CN109126785A - 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法 - Google Patents

一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法 Download PDF

Info

Publication number
CN109126785A
CN109126785A CN201811008100.3A CN201811008100A CN109126785A CN 109126785 A CN109126785 A CN 109126785A CN 201811008100 A CN201811008100 A CN 201811008100A CN 109126785 A CN109126785 A CN 109126785A
Authority
CN
China
Prior art keywords
nano
tio
preparation
gold nano
nano grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811008100.3A
Other languages
English (en)
Inventor
廖宇龙
陈佳惠
李元勋
廖斌
张恒军
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GANZHOU DPT TECHNOLOGY CO LTD
University of Electronic Science and Technology of China
Original Assignee
GANZHOU DPT TECHNOLOGY CO LTD
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GANZHOU DPT TECHNOLOGY CO LTD, University of Electronic Science and Technology of China filed Critical GANZHOU DPT TECHNOLOGY CO LTD
Priority to CN201811008100.3A priority Critical patent/CN109126785A/zh
Publication of CN109126785A publication Critical patent/CN109126785A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,属于金‑半导体纳米材料制备技术领域。本发明在阳极氧化法制得的TiO2纳米管阵列薄膜的基础上,采用浸没装载技术,将粒径高度均匀的金纳米颗粒装载于TiO2纳米管阵列上,形成金‑半复合半导体异质结薄膜。本发明将一维TiO2纳米管阵列的物理化学稳定的优点和具有全光谱光催化活性的Au NPs的特性有机结合,得到的复合异质结薄膜在光催化、传感器和太阳能电池方面有着广泛的应用前景;同时该方法成本低,重复性好,工艺简单,可实现大规模工业化生产。

Description

一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制 备方法
技术领域
本发明属于金-半导体纳米材料制备技术领域,具体涉及一种金纳米颗粒复合宽带半导体TiO2纳米管阵列形成复合异质结薄膜的制备方法。
背景技术
面对日益严重的能源危机以及环境污染问题,利用光催化剂制氢和催化降解有机污染物成为目前最具前景的可持续性发展战略。其中,TiO2材料作为一种优良的光催化剂,具有储量丰富、化学性质稳定、无毒无污染、具有良好的紫外光催化活性等特点,受到了研究者们广泛的关注。但也正是由于其较宽的禁带宽度(3.2eV),导致TiO2只能在紫外光波段(占太阳光照的8.7%)表现出催化效果,而无法吸收太阳光照中占比46%的可见光,这大大抑制了其推广和应用。为了克服这一缺陷,通常采用金属修饰、非金属掺杂和半导体复合等方法来对TiO2进行改性。
目前,制备金属/二氧化钛复合材料的方法主要有溶胶-凝胶法、脉冲电沉积法等。溶胶-凝胶法方法简单,但在小尺寸TiO2纳米管内复合金属材料存在一定的困难,且制备过程一般需有机钛为原料,成本较高;而脉冲电沉积法是一种新型的制备金属/TiO2复合材料的方法,但该方法实验影响因素较多,工艺控制较复杂,对基体材料的导电性有一定要求。
发明内容
本发明的目的在于提供一种具有全光谱光催化活性的金纳米颗粒(Aunanoparticles,NPs)/二氧化钛纳米管阵列(TiO2 nanotube arrays,NTAs)复合异质结薄膜的制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,包括以下步骤:
步骤1、采用阳极氧化法制备锐钛矿型的TiO2纳米管阵列薄膜;
步骤2、含有金纳米颗粒的甲苯溶液的配制;
2.1将HAuCl4和双十二烷基二甲基溴化铵(DDAB)加入甲苯中,超声1~2h,得到橙色的混合液A;其中,混合液A中HAuCl4的质量浓度为2.17~3.25mg/mL,双十二烷基二甲基溴化铵的质量浓度为6.67~10.0mg/mL;
2.2配制质量浓度为0.35~0.5mg/mL的NaBH4水溶液,然后将配制的NaBH4水溶液加入步骤2.1得到的混合液A中,搅拌混合均匀,得到混合液B;其中,NaBH4水溶液与混合液A的体积比为1:20000;
2.3在步骤2.2得到的混合液B中加入十二硫醇(DDT),搅拌1~3h混合均匀后,采用乙醇洗涤被DDT钝化的金纳米颗粒,离心分离,干燥;其中,所述十二硫醇(DDT)与混合液B的体积比为1:(12.5~15),乙醇与混合液B的体积比为1:(1.1~2);
2.4将步骤2.3干燥后的样品加入体积比为1:(12.5~15)的十二硫醇(DDT)与乙醇的混合溶剂中,搅拌混合均匀后,采用乙醇洗涤,离心分离,干燥,重复“乙醇洗涤、离心分离、干燥”过程2~3次,得到的产物分散于甲苯和十二硫醇(DDT)的混合溶剂中,得到混合液C;其中,所述甲苯和十二硫醇的体积比为1:(15~17),混合液C中溶质的质量浓度为0.5~1mg/mL;
2.5将步骤2.4得到的混合液C以7000~8000rpm的转速离心3~5min,以沉淀大的团聚物,取含有单分散金纳米颗粒的上层清液储存于玻璃瓶中,即可得到含有金纳米颗粒的甲苯溶液;
步骤3、将步骤1得到的TiO2纳米管阵列薄膜浸没于步骤2配制的含有金纳米颗粒的甲苯溶液中,3~5s后,取出,在50~60℃下烘干;根据所需的金纳米颗粒装载量,重复“浸没(3~5s)、取出、烘干(50~60℃)”过程1~7次,以增加装载于二氧化钛纳米管阵列中的AuNPs数量;该过程中,金纳米颗粒分散于甲苯中,且装载过程会在TiO2表面产生气泡,当TiO2的表面变暗的时候,Au NPs装载进入TiO2 NTAs;
步骤4、将步骤3得到的负载有金纳米颗粒的TiO2纳米管阵列薄膜样品置于烘箱中,在180~200℃下干燥120~240min,在进一步去除甲苯的同时确保Au NPs紧紧负载于TiO2 NTAs表面;自然冷却至室温,取出,即可得到所述金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜(Au NPs/TiO2 NTAs)。
进一步地,步骤1所述采用阳极氧化法制备锐钛矿型的TiO2纳米管阵列薄膜的具体过程为:
1.1将氟化物加入醇类溶剂和去离子水形成的混合溶剂中,搅拌混合均匀,得到氟化物的质量百分比为0.2wt%~0.6wt%的含氟电解液;
1.2将金属钛片依次在无水乙醇和去离子水中超声清洗,烘干待用;
1.3将步骤1.2清洗干净的金属钛片平行放置,作为阳极和阴极,步骤1.1配制的含氟电解液作为电解液,采用阳极氧化法在阳极的金属钛片上制备TiO2纳米管阵列薄膜,其中,阳极氧化电压为50~70V,阳极氧化的时间为1~3h;
1.4将步骤1.3得到的TiO2纳米管阵列取出,在无水乙醇中浸泡12~18h后,在60~80℃温度下烘干;然后放入管式炉内,在400~500℃温度下退火3~5h,得到锐钛矿型的TiO2纳米管阵列薄膜。
进一步地,步骤1.1所述氟化物为氟化铵、氟化钠、氟化钾等可溶性氟化物;所述醇类溶剂为乙二醇或丙三醇等。
本发明的有益效果为:
本发明提供的一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,在阳极氧化法制得的TiO2纳米管阵列薄膜的基础上,采用浸没装载技术,将粒径高度均匀的金纳米颗粒装载于TiO2纳米管阵列上,形成金-半复合半导体异质结薄膜。本发明将一维TiO2纳米管阵列的物理化学稳定的优点和具有全光谱光催化活性的Au NPs的特性有机结合,得到的复合异质结薄膜在光催化、传感器和太阳能电池方面有着广泛的应用前景;同时该方法成本低,重复性好,工艺简单,可实现大规模工业化生产。
附图说明
图1为实施例6得到的Au NPs/TiO2 NTAs复合异质结薄膜侧面的SEM以及TEM图;其中,(a)和(b)为实施例6得到的Au NPs/TiO2 NTAs复合异质结薄膜侧面的扫描电子显微镜图,(c)和(d)为实施例6得到的Au NPs/TiO2 NTAs复合异质结薄膜侧面的透射电子显微镜图;
图2为不同实施例得到的Au NPs/TiO2 NTAs复合异质结薄膜的EDS(a)和XRD图谱(b);其中,(a)为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜(S0)与实施例1(S1)、实施例3(S3)、实施例6(S6)得到的Au NPs/TiO2 NTAs复合异质结薄膜的EDS,(b)为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜(S0)与实施例1(S1)、实施例3(S3)、实施例6(S6)得到的Au NPs/TiO2 NTAs复合异质结薄膜的XRD图谱;
图3为C7H8与含有金纳米颗粒的甲苯溶液,以及不同实施例得到的Au NPs/TiO2NTAs复合异质结薄膜的紫外光谱图;其中,(a)为C7H8与含有金纳米颗粒的甲苯溶液的紫外光谱图,(b)为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜(S0)与实施例1(S1)、实施例2(S2)、实施例3(S3)、实施例4(S4)、实施例5(S5)、实施例6(S6)得到的Au NPs/TiO2 NTAs复合异质结薄膜的紫外光谱吸收图;
图4为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜(S0)与实施例1(S1)、实施例3(S3)、实施例5(S5)、实施例7(S7)得到的Au NPs/TiO2 NTAs复合异质结薄膜的产氢速率图;
图5为不同实施例得到的Au NPs/TiO2 NTAs复合异质结薄膜在紫外光下降解甲基橙速率图;其中,(a)、(b)、(c)、(d)分别为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜与实施例1(S1)、实施例3(S3)、实施例6(S6)得到的Au NPs/TiO2 NTAs复合异质结薄膜在0、1、2、3小时之后的甲基橙浓度的变化图;(e)为实施例3得到的Au NPs/TiO2 NTAs复合异质结薄膜对甲基橙降解,经过循环降解过程1、2、3次后,甲基橙浓度变化图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种金纳米颗粒(Au NPs)/二氧化钛纳米管阵列(TiO2 NTAs)复合异质结薄膜的制备方法,包括以下步骤:
步骤1、采用阳极氧化法制备锐钛矿型的TiO2纳米管阵列薄膜;
1.1将氟化铵加入体积比为98:2的乙二醇和去离子水形成的混合溶剂中,搅拌混合均匀,得到氟化物的质量百分比为0.2wt%的含氟电解液;
1.2将金属钛片依次在无水乙醇和去离子水中超声清洗55min,烘干待用;
1.3将步骤1.2清洗干净的金属钛片平行放置,作为阳极和阴极,步骤1.1配制的含氟电解液作为电解液,采用阳极氧化法在阳极的金属钛片上制备TiO2纳米管阵列薄膜,其中,阳极氧化电压为60V,阳极氧化的时间为2h;
1.4将步骤1.3得到的TiO2纳米管阵列取出,在无水乙醇中浸泡12~18h后,在80℃温度下烘干;然后放入管式炉内,在500℃温度下退火3h,得到锐钛矿型的TiO2纳米管阵列薄膜。
步骤2、含有金纳米颗粒的甲苯溶液的配制;
2.1将HAuCl4和双十二烷基二甲基溴化铵(DDAB)加入甲苯中,超声1h,得到橙色的混合液A;其中,混合液A中HAuCl4的质量浓度为3.25mg/mL,双十二烷基二甲基溴化铵的质量浓度为10.0mg/mL;
2.2配制质量浓度为0.35mg/mL的NaBH4水溶液,然后将配制的NaBH4水溶液加入步骤2.1得到的混合液A中,搅拌混合均匀,得到混合液B;其中,NaBH4水溶液与混合液A的体积比为1:20000;
2.3在步骤2.2得到的混合液B中加入十二硫醇(DDT),搅拌1~3h混合均匀后,采用乙醇洗涤被DDT钝化的金纳米颗粒,离心分离,干燥;其中,所述十二硫醇(DDT)与混合液B的体积比为1:12.5,乙醇与混合液B的体积比为1:1.1;
2.4将步骤2.3干燥后的样品加入体积比为1:12.5的十二硫醇(DDT)与乙醇的混合溶剂中,搅拌混合均匀后,采用乙醇洗涤,离心分离,干燥,重复“乙醇洗涤、离心分离、干燥”过程2次,得到的产物分散于甲苯和十二硫醇(DDT)的混合溶剂中,得到混合液C;其中,所述甲苯和十二硫醇的体积比为1:15,混合液C中溶质的质量浓度为1mg/mL;
2.5将步骤2.4得到的混合液C以7000rpm的转速离心3~5min,以沉淀大的团聚物,取含有单分散金纳米颗粒的上层清液储存于玻璃瓶中,即可得到含有金纳米颗粒的甲苯溶液;
步骤3、将步骤1得到的TiO2纳米管阵列薄膜浸没于步骤2配制的含有金纳米颗粒的甲苯溶液中,3s后,取出,在60℃下烘干;根据所需的金纳米颗粒装载量,重复“浸没(3s)、取出、烘干(60℃)”过程1次,以增加装载于二氧化钛纳米管阵列中的Au NPs数量;该过程中,金纳米颗粒分散于甲苯中,且装载过程会在TiO2表面产生气泡,当TiO2的表面变暗的时候,Au NPs装载进入TiO2 NTAs;
步骤4、将步骤3得到的负载有金纳米颗粒的TiO2纳米管阵列薄膜样品置于烘箱中,在200℃下干燥240min,在进一步去除甲苯的同时确保Au NPs紧紧负载于TiO2 NTAs表面;自然冷却至室温,取出,即可得到所述金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜(Au NPs/TiO2 NTAs)。
实施例2
实施例2与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程2次;其余步骤与实施例1相同。
实施例3
实施例3与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程3次;其余步骤与实施例1相同。
实施例4
实施例4与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程4次;其余步骤与实施例1相同。
实施例5
实施例5与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程5次;其余步骤与实施例1相同。
实施例6
实施例6与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程6次;其余步骤与实施例1相同。
实施例7
实施例7与实施例1相比,其区别在于:步骤3中重复“浸没、取出、烘干”过程7次;其余步骤与实施例1相同。
图1为实施例6得到的Au纳米颗粒/TiO2纳米管阵列薄膜侧面的SEM及TEM测试图;SEM和TEM的横断面图像进一步证实了Au NPs/TiO2纳米管薄膜的成功制备。众所周知,原始的Au NPs个体的直径约为7nm,这对于异质结薄膜的SEM甚至TEM都是无法直接观察到的。然而,在图1(a)和(b)中可以很容易地发现许多直径为20-130nm的白点,它们是团聚的AuNPs;同样在TEM中也证实了管状壁装载了Au NPs。
图2是实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜与实施例1、3、6得到的Au纳米颗粒/TiO2纳米管阵列薄膜对应的能量分散谱(EDS)测试图与XRD测试图。如图2(a)所示,得到的复合异质结薄膜含有Ti、O、Au和杂质C;且随着重复次数的增加,EDS能谱中Au的含量也随之增加。如图2(b)所示,得到的复合异质结薄膜的衍射峰属于锐钛矿TiO2或者钛基质,但无法观测到金的衍射峰,这是因为Au NPs的尺寸太小,装载的金含量可能低于XRD最小检测限制。
图3为C7H8与含有金纳米颗粒的甲苯溶液、实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜与实施例1、2、3、4、5得到的Au NPs/TiO2 NTAs复合异质结薄膜紫外光谱图。采用紫外/可见分光光度计分析Au纳米颗粒及相关样品的吸收特性,甲苯C7H8(S01)是透明无色的,分散有金纳米颗粒的甲苯溶液(S02)是深紫色。图3(a)显示S01的400至600nm没有吸收;而S02在约520nm处显示明显的吸收峰,这意味着等离子体波与入射光的相干波长在520nm附近。在自然光照下,金纳米颗粒吸收波长约为520nm,因此用金纳米颗粒分散的甲苯溶液为深紫色,是因为入射光的强烈吸收。随着重复次数的增加,样品的颜色从浅灰色变为深紫色,这意味着入射光被Au纳米颗粒/TiO2纳米管薄膜强烈吸收,并且随着重复次数的增加,吸收增强。这样合成的金纳米颗粒/二氧化钛纳米管阵列薄膜也吸收了中等范围的光,大约在540nm处。图3(b)表明,实施例5到实施例6的总光吸收仍然增加,但过充负荷会很快预测出最大值。而这个上限可能是由Au纳米颗粒聚集带来的LSPR效应减弱所致。如前所述,随着重复次数的增加,金纳米颗粒可能会团聚,重复的上限次数将直接影响光催化活性的最大值。
图4为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜与实施例1、3、5、7得到的金纳米颗粒/二氧化钛纳米管阵列的产氢速率图。可以看出,重复次数对产氢速率有明显的促进作用。对Au NPs/TiO2 NTAs上的肖特基接触及光水解机制进行分析,hv1称为紫外线(UV)入射光,和hv2称为可见光。TiO2 NTAs与Au NPs的接触,Au NPs起着电荷分离中心的作用。在紫外光(hv1)的照射下,具有足够能量的电子将转移到导带(CB),并且在CB和价带(VB)上产生电子/空穴对,光生电子/空穴对分别引起电子受体物质的还原和电子供体物质的氧化。
图5为实施例1得到的锐钛矿型的TiO2纳米管阵列薄膜与实施例1、3、6得到的金纳米颗粒/二氧化钛纳米管阵列的MO降解实验,证实了紫外光照射下合成的Au NPs/TiO2NTAs复合材料的光催化活性增强。显然,实施例1,3,6比锐钛矿型的TiO2纳米管阵列薄膜具有更好的光催化活性;与锐钛矿型的TiO2 纳米管阵列薄膜以及实施例1,6相比,实施例3的光催化活性最高,降解速率最低。正如我们所料,Au NPs过载对Au NPs/TiO2 NTAs的光催化活性造成了危害。LSPR效应在紫外光下不起作用,只有肖特基势垒才能通过电子/空穴对分离效应提高样品的光降解能力。然而,Au作为重金属元素,也可以作为载体的重组中心,当金负载量足够大时,复合中心效应明显,这可能是图5(b)和5(c)拐点出现的原因,实施例6的降解值高于实施例3。结果表明,适量的Au纳米颗粒有利于提高Au NPs/TiO2 NTAs复合物的紫外光催化活性,但过量负载Au纳米颗粒会减弱其光催化作用。利用实施例3进行循环试验,以保证合成样品的稳定性能,如图5(e)所示的MO降解曲线证实了这一点。
综上所述,本发明采用一种简单的浸没装载法,将纳米级的Au颗粒装载于上端开口的TiO2纳米管阵列中。利用Au纳米颗粒的局域表面等离子共振(Localized SurfacePlasmon Resonance,LSPR)现象,使得到的复合薄膜在可见光区域也表现出了强烈的吸光效果;同时又利用Au-TiO2间形成的肖特基势垒,降低了光生电子空穴对的复合率,使得到的Au/TiO2复合薄膜在全光谱下表现出了极高的催化活性。本发明通过将阳极氧化法制备的TiO2纳米管薄膜浸泡于分散有金纳米颗粒的甲苯溶液中,使金纳米颗粒进入二氧化钛纳米管内,通过控制“浸泡–烘干”次数,控制负载于纳米管壁的金颗粒数量,最后通过低温加热增强了Au-TiO2间的附着力,得到了性能稳定、具有全光谱光催化活性的复合异质结薄膜。

Claims (3)

1.一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,其特征在于,包括以下步骤:
步骤1、采用阳极氧化法制备锐钛矿型的TiO2纳米管阵列薄膜;
步骤2、含有金纳米颗粒的甲苯溶液的配制;
步骤3、将步骤1得到的TiO2纳米管阵列薄膜浸没于步骤2配制的含有金纳米颗粒的甲苯溶液中,3~5s后,取出,烘干,重复“浸没、取出、烘干”过程1~7次,以增加装载于二氧化钛纳米管阵列中的Au NPs数量;
步骤4、将步骤3得到的负载有金纳米颗粒的TiO2纳米管阵列薄膜样品置于烘箱中,在180~200℃下干燥120~240min,自然冷却至室温,取出,即可得到所述金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜。
2.根据权利要求1所述的金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,其特征在于,步骤2所述含有金纳米颗粒的甲苯溶液的配制的具体过程为:
1)将HAuCl4和双十二烷基二甲基溴化铵加入甲苯中,超声,得混合液A;其中,混合液A中HAuCl4的质量浓度为2.17~3.25mg/mL,双十二烷基二甲基溴化铵的质量浓度为6.67~10.0mg/mL;
2)配制质量浓度为0.35~0.5mg/mL的NaBH4水溶液,然后将配制的NaBH4水溶液加入步骤1)得到的混合液A中,搅拌混合均匀,得到混合液B;其中,NaBH4水溶液与混合液A的体积比为1:20000;
3)在步骤2)得到的混合液B中加入十二硫醇,搅拌混合均匀后,采用乙醇洗涤,离心分离,干燥;其中,所述十二硫醇与混合液B的体积比为1:(12.5~15),乙醇与混合液B的体积比为1:(1.1~2);
4)将步骤3)干燥后的样品加入体积比为1:(12.5~15)的十二硫醇与乙醇的混合溶剂中,搅拌混合均匀后,采用乙醇洗涤,离心分离,干燥,重复“乙醇洗涤、离心分离、干燥”过程2~3次,得到的产物分散于甲苯和十二硫醇的混合溶剂中,得到混合液C;其中,所述甲苯和十二硫醇的体积比为1:(15~17),混合液C中溶质的质量浓度为0.5~1mg/mL;
5)将步骤4)得到的混合液C以7000~8000rpm的转速离心3~5min,以沉淀大的团聚物,得到的上层清液即为含有金纳米颗粒的甲苯溶液。
3.根据权利要求1所述的金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法,其特征在于,步骤1所述采用阳极氧化法制备锐钛矿型的TiO2纳米管阵列薄膜的具体过程为:
1.1将氟化物加入醇类溶剂和去离子水形成的混合溶剂中,搅拌混合均匀,得到氟化物的质量百分比为0.2wt%~0.6wt%的含氟电解液;
1.2将金属钛片依次在无水乙醇和去离子水中超声清洗,烘干待用;
1.3将步骤1.2清洗干净的金属钛片平行放置,作为阳极和阴极,步骤1.1配制的含氟电解液作为电解液,采用阳极氧化法在阳极的金属钛片上制备TiO2纳米管阵列薄膜,其中,阳极氧化电压为50~70V,阳极氧化的时间为1~3h;
1.4将步骤1.3得到的TiO2纳米管阵列取出,在无水乙醇中浸泡12~18h后,在60~80℃温度下烘干;然后放入管式炉内,在400~500℃温度下退火3~5h,得到锐钛矿型的TiO2纳米管阵列薄膜。
CN201811008100.3A 2018-08-31 2018-08-31 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法 Pending CN109126785A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811008100.3A CN109126785A (zh) 2018-08-31 2018-08-31 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811008100.3A CN109126785A (zh) 2018-08-31 2018-08-31 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN109126785A true CN109126785A (zh) 2019-01-04

Family

ID=64825750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811008100.3A Pending CN109126785A (zh) 2018-08-31 2018-08-31 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN109126785A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569870A (zh) * 2020-06-12 2020-08-25 苏州大学 一种光复合催化剂的制备方法、光复合催化剂及其应用
WO2021008092A1 (zh) * 2019-07-17 2021-01-21 湖北大学 一种在圆柱形钛钉表面的近红外响应功能涂层的制备方法及应用
CN112679764A (zh) * 2020-12-08 2021-04-20 复旦大学 一种Au/Ni-BHT异质结导电MOFs薄膜材料及其可控制备方法
CN113113591A (zh) * 2021-03-22 2021-07-13 杭州电子科技大学 一种提升锂硫电池倍率性能的方法
CN115888702A (zh) * 2022-11-11 2023-04-04 上海大学 一维贵金属纳米结构催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008584A (en) * 2008-08-29 2010-03-01 Univ Chung Yuan Christian Fluorescent gold nanocluster and method for forming the same
CN102614872A (zh) * 2012-02-27 2012-08-01 苏州大学 一种金原子簇/TiO2复合纳米材料的制备方法
WO2014027367A1 (en) * 2012-08-11 2014-02-20 Council Of Scientific & Industrial Research One pot process for the preparation of ultra-small size transition metal nanoparticles
CN108149300A (zh) * 2018-01-08 2018-06-12 电子科技大学 一种CeO2纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201008584A (en) * 2008-08-29 2010-03-01 Univ Chung Yuan Christian Fluorescent gold nanocluster and method for forming the same
CN102614872A (zh) * 2012-02-27 2012-08-01 苏州大学 一种金原子簇/TiO2复合纳米材料的制备方法
WO2014027367A1 (en) * 2012-08-11 2014-02-20 Council Of Scientific & Industrial Research One pot process for the preparation of ultra-small size transition metal nanoparticles
CN108149300A (zh) * 2018-01-08 2018-06-12 电子科技大学 一种CeO2纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLAUDIO AMPELLI,ET AL: ""A Sustainable Production of H2 by Water Splitting and Photo-Reforming of Organic Wastes on Au/TiO2 Nanotube Arrays"", 《CHEMICAL ENGINEERING TRANSACTIONS》 *
P. SAHU,ET AL: ""Preparation of Ag(Shell)-Au(Core) nanoparticles by anti-Galvanic reactions: Are capping agents the "real heroes"of reduction?"", 《COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021008092A1 (zh) * 2019-07-17 2021-01-21 湖北大学 一种在圆柱形钛钉表面的近红外响应功能涂层的制备方法及应用
CN111569870A (zh) * 2020-06-12 2020-08-25 苏州大学 一种光复合催化剂的制备方法、光复合催化剂及其应用
CN111569870B (zh) * 2020-06-12 2022-08-26 苏州大学 一种光复合催化剂的制备方法、光复合催化剂及其应用
CN112679764A (zh) * 2020-12-08 2021-04-20 复旦大学 一种Au/Ni-BHT异质结导电MOFs薄膜材料及其可控制备方法
CN113113591A (zh) * 2021-03-22 2021-07-13 杭州电子科技大学 一种提升锂硫电池倍率性能的方法
CN115888702A (zh) * 2022-11-11 2023-04-04 上海大学 一维贵金属纳米结构催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN109126785A (zh) 一种金纳米颗粒/二氧化钛纳米管阵列复合异质结薄膜的制备方法
Yi et al. Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters
Chen et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method
Zeng et al. Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis
CN1976875B (zh) 纳米管状氧化钛及其制备方法
EP1709651B1 (en) Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell
CN104835648B (zh) 氧化铋纳米颗粒/二氧化钛纳米管阵列的制备方法
Thapa et al. TiO 2 coated urchin-like SnO 2 microspheres for efficient dye-sensitized solar cells
Sedghi et al. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells
CN107723777B (zh) 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
Sun et al. Deliberate design of TiO2 nanostructures towards superior photovoltaic cells
CN105177671B (zh) 一种银纳米颗粒/二氧化钛纳米管阵列的制备方法
CN105044180A (zh) 一种异质结光电极的制备方法和用途
CN105336501A (zh) 纳米银和二氧化钛协同修饰氧化锌纳米线阵列及制备方法
Gan et al. Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs
Selvapriya et al. Dual morphology titanium dioxide for dye sensitized solar cells
Rani et al. Harnessing photo/electro-catalytic activity via nano-junctions in ternary nanocomposites for clean energy
Yi et al. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO2 nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation
CN108654607A (zh) 核壳结构的银纳米颗粒/碳/二氧化钛纳米复合物的制备方法
CN107715894B (zh) 硫化铋修饰金纳米颗粒/二氧化钛纳米管结构的制备方法及应用
CN106702462A (zh) 铁酸镧纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
CN107170584B (zh) 复合核壳纳米空心球的制备方法及其在染料敏化太阳能电池中的应用
Zhang et al. Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting
CN108767113A (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
Roza et al. Effect of molar ratio of zinc nitrate: hexamethylenetetramine on the properties of ZnO thin film nanotubes and nanorods and the performance of dye-sensitized solar cell (DSSC)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190104

RJ01 Rejection of invention patent application after publication