CN109125266A - 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用 - Google Patents

脂质体包裹有机金属骨架纳米递药系统的制备方法及应用 Download PDF

Info

Publication number
CN109125266A
CN109125266A CN201811022077.3A CN201811022077A CN109125266A CN 109125266 A CN109125266 A CN 109125266A CN 201811022077 A CN201811022077 A CN 201811022077A CN 109125266 A CN109125266 A CN 109125266A
Authority
CN
China
Prior art keywords
mof
liposome
solution
delivery system
medicine delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811022077.3A
Other languages
English (en)
Inventor
孙磊
陈建美
郭雷雷
王学堃
徐郁蕊
高雅
张继康
张瑜
蒙霞
葛俊良
宁兴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201811022077.3A priority Critical patent/CN109125266A/zh
Publication of CN109125266A publication Critical patent/CN109125266A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种脂质体包裹有机金属骨架纳米递药系统的制备方法及应用,其中有机金属框架为铁化合物与有机配体制备的MOF‑Fe,其形态为八面体,具有过氧化物模拟酶催化活性。PEG修饰的脂质体包裹可提高其水溶性,将pH4.0的二氯乙酸溶液载入脂质体为MOF‑Fe提供酸性的催化反应条件,最终形成脂质体包裹有机金属骨架纳米递药系统。该递药系统具有以下特征:粒径约150nm、呈球形、稳定性好、催化活性高、释放缓慢、与H2O2反应持续产生羟基自由基和超氧阴离子等特点。增加肿瘤细胞内部氧化应激水平,诱导肿瘤细胞凋亡,并对肿瘤组织产生显著的抑制作用。因此为肿瘤非化疗药物治疗以及肿瘤多药耐药等抗肿瘤治疗提供新的方案。

Description

脂质体包裹有机金属骨架纳米递药系统的制备方法及应用
技术领域
本发明涉化学合成及纳米制剂技术领域,具体地说是一种脂质体包裹有机金属骨架纳米递药系统的制备方法及应用。
背景技术
肿瘤细胞具有无限生长、增殖、新生血管及侵润和转移的能力,这与H2O2的产生密切相关。肿瘤细胞通过葡萄糖代谢产生过多的H2O2,并受到细胞、细胞因子和生长因子等多种刺激的严格调节。H2O2主要由线粒体产生,作为非极性分子,H2O2能够自由通过细胞膜和核膜,激活不同的信号通路,对肿瘤细胞的增殖、分化、迁移或凋亡有着特殊的作用。肿瘤细胞对H2O2有较强的依赖性,也对其变化非常敏感,H2O2含量过高或过低都会造成肿瘤细胞的凋亡。
有研究表明,升高细胞内H2O2清除酶如过氧化氢酶或谷胱苷肽过氧化物酶的含量可以逆转肿瘤细胞的恶性表型。但天然过氧化物酶有其自身的缺点如:稳定性差,易失活,易变性,此外天然酶制备、纯化、储存成本高等。然而性质稳定,可重复利用,制备简单,成本低的纳米材料,作为过氧化物模拟酶应运而生,其中有机金属框架(MOFs)材料展现出良好的过氧化物模拟酶活性。MOFs是一类基于金属离子或金属簇和有机配体形成的固体多孔材料。MOFs自身具有大的比表面积,高度有序的空隙率和可调的孔径,明确的结构等特征,这些赋予材料具有装载和释放不同药物的能力。过去几十年,MOFs被广泛用于催化、分离、气体储存、化学传感、生物医学成像和药物递送等方面。近期MOFs作为过氧化物模拟酶的研究不断深入,在不同应用领域引起人们广范的关注。研究发现通过三价铁形成的MOF-Fe(III),在一定pH范围内具有类似天然辣根过氧化物酶的内在模拟过氧化物酶活性。在双氧水存在的条件下能催化TMB为蓝色氧化物,并成功用于葡萄糖检测,及抗坏血酸,硫醇化合物的检测等。MOF-Fe中的金属铁离子与细胞中的H2O2发生芬顿反应,将双氧水转变成强氧化性的羟基自由基跟超氧阴离子,增加肿瘤细胞内部氧化应激水平。而增加的活性氧(ROS)能够引起DNA碱基破坏和大量的DNA单链断裂(SSB)并导致细胞程序性死亡。
发明内容
本发明的目的在于提供一种脂质体包裹有机金属骨架的纳米递药系统,所述纳米递药系统由脂质体包裹有机金属骨架(MOFs)构成,其中金属骨架为铁化合物与有机配体制备的MOF-Fe。
所述有机金属骨架中的金属为铁化合物,为FeCl2·4H2O、Fe2(SO4)3、FeSO4·7H2O、C4H6FeO4、FeCl3·6H2O、Fe2O3、FeS等中的一种,但不限于举例范围。
所述有机金属骨架为铁化合物与有机配体制备的MOF-Fe;其中有机配体结构式为:
其中,R1-R4相同或不同,并各自为OH、COOH、NH2、CONH2、H、取代或未取代的C1-C4烷基、取代或未取代C1-C4烷基-O-、取代或未取代C1-C4烷基-CO-、但不限于举例范围。
本发明还提供一种脂质体包裹有机金属骨架纳米递药系统的制备方法。该方法包括如下步骤:
步骤1:制备不同粒径的MOF-Fe;
有机配体溶液与铁化合物在加热下磁力搅拌,然后从烧瓶中取出部分反应溶液。继续向原反应液中补加有机配体溶液和铁化合物溶液,反应一段时间后,取出部分反应液。继续相同的步骤。将不同阶段取出的反应液洗涤后,真空干燥。得到不同粒径的MOF-Fe。
所述的初始有机配体溶液与铁化合物摩尔比为5∶1-1∶1。
所述补加的有机配体溶液和铁化合物溶液摩尔比为5∶1-1∶1。
所述反应时间为15min-4h。
步骤2:制备脂质体包裹MOF-Fe的纳米递药系统;
HSPC、胆固醇、DSPE-mPEG2000溶解在氯仿和甲醇中。以上的混合溶液,加入制备的MOF-Fe溶液。水浴,抽真空,旋转蒸发除去有机溶剂,形成均匀的薄膜。加入二氯乙酸溶液抽真空水化。所得溶液于冰浴中,细胞超声破碎仪超声。然后利用小型挤出器依次通过聚碳酸酯膜(孔尺寸:400nm,200nm、100nm)反复挤压。所得产品通过G50葡聚糖凝胶柱分离提纯。
本发明还提供了一种脂质体包裹有机金属骨架纳米递药系统的应用,实验结果表明,该脂质体包裹有机金属骨架纳米递药系统具有显著增加肿瘤细胞内部氧化应激水平的能力,诱导肿瘤细胞凋亡;通过静脉注射给药,对肿瘤组织产生显著的抑制作用。
本发明纳米递药系统具有以下有益效果:
本发明中的MOF-Fe具有高过氧化物酶催化活性,制备方式简单,成本低,稳定性好,可批量生产,对正常细胞毒性小,选择性的针对肿瘤细胞,杀死肿瘤细胞,具有广阔的临床前和临床应用前景。本发明中的纳米递药系统具有以下特征:粒径较小,呈球形,分布均匀;长期储存及血清中均比较稳定;具有高过氧化物模拟酶活性、缓慢释放、与肿瘤细胞中的H2O2反应持续产生羟基自由基和超氧阴离子等特点。体外抗乳腺癌细胞活性评价中,该递药系统显著增加了肿瘤细胞内部氧化应激水平,诱导肿瘤细胞凋亡;通过静脉注射给药,此纳米递药系统对肿瘤组织产生显著的抑制作用;制备方式简单,成本低,稳定性好,可批量生产。
附图说明
图1为本发明MOF-Fe的SEM表征图;
图2为本发明MOF-Fe的TEM表征图;
图3为本发明Lip/MOF-Fe的TEM图;
图4为本发明Lip/MOF-Fe的粒径分布图;
图5为本发明Lip/MOF-Fe长期稳定性实验图;
图6为本发明Lip/MOF-Fe血清稳定性实验图;
图7为本发明MOF-Fe的体外过氧化物模拟酶催化活性图;
图8为本发明Lip/MOF-Fe的体外累计催化活性图;
图9为本发明Lip/MOF-Fe的MDA-MB-231细胞氧化应激实验图;
图10为本发明铁化合物和Lip/MOF-Fe对MDA-MB-231细胞活性图;
图11为本发明Lip/MOF-Fe对293T和MDA-MB-231细胞活性图;
图12为本发明Lip/MOF-Fe对MDA-MB-231细胞不同作用时间的凋亡实验图;
图13为本发明不同浓度的Lip/MOF-Fe对MDA-MB-231细胞的凋亡实验图;
图14为本发明Lip/MOF-Fe对MDA-MB-231荷瘤小鼠的疗效实验图;
图15为本发明荷瘤裸鼠肿瘤组织及肿瘤质量图;
图16为本发明肿瘤组织切片图
具体实施方式
通过下述实施例将有助于进一步理解本发明,但本发明并不受其限制。
实施例1不同粒径的MOF-Fe的制备和表征
有机配体溶液与铁化合物在加热下磁力搅拌,然后从烧瓶中取出部分反应溶液。继续向原反应液中补加有机配体溶液和铁化合物溶液,反应一段时间后,取出部分反应液。继续相同的步骤。将不同阶段取出的反应液洗涤后,真空干燥。得到不同粒径的MOF-Fe。
所述的初始有机配体溶液与铁化合物摩尔比为5∶1-1∶1。
所述补加的有机配体溶液和铁化合物溶液摩尔比为5∶1-1∶1。
所述反应时间为15min-4h。
三种不同粒径产品的形态通过扫描电子显微镜(SEM)观察,并对50nm产品进行透射电子显微镜(TEM)观察。
SEM形貌如图1中的(1)、(2)、(3)所示为八面体结构,粒径分别约为50nm,150nm,300nm。TEM形貌如图2所示,同样为八面体透明骨架结构。
实施例2 Lip/MOF-Fe纳米递药系统的制备和表征
质量比为40%-70%的磷脂,15%-30%的胆固醇,5%-20%的DSPE-mPEG溶解在氯仿和甲醇中。以上的混合溶液,加入一定体积MOF-Fe的无水乙醇溶液。37℃水浴,抽真空旋转蒸发除去有机溶剂,形成均匀的薄膜。加入0.05-0.3mM二氯乙酸溶液抽真空水化30min。所得溶液于冰浴中,细胞超声破碎仪超声1-15min,10-30KHz,100-300W。然后利用小型挤出器依次通过聚碳酸酯膜(孔尺寸:400nm,200nm、100nm)反复挤压。所得产品通过G50葡聚糖凝胶柱分离提纯。通过马尔文激光粒度仪测定其粒径大小和粒径分布,并通过TEM观察其形貌。
所述的磷脂为大豆磷脂、卵磷脂、氢化大豆磷脂、二油酰磷脂酰乙醇胺(DOPE)、二肉豆蔻酰基磷脂酰乙醇胺(DMPE)中的一种,但不限于举例范围。所述的DSPE-mPEG中mPEG分子量范围为500-5000。
结果如图3所示,3-(1)所示纳米递药系统形态呈球形,分布均匀,3-(2)所示通过放大可以看出脂质体膜结构。图4所示,纳米粒径在156nm左右,PDI=0.166。
实施例3 Lip/MOF-Fe长期稳定性及血清稳定性评价
长期稳定性评价,将Lip/MOF-Fe用PBS液配制成1.0mg/ml,储存于4℃和25℃环境下,用动态光散射仪(DLS)测定粒径大小,每两天测定一次,连续测定两周,考察纳米粒子的长期稳定性。血清稳定性评价,Lip/MOF-Fe用含有50%胎牛血清(FBS)的PBS配制成1.0mg/ml。于37℃下,不同时间点检测其粒径变化情况。
如图5所示,纳米粒的稳定性良好,放置2周后粒径无明显变化(p>0.05);血清稳定性结果如图6所示,纳米递药系统未发生团聚,粒径无明显改变(p>0.05)。稳定性良好。
实施例4 MOF-Fe体外过氧化物模拟酶催化活性评价
150μL pH 4.0醋酸-醋酸钠缓冲液(HAc-NaAc),150μL 1.0mM H2O2,100μL1.5mMMOF-Fe,150μL 10mM TMB,混合溶液37℃,避光孵育20min。用酶标仪在644nm波长下检测吸光度。首先确认MOF-Fe是否具有过氧化物模拟酶催化活性,并检测不同粒径MOF-Fe的催化活性大小。接着考察在pH 4.0至7.0不同酸性条件下对MOF-Fe催化活性的影响。最后,考察不同温度对MOF-Fe催化活性的影响。
结果如图7所示,图7-(1)MOF-Fe参与H2O2和TMB的反应,在酸性条件下其催化H2O2分解产生羟基自由基等活性中间体,生成的羟基自由基再使TMB发生氧化生成蓝色氧化产物。在只有TMB或只有TMB和H2O2下几乎无吸收,在酸性条件下TMB,H2O2和MOF-Fe同时存在时具有明显的吸收峰。表明MOF-Fe具有过氧化物模拟酶催化活性。图7-(2)显示50nm MOF-Fe的过氧化物模拟酶催化活性明显要高于150nm和300nm。图7-(3)所示随pH升高MOF-Fe催化活性逐渐降低,在pH 7条件下MOF-Fe几乎无过氧化物模拟酶催化活性,说明在生理条件下对机体安全无毒,而在溶酶体(pH 5-5.5)且过氧化氢存在下依然具有活性。图7-(4)所示不同温度下MOF-Fe的催化活性显示,在37-45℃之间为最佳反应温度,接近人体生理温度。
实施例5 Lip/MOF-Fe的体外累计催化活性评价
150μL pH 4.0醋酸-醋酸钠缓冲液(HAc-NaAc),150μL 1.0mM H2O2,100μL 1.5mMMOF-Fe,混合溶液37℃孵育。不同时间取出与150μL 10mM TMB反应避光反应20min,用酶标仪在644nm波长下检测吸光度。
如图8所示,Lip/MOF-Fe体外催化活性累计释放行为,不同时间点取出检测催化活性。铁化合物5min到达最大催化活性,半小时后活性开始降低。而Lip/MOF-Fe 30min到达最大催化活性,并在12小时内维持高催化活性,说明脂质体包裹MOF-Fe后形成的纳米粒具有缓慢释放及长时间催化活性能力。
实施例6 Lip/MOF-Fe的MDA-MB-231细胞氧化应激水平评价
MDA-MB-231肿瘤细胞接种于12孔板中,接种密度为2×105个细胞每孔。当长满至70%-90%时,每孔加入800μL无血清L-15培养基,200μL PBS或Lip/MOF-Fe。37℃,5%CO2孵育2小时。铁离子浓度为100μM。PBS洗两遍,加入1mL无血清新鲜L-15培养基,和1μL羧基化-H2DCFDA(10mM),孵育10min,PBS洗两遍,细胞核用Hoechst 33342染色,并用PBS清洗细胞。在荧光显微镜下观察细胞荧光情况。
如图9所示,Lip/MOF-Fe组细胞发出绿色荧光,Lip/MOF-Fe进入肿瘤细胞与细胞中的H2O2发生芬顿反应产生活性氧(ROS),羧基化-H2DCFDA无荧光,当进入肿瘤细胞被细胞中的ROS氧化脱去羧基,产生绿色荧光。而对照组中未产生绿色荧光。
实施例7铁化合物和Lip/MOF-Fe对MDA-MB-231肿瘤细胞的活性评价
细胞活性检测采用MTT实验方法,将4×104个细胞每孔的MDA-MB-231肿瘤细胞接种于96孔板,37℃,5%CO2培养过夜。加入不同浓度的铁化合物或Lip/MOF-Fe,培养24h。弃上清,加入200μL无血清新鲜培养基,20μL MTT溶液(5mg/mL),37℃,4小时。弃上清加入150μL DMSO溶液,用酶标仪检测570nm处的吸光度,计算出细胞活性指数。
如图10所示,Lip/MOF-Fe的IC50为85.31nM,铁化合物的IC50为3.06mM。Lip/MOF-Fe的IC50值明显低于铁化合物的IC50值,说明Lip/MOF-Fe对肿瘤细胞具有明显的抑制作用。
实施例8 Lip/MOF-Fe对293T细胞和MDA-MB-231肿瘤细胞的活性评价
细胞活性检测采用MTT实验方法,将4×104个细胞每孔的MDA-MB-231肿瘤细胞和293T细胞分别接种于96孔板,37℃,5%CO2培养过夜。加入不同浓度的Lip/MOF-Fe,培养24h。弃上清,加入200μL无血清新鲜培养基,20μL MTT溶液(5mg/mL),37℃,4小时。弃上清加入150μL DMSO溶液,用酶标仪检测570nm处的吸光度,计算出细胞活性指数。
如图11所示,Lip/MOF-Fe对MDA-MB-231肿瘤细胞生长抑制作用明显高于293T肾上皮细胞。说明Lip/MOF-Fe对正常细胞损伤较小,而对肿瘤细胞具有较好的抑制作用。
实施例9 Lip/MOF-Fe对MDA-MB-231细胞不同作用时间、不同浓度的凋亡评价
MDA-MB-231肿瘤细胞接种于6孔板中,密度为4×105个细胞每孔,37℃,5%CO2培养过夜。弃上清每孔加入100μM Lip/MOF-Fe,在37℃,5%CO2,分别孵育2,4,8,12h。弃上清PBS洗两遍,加入2μg/mLHochest 33342和5μg/mL PI室温下孵育15min,细胞用PBS洗两遍。然后用荧光显微镜检测细胞凋亡情况。
MDA-MB-231肿瘤细胞接种于6孔板中,密度为4×105个细胞每孔,37℃,5%CO2培养过夜。弃上清,分别加入0、30、100、300nM的Lip/MOF-Fe,在37℃,5%CO2,孵育8h。弃上清PBS洗两遍,加入2μg/mL Hochest 33342和5μg/mL PI室温下孵育15min,细胞用PBS洗两遍。然后用荧光显微镜检测细胞凋亡情况。
如图12-(1)(2)所示,随着时间增加细胞凋亡增多,8h时细胞凋亡约54%,12h细胞基本全部凋亡,说明Lip/MOF-Fe作用于MDA-MB-231肿瘤细胞具有时间依赖性。图13-(1)(2)所示,随着Lip/MOF-Fe浓度增加细胞凋亡增加,不同浓度下凋亡分别为7.8%,50%,100%,具有浓度依赖性。
实施例10 Lip/MOF-Fe对MDA-MB-231荷瘤裸鼠的肿瘤生长抑制作用评价
取对数生长期的MDA-MB-231细胞,将1×107个细胞接种于裸鼠右肩皮下,每只裸鼠接种0.2mL。当肿瘤长至150-200mm3时(记作0天)。将荷瘤小鼠随机分成2组,每组6只,分别为生理盐水对照组,Lip/MOF-Fe(40μmol/kg)组,尾静脉注射给药,考察如下指标:
肿瘤生长曲线:每两天用游标卡尺测量肿瘤的长径和短径,根据公式v=1/2(长径×短径2/2),计算肿瘤的体积,绘制肿瘤体积随时间变化的生长曲线。
体重变化曲线:每两天称量模型鼠的体重,绘制其体重随时间的变化曲线,如果模型鼠体重降低超过15%,可认为该载药系统的毒性较大。
治疗14天后,取出肿瘤组织拍照并进行称重分析。肿瘤组织切片进行HE染色和Caspase-3染色观察肿瘤组织凋亡情况。
疗效实验结果如图14-(1)所示,荷瘤裸鼠体重与第0天相比并没有大的变化。尤其实验组体重稳定,无较大波动,生活状态良好。显示药物对小鼠机体损伤较小,具有一定的安全性。图14-(2)显示,LIP/MOF-Fe组,对肿瘤形成了有效的抑制,并与对照组相比,具有显著性差异。图15-(1)(2)所示,LIP/MOF-Fe具有明显的抑瘤效果。图16所示,给药14天后,我们通过对肿瘤组织切片进行HE染色和caspase-3染色来评价肿瘤细胞凋亡的情况,Lip/MOF-Fe组肿瘤表现出明显的坏死和凋亡现象。

Claims (6)

1.一种脂质体包裹有机金属骨架纳米递药系统,其特征在于,所述纳米递药系统由脂质体包裹有机金属骨架(MOFs)构成,其中金属骨架为铁化合物与有机配体制备的MOF-Fe。
2.如权利要求书1所述的脂质体包裹有机金属骨架纳米递药系统,其特征在于,所述有机金属骨架中的铁化合物为Fe2+,为FeCl2·4H2O、Fe2(SO4)3、FeSO4·7H2O、C4H6FeO4、FeCl3·6H2O、Fe2O3、FeS等中的一种,但不限于举例范围。
3.如权利要求书1所述的脂质体包裹有机金属骨架纳米递药系统,其特征在于,所述有机金属骨架中有机配体结构式为:
其中,R1-R4相同或不同,并各自为OH、COOH、NH2、CONH2、H、取代或未取代的C1-C4烷基、取代或未取代C1-C4烷基-O-、取代或未取代C1-C4烷基-CO-、但不限于举例范围。
4.权利要求3所述有机金属骨架的制备方法,其特征在于,该方法包括如下步骤:
有机配体溶液与铁化合物在加热下磁力搅拌,然后从烧瓶中取出部分反应溶液。继续向原反应液中补加有机配体溶液和铁化合物溶液,反应一段时间后,取出部分反应液。继续相同的步骤。将不同阶段取出的反应液洗涤后,真空干燥。得到不同粒径的MOF-Fe。
所述的初始有机配体溶液与铁化合物摩尔比为5∶1-1∶1。
所述补加的有机配体溶液和铁化合物溶液摩尔比为5∶1-1∶1。
所述反应时间为15min-4h。
5.权利要求1-3所述脂质体包裹有机金属骨架纳米递药系统的制备方法,其特征在于,该方法包括如下步骤:
HSPC、胆固醇、DSPE-mPEG2000溶解在氯仿和甲醇中。以上的混合溶液,加入制备的MOF-Fe溶液。水浴,抽真空,旋转蒸发除去有机溶剂,形成均匀的薄膜。加入二氯乙酸溶液抽真空水化。所得溶液于冰浴中,细胞超声破碎仪超声。然后利用小型挤出器依次通过聚碳酸酯膜(孔尺寸:400nm,200nm、100nm)反复挤压。所得产品通过G50葡聚糖凝胶柱分离提纯。
6.权利要求1-3任一项所述的脂质体包裹有机金属骨架纳米递药系统在肿瘤治疗中的应用。
CN201811022077.3A 2018-09-03 2018-09-03 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用 Pending CN109125266A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811022077.3A CN109125266A (zh) 2018-09-03 2018-09-03 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811022077.3A CN109125266A (zh) 2018-09-03 2018-09-03 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用

Publications (1)

Publication Number Publication Date
CN109125266A true CN109125266A (zh) 2019-01-04

Family

ID=64826353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811022077.3A Pending CN109125266A (zh) 2018-09-03 2018-09-03 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109125266A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970987A (zh) * 2019-04-11 2019-07-05 中国医学科学院放射医学研究所 Mof材料、纳米载药材料、药物组合物及其应用
CN110292641A (zh) * 2019-06-21 2019-10-01 东南大学 一种磁热触发级联酶反应超分子凝胶及其制备方法和应用
CN110354079A (zh) * 2019-08-28 2019-10-22 中国药科大学 一种脂质过氧化物生成器及其制备方法和应用
CN111011371A (zh) * 2019-12-18 2020-04-17 南京大学 配位聚合物包封的金属有机框架纳米农药的制备及应用
CN112245579A (zh) * 2020-10-20 2021-01-22 南通大学 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
CN113321815A (zh) * 2021-06-24 2021-08-31 天津工业大学 一种表面嫁接有磷脂双分子层的mof材料及制备方法和应用
CN113999399A (zh) * 2021-10-11 2022-02-01 苏州大学 一种双功能化mof材料及其制备和应用
CN114272370A (zh) * 2021-12-03 2022-04-05 中国人民解放军陆军军医大学第一附属医院 MGaV纳米药物及其应用
CN115998766A (zh) * 2022-12-19 2023-04-25 上海市第十人民医院 一种氧化催化纳米材料及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
WO2017050979A1 (en) * 2015-09-25 2017-03-30 Consejo Superior De Investigaciones Científicas (Csic) Nanoparticles for diagnosis and drug delivery
CN107189074A (zh) * 2017-05-26 2017-09-22 西安电子科技大学 基于脂质体膜的金属有机骨架材料的表面功能化修饰方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
WO2017050979A1 (en) * 2015-09-25 2017-03-30 Consejo Superior De Investigaciones Científicas (Csic) Nanoparticles for diagnosis and drug delivery
CN107189074A (zh) * 2017-05-26 2017-09-22 西安电子科技大学 基于脂质体膜的金属有机骨架材料的表面功能化修饰方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERNHARD ILLES ET AL.: "Liposome-Coated Iron Fumarate Metal-Organic Framework Nanoparticles for Combination Therapy", 《NANOMATERIALS》 *
HADI RANJI-BURACHALOO ET AL.: "MOF-Mediated Destruction of Cancer Using the Cell"s Own Hydrogen Peroxide", 《ACS APPLIED MATERIALS & INTERFACES》 *
STEFAN WUTTKE ET AL.: "MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells", 《CHEMICAL COMMUNICATIONS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970987A (zh) * 2019-04-11 2019-07-05 中国医学科学院放射医学研究所 Mof材料、纳米载药材料、药物组合物及其应用
CN110292641A (zh) * 2019-06-21 2019-10-01 东南大学 一种磁热触发级联酶反应超分子凝胶及其制备方法和应用
CN110292641B (zh) * 2019-06-21 2022-10-14 东南大学 一种磁热触发级联酶反应超分子凝胶及其制备方法和应用
CN110354079A (zh) * 2019-08-28 2019-10-22 中国药科大学 一种脂质过氧化物生成器及其制备方法和应用
CN111011371A (zh) * 2019-12-18 2020-04-17 南京大学 配位聚合物包封的金属有机框架纳米农药的制备及应用
CN112245579A (zh) * 2020-10-20 2021-01-22 南通大学 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
CN112245579B (zh) * 2020-10-20 2022-06-24 南通大学 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
CN113321815A (zh) * 2021-06-24 2021-08-31 天津工业大学 一种表面嫁接有磷脂双分子层的mof材料及制备方法和应用
CN113999399A (zh) * 2021-10-11 2022-02-01 苏州大学 一种双功能化mof材料及其制备和应用
CN113999399B (zh) * 2021-10-11 2022-12-16 苏州大学 一种双功能化mof材料及其制备和应用
CN114272370A (zh) * 2021-12-03 2022-04-05 中国人民解放军陆军军医大学第一附属医院 MGaV纳米药物及其应用
CN115998766A (zh) * 2022-12-19 2023-04-25 上海市第十人民医院 一种氧化催化纳米材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN109125266A (zh) 脂质体包裹有机金属骨架纳米递药系统的制备方法及应用
Pan et al. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework
Xu et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors
Chen et al. Recent advances of redox-responsive nanoplatforms for tumor theranostics
Wang et al. Biodegradable CoS2 nanoclusters for photothermal-enhanced chemodynamic therapy
Wei et al. Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer
Zhang et al. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy
Liu et al. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors
Cun et al. Photo-enhanced upcycling H2O2 into hydroxyl radicals by IR780-embedded Fe3O4@ MIL-100 for intense nanocatalytic tumor therapy
Cao et al. Tablet-like TiO2/C nanocomposites for repeated type I sonodynamic therapy of pancreatic cancer
Lyu et al. A platelet-mimicking theranostic platform for cancer interstitial brachytherapy
Hao et al. RGD peptide modified platinum nanozyme Co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy
Zeng et al. Ultra-thin metal–organic framework nanosheets for chemo-photodynamic synergistic therapy
Wang et al. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs
Zhang et al. Biomimetic mesoporous polydopamine nanoparticles for MRI-guided photothermal-enhanced synergistic cascade chemodynamic cancer therapy
Wang et al. Construction of a nanotheranostic system Zr-MOF@ PPa/AF@ PEG for improved photodynamic therapy effects based on the PDT‑oxygen consumption and hypoxia sensitive chemotherapeutic drug
Cheng et al. An effective NIR laser/tumor-microenvironment co-responsive cancer theranostic nanoplatform with multi-modal imaging and therapies
Zuo et al. Mitochondria-targeted mesoporous titanium dioxide nanoplatform for synergistic nitric oxide gas-sonodynamic therapy of breast cancer
Wen et al. A cascaded enzyme-loaded Fe–hemoporfin framework for synergistic sonodynamic-starvation therapy of tumors
Zheng et al. Tumor microenvironment responsive self-cascade catalysis for synergistic chemo/chemodynamic therapy by multifunctional biomimetic nanozymes
Liu et al. L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy
Liao et al. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy
Ye et al. Engineering nanoenzymes integrating Iron-based metal organic frameworks with Pt nanoparticles for enhanced Photodynamic-Ferroptosis therapy
Zhao et al. Biomimetic redox-responsive prodrug micelles with diselenide linkage for platinum nanozymes augmented sonodynamic/chemo combined therapy of colon cancer
Xie et al. Engineering metal‐phenolic networks for enhancing cancer therapy by tumor microenvironment modulation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190104