel angular extrusion
CN104805385B (zh) 一种超大规格半连续铸造圆锭的均匀化热处理方法
CN104451490A (zh) 一种利用α″斜方马氏体微结构制备超细晶钛合金的方法
CN109457198A (zh) 一种超高强度耐蚀低应力的铝合金材料及其制备方法
CN103757571B (zh) 片层界面择优定向的γ-TiAl合金细小全片层组织制备方法
JP6079294B2 (ja) Ni基耐熱合金部材の自由鍛造加工方法
CN109127754A (zh) 一种超细晶镁合金挤压棒材的制备方法
CN110066951A (zh) 一种超高塑性镁合金及其变形材制备方法
JP2014161861A5 (zh)
CN107893201A (zh) 制备超细晶材料的往复挤扭镦等径角成形方法
CN109909409B (zh) 一种组织均匀tnm合金锻坯的制备方法
CN110218919A (zh) 一种高强铝合金材料及其制备方法
CN109628862A (zh) 一种提高变形镁合金综合性能的连续锻造挤压加工新方法
CN110592502B (zh) 一种基于剧烈塑性变形的高强变形铝合金的制备方法
CN110983213B (zh) 一种超细结构高强韧薄带铝的制备方法
CN102534447A (zh) 提高Cu-Al系形状记忆合金记忆稳定性的组合加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant