CN109120230A - 一种太阳能电池片el图像检测和缺陷识别方法 - Google Patents

一种太阳能电池片el图像检测和缺陷识别方法 Download PDF

Info

Publication number
CN109120230A
CN109120230A CN201810794758.5A CN201810794758A CN109120230A CN 109120230 A CN109120230 A CN 109120230A CN 201810794758 A CN201810794758 A CN 201810794758A CN 109120230 A CN109120230 A CN 109120230A
Authority
CN
China
Prior art keywords
image
solar battery
defect
battery sheet
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810794758.5A
Other languages
English (en)
Other versions
CN109120230B (zh
Inventor
倪彬彬
邹平国
张文中
李强
张镇滔
陈亚彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China General Nuclear Power Corp
CGN Power Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Original Assignee
China General Nuclear Power Corp
CGN Power Co Ltd
Suzhou Nuclear Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China General Nuclear Power Corp, CGN Power Co Ltd, Suzhou Nuclear Power Research Institute Co Ltd filed Critical China General Nuclear Power Corp
Priority to CN201810794758.5A priority Critical patent/CN109120230B/zh
Publication of CN109120230A publication Critical patent/CN109120230A/zh
Application granted granted Critical
Publication of CN109120230B publication Critical patent/CN109120230B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种太阳能电池片EL图像检测和缺陷识别方法,具体包括如下步骤:(1)获得待检测的太阳能电池片EL图像,定位栅线并进行区域分割;(2)删除栅线区域并重新组合图像,计算图像灰度值并进行二维构建;(3)计算粒子群的类间离散度矩阵,确定当前最佳位置;(4)更新粒子种群最优个体和粒子历史最优个体;(5)利用混沌模型产生新的混沌变量;(6)更新粒子群所有粒子的位置和速度,重新计算直到达到迭代次数;(7)根据得到的最佳位置分割得到电池片缺陷图像,并进行缺陷识别;本发明实现简单,运算速度快,能够适应不同种类的缺陷;利用混沌粒子群对电池片EL图像进行分割,能够防止局部收敛,从而得到更加准确的缺陷图像。

Description

一种太阳能电池片EL图像检测和缺陷识别方法
技术领域
本发明属于工业视觉检测和图像处理技术领域,具体涉及一种基于混沌粒子群算法和二维Otsu的太阳能电池片EL图像检测和缺陷识别方法。
背景技术
随着针对环境治理关切程度的不断加深,以及分布式光伏能源的蓬勃发展,据统计,截至2017年我国光伏发电累计装机容量已达到130GW,位居全球首位。2017年,我国境内电池片产量约68GW,约占全球电池片产能的68%。太阳能行业成为近年来发展最为迅速的能源领域。
伴随着技术不断进步、产业链日益成熟,光伏组件往高功率、高效率方向发展,对太阳能电池片的质量要求逐步提高,因此提高太阳能电池片的检测技术对于光伏企业提高产品效率及成品率有着极为重要的作用。针对太阳能电池片检测的研究主要集中在电性能测试及功率分选等方面,太阳能电池片EL图像是反应电池片质量的重要环节,其检测方法特别是实现快速实时的缺陷识别方面的研究较为缺少。随着太阳能产能扩大的需要、产线自动化水平的提高,实时的自动检测系统是光伏产品制造商改进工艺效率、提高产能、控制成本的重要手段。
太阳能电池片EL(Electro Luminescence,电致发光)图像反应电池片电学、光学和材料特性的空间分辨信息,因此是一种太阳能产业广泛应用的工具。太阳能电池EL图像具有规律性的纹理特征,目标和背景具有各自明显的灰度分布,因此阈值分割法非常适用于EL图像分割。二维最大类间方差法(二维OTSU法),是一种非参数无监督的全局阈值选取算法,由于其同时考虑了图像的灰度信息和空间领域信息,能获得比一维OTSU法分割效果更好的图像。二维OTSU法对于太阳能电池EL图像有着良好的分割效果。然而,二维OTSU法在搜寻最优阈值时往往要花费较长的时间,因此其计算代价也是研究的重点。针对这个问题,有必要提出利用混沌粒子群算法的改进二维OTSU法。
发明内容
本发明提供一种太阳能电池片EL图像检测和缺陷识别方法,其目的是为了提高太阳能电池片EL图像的检测效率和检测速度。
为达到上述目的,本发明采用的技术方案是:一种太阳能电池片EL图像检测和缺陷识别方法,包括如下步骤:
(1)导入待检测的太阳能电池片EL图像,定位EL图像并按电池片栅线进行区域分割;
(2)对步骤(1)得到的图像删除栅线后重新组合,计算每个像素点的灰度值并与该像素点的三领域平均灰度值组成二维直方图,对于阈值(s,t),将二维直方图分割为四个区域:目标、背景、噪声和边缘;
(3)对步骤(2)中二维直方图范围内任一粒子群计算目标和背景两个类的类间离散度矩阵的迹,其值最大为当前最佳位置;
(4)对步骤(3)中粒子群进行更新,包括粒子种群最优个体和粒子历史最优个体;
(5)对步骤(4)中更新后的粒子群计算每个粒子领域内最优个体的中心位置和各个粒子的混沌搜索半径,用Logistic模型产生新的混沌变量,并映射到二维直方图区域内;
(6)对步骤(5)中产生的新变量更新每一个粒子的位置和速度,重新计算类间离散度矩阵的迹直至达到迭代次数,输出粒子群的最佳位置;
(7)对步骤(6)中得到的粒子群最佳位置,分割EL图像得到电池片缺陷图像,并进行缺陷识别。
进一步的,步骤(2)中,在删除所述栅线时同时删除栅线探针。
进一步的,步骤(2)中,将每个像素点的灰度值与该像素点的三领域平均灰度值构成二维组(i,j),其对应联合概率密度为Pi,j
其中,L为灰度等级,0≤L≤255;fi,j为(i,j)出现频数;M×N为区域大小;通过联合概率密度Pi,j投影形成所述二维直方图。
进一步的,步骤(3)中,对任一粒子群计算所有粒子对应的目标和背景两个类的类间离散度矩阵为SB,矩阵的迹为trSB
trSB=c0[(u0i-uTi)2+(u0j-uTj)2]+c1[(u1i-uTi)2+(u1j-uTj)2];
其中,c0与c1分别为目标出现的概率和背景出现的概率,u0i和u0j为目标区域均值向量分量;u1i和u1j为背景区域均值向量分量;uTi和uTj为全局均值向量分量。
进一步的,目标出现的概率为:背景出现的概率为:
进一步的,粒子的速度和位置更新迭代方法如下:
其中:
——粒子i第k次迭代时的速度;
——粒子i第k次迭代时的位置;
pbesti——粒子i第k次迭代搜索到的最优位置;
gbest——第k次迭代粒子群搜索到的最优位置;
w——惯性因子;
r1和r2——[0,1]之间的随机数;
c1和c2——加速度因子。
进一步的,步骤(7)中,根据求得的粒子群最佳位置(s*,t*),进行二值化处理,得到分割后的图像为:
其中,f(x,y)为电池片EL灰度图像,g(x,y)为电池片EL灰度图像的三领域平均灰度值构成的图像,缺陷区域为0,无缺陷区域为1。
进一步的,按照以下过程对太阳能电池片EL图像缺陷进行识别:选择一组包含不同种类的有缺陷和无缺陷的EL图像样本进行训练,通过混沌粒子群算法计算统计其二维直方图的最佳分割位置,根据无缺陷图像的最佳分割位置确定判定区域范围,然后对不同种类缺陷进行分类判断。
采用以上技术方案后,本发明与现有技术相比具有如下优点:本发明提出的太阳能电池片EL图像检测和缺陷识别方法,对太阳能电池片EL图像使用二维OTSU法,同时考虑了图像的灰度信息和空间领域信息,能获得比传统基于一维图像的分割方法效果更好的图像。利用混沌粒子群算法使二维OTSU算法能快速收敛,防止陷入局部收敛,提高了检测方法的计算效率和正确率,能适应自动化生产线的需求。实验结果表明,基于混沌粒子群和二维OTSU法对太阳能电池片EL图像进行检测和识别有比传统方法更好的效果。
附图说明
附图1为太阳能电池片EL图像检测和缺陷识别流程图;
附图2为二维直方图平面投影示意图。
具体实施方式
下面结合附图及实施例对本发明作进一步说明,以使本发明的优势和特点能更易于被本领域的研究技术人员理解。
本发明提供一种太阳能电池片EL图像检测和缺陷识别方法,其用于对太阳能电池片分选测试阶段进行EL图像检测,参见附图1为太阳能电池片EL图像检测和缺陷识别流程图。该方法具体包括如下步骤:
(1)图像预处理及二维构建
对于同一台电池片EL测试机,其EL测试图像位置一致性很高,为了消除电池片栅线及栅线探针在EL图像检测过程中的影响,首先对电池片EL图像进行预处理。定位图像,删除每条栅线及栅线探针对应的宽度,并将其他区域重新组合成大小为M×N的电池片EL图像。
对于所得的电池片EL图像,计算每个像素点的灰度值与该像素点的三领域平均灰度值组成二维组(i,j)。其对应联合概率密度为Pi,j
其中,L为灰度等级,0≤L≤255;fi,j为(i,j)出现频数;M×N为区域大小。
(2)基于混沌粒子群的二维OTSU缺陷分割
将联合概率密度投影形成二维直方图,参见附图2所示为二维直方图平面投影示意图,对于某一阈值(s,t)可将图像分隔为四个区域,远离对角线的区域2和区域3分别为噪声和边缘,在对角线上的区域0和区域1分别为目标和背景。
任一粒子群计算所有粒子对应的目标和背景两个类的类间离散度矩阵为SB;矩阵的迹为trSB,称为粒子的适应度值:
trSB=c0[(u0i-uTi)2+(u0j-uTj)2]+c1[(u1i-uTi)2+(u1j-uTj)2];
其中,为目标出现的概率;为背景出现的概率。u0i、u0j为目标区域均值向量分量;u1i、u1j为背景区域均值向量分量;uTi、uTj为全局均值向量分量,类间离散度矩阵的迹最大时为当前最佳位置。
粒子的最优解为(s*,t*),使得类间离散度矩阵的迹最大,即:
通过计算粒子群所有粒子的适应度值,更新种群最优个体gbest和粒子最优个体pbesti,计算每个粒子领域内最优个体的中心位置和各个粒子的混沌搜索半径。在粒子群进行优化搜索过程中,为了防止粒子群陷入局部最优,利用Logistic混沌模型yid(t+1)=uyid(t)(1-yid(t))产生新的混沌变量,并将此变量映射为搜索区域内的变量,以此更新粒子群直至达到迭代次数。
粒子的速度和位置更新迭代方程如下:
其中:
——粒子i第k次迭代时的速度;
——粒子i第k次迭代时的位置;
pbesti——粒子i第k次迭代搜索到的最优位置;
gbest——第k次迭代粒子群搜索到的最优位置;
w——惯性因子;
r1和r2——[0,1]之间的随机数;
c1和c2——加速度因子。
重复计算,直到达到迭代次数要求。输出粒子群的最佳位置,即最优阈值向量(s*,t*),可以对原EL图像进行二值化处理,得到分割后的图像:
其中,f(x,y)为电池片EL灰度图像,g(x,y)为电池片EL灰度图像的三领域平均灰度值构成的图像。
其中,缺陷区域为0(白色),无缺陷区域为1(黑色)。
本实施例选用测试的电池片EL图像的像素为950*950,通过遍历计算所有点,得到类间离散矩阵的迹即适应度值最大值为5191.94,此时最佳分割点为(82,153),计算时间21s。而传统的遍历计算需要对所有点进行计算比较后得到结果,计算量大,耗时长,不适合实时应用。以下表1为两种检测算法的比较。
表1
通过对比传统粒子群算法和本发明提出的混沌粒子群优化算法,迭代50次时,传统粒子群算法陷入了局部最优,而本发明的混沌粒子群优化算法则为正确最优解,比传统粒子群算法有着更好的准确性和收敛性能。整个计算过程用时0.136s,可以实现高效实时的缺陷目标提取。
选取400张电池片EL图像,其中270张无缺陷,130张有缺陷,计算无缺陷电池片的最佳分割点平均值,通过训练得到判断阈值距离为γ时,缺陷识别准确率可达99.4%以上。
本发明的太阳能电池片EL图像检测和缺陷识别方法,能获得比传统基于一维图像的分割方法效果更好的图像,利用混沌粒子群算法使二维OTSU算法能快速收敛,防止陷入局部收敛,提高了检测方法的计算效率和正确率,能适应自动化生产线的需求。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发明的精神实质所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于,包括如下步骤:
(1)导入待检测的太阳能电池片EL图像,定位EL图像并按电池片栅线进行区域分割;
(2)对步骤(1)得到的图像删除栅线后重新组合,计算每个像素点的灰度值并与该像素点的三领域平均灰度值组成二维直方图,对于阈值(s,t),将二维直方图分割为四个区域:目标、背景、噪声和边缘;
(3)对步骤(2)中二维直方图范围内任一粒子群计算目标和背景两个类的类间离散度矩阵的迹,其值最大为当前最佳位置;
(4)对步骤(3)中粒子群进行更新,包括粒子种群最优个体和粒子历史最优个体;
(5)对步骤(4)中更新后的粒子群计算每个粒子领域内最优个体的中心位置和各个粒子的混沌搜索半径,用Logistic模型产生新的混沌变量,并映射到二维直方图区域内;
(6)对步骤(5)中产生的新变量更新每一个粒子的位置和速度,重新计算类间离散度矩阵的迹直至达到迭代次数,输出粒子群的最佳位置;
(7)对步骤(6)中得到的粒子群最佳位置,分割EL图像得到电池片缺陷图像,并进行缺陷识别。
2.根据权利要求1所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于:步骤(2)中,在删除所述栅线时同时删除栅线探针。
3.根据权利要求1所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于:步骤(2)中,将每个像素点的灰度值与该像素点的三领域平均灰度值构成二维组(i,j),其对应联合概率密度为Pi,j
其中,L为灰度等级,0≤L≤255;fi,j为(i,j)出现频数;M×N为区域大小;通过联合概率密度Pi,j投影形成所述二维直方图。
4.根据权利要求3所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于:步骤(3)中,对任一粒子群计算所有粒子对应的目标和背景两个类的类间离散度矩阵为SB,矩阵的迹为trSB
trSB=c0[(u0i-uTi)2+(u0j-uTj)2]+c1[(u1i-uTi)2+(u1j-uTj)2];
其中,c0与c1分别为目标出现的概率和背景出现的概率,u0i和u0j为目标区域均值向量分量;u1i和u1j为背景区域均值向量分量;uTi和uTj为全局均值向量分量。
5.根据权利要求4所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于,
目标出现的概率为:
背景出现的概率为:
6.根据权利要求1所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于,粒子的速度和位置更新迭代方法如下:
其中:
——粒子i第k次迭代时的速度;
——粒子i第k次迭代时的位置;
pbesti——粒子i第k次迭代搜索到的最优位置;
gbest——第k次迭代粒子群搜索到的最优位置;
w——惯性因子;
r1和r2——[0,1]之间的随机数;
c1和c2——加速度因子。
7.根据权利要求1所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于,步骤(7)中,根据求得的粒子群最佳位置(s*,t*),进行二值化处理,得到分割后的图像为:
其中,f(x,y)为电池片EL灰度图像,g(x,y)为电池片EL灰度图像的三领域平均灰度值构成的图像,缺陷区域为0,无缺陷区域为1。
8.根据权利要求1所述的一种太阳能电池片EL图像检测和缺陷识别方法,其特征在于,按照以下过程对太阳能电池片EL图像缺陷进行识别:选择一组包含不同种类的有缺陷和无缺陷的EL图像样本进行训练,通过混沌粒子群算法计算统计其二维直方图的最佳分割位置,根据无缺陷图像的最佳分割位置确定判定区域范围,然后对不同种类缺陷进行分类判断。
CN201810794758.5A 2018-07-19 2018-07-19 一种太阳能电池片el图像检测和缺陷识别方法 Active CN109120230B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810794758.5A CN109120230B (zh) 2018-07-19 2018-07-19 一种太阳能电池片el图像检测和缺陷识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810794758.5A CN109120230B (zh) 2018-07-19 2018-07-19 一种太阳能电池片el图像检测和缺陷识别方法

Publications (2)

Publication Number Publication Date
CN109120230A true CN109120230A (zh) 2019-01-01
CN109120230B CN109120230B (zh) 2019-10-11

Family

ID=64862243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810794758.5A Active CN109120230B (zh) 2018-07-19 2018-07-19 一种太阳能电池片el图像检测和缺陷识别方法

Country Status (1)

Country Link
CN (1) CN109120230B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111899250A (zh) * 2020-08-06 2020-11-06 罗春华 基于区块链和医学图像的远程疾病智能诊断系统
CN112039439A (zh) * 2020-07-15 2020-12-04 华东师范大学 一种太阳能电池缺陷的自动检测系统及检测方法
CN113192857A (zh) * 2021-04-20 2021-07-30 山西潞安太阳能科技有限责任公司 一种判断晶硅太阳能电池片失效的方法
CN115063409A (zh) * 2022-07-28 2022-09-16 南通恒强轧辊有限公司 一种机械刀具表面材质检测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980470A (zh) * 2010-10-03 2011-02-23 鲁东大学 一种基于混沌粒子群优化的ofdm系统资源分配算法
CN102609951A (zh) * 2012-03-29 2012-07-25 重庆大学 光伏电池板遮荫部分的检测方法
US20140363054A1 (en) * 2011-12-21 2014-12-11 Abengoa Solar New Technologies, S.A. Method for the automatized inspection of photovoltaic solar collectors installed in plants
CN106094969A (zh) * 2016-05-17 2016-11-09 湘潭大学 一种光伏发电系统最大功率点追踪的图像辅助诊断技术
CN107490584A (zh) * 2017-09-16 2017-12-19 河北工业大学 一种太阳能电池片el测试断栅缺陷检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980470A (zh) * 2010-10-03 2011-02-23 鲁东大学 一种基于混沌粒子群优化的ofdm系统资源分配算法
US20140363054A1 (en) * 2011-12-21 2014-12-11 Abengoa Solar New Technologies, S.A. Method for the automatized inspection of photovoltaic solar collectors installed in plants
CN102609951A (zh) * 2012-03-29 2012-07-25 重庆大学 光伏电池板遮荫部分的检测方法
CN106094969A (zh) * 2016-05-17 2016-11-09 湘潭大学 一种光伏发电系统最大功率点追踪的图像辅助诊断技术
CN107490584A (zh) * 2017-09-16 2017-12-19 河北工业大学 一种太阳能电池片el测试断栅缺陷检测方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039439A (zh) * 2020-07-15 2020-12-04 华东师范大学 一种太阳能电池缺陷的自动检测系统及检测方法
CN111899250A (zh) * 2020-08-06 2020-11-06 罗春华 基于区块链和医学图像的远程疾病智能诊断系统
CN113192857A (zh) * 2021-04-20 2021-07-30 山西潞安太阳能科技有限责任公司 一种判断晶硅太阳能电池片失效的方法
CN113192857B (zh) * 2021-04-20 2023-05-12 山西潞安太阳能科技有限责任公司 一种判断晶硅太阳能电池片失效的方法
CN115063409A (zh) * 2022-07-28 2022-09-16 南通恒强轧辊有限公司 一种机械刀具表面材质检测方法及系统

Also Published As

Publication number Publication date
CN109120230B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN109120230B (zh) 一种太阳能电池片el图像检测和缺陷识别方法
CN107145846B (zh) 一种基于深度学习的绝缘子识别方法
Tang et al. Color image segmentation with genetic algorithm for in-field weed sensing
CN113379703B (zh) 基于Yolo-v4网络结构光伏面板暗斑缺陷检测方法
CN106599915B (zh) 一种车载激光点云分类方法
CN103996209A (zh) 一种基于显著性区域检测的红外舰船目标分割方法
CN107481237B (zh) 一种基于多帧温度特性的红外阵列图像热斑检测方法
Rahman et al. CNN-based deep learning approach for micro-crack detection of solar panels
CN102831604A (zh) 一种灰度图像的二维Renyi熵阈值分割方法
CN110378239A (zh) 一种基于深度学习的实时交通标志检测方法
CN104715490A (zh) 一种基于自适应步长和声搜索算法的脐橙图像分割方法
CN116310785B (zh) 基于YOLO v4的无人机影像路面病害检测方法
CN114241364A (zh) 一种架空输电线路异物目标快速标定方法
CN1619593A (zh) 基于多特征信息融合的视频运动目标自适应跟踪方法
CN108830311A (zh) 一种基于Adaboost的红外图像光伏阵列识别方法
CN111754538A (zh) Usb表面缺陷检测的阈值分割方法
Zeng et al. Steel sheet defect detection based on deep learning method
CN112801892A (zh) 一种基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测方法
CN115908354A (zh) 一种基于双尺度策略和改进的yolov5网络的光伏面板缺陷检测方法
CN113781466A (zh) 基于多尺度注意力密集网络的太阳能电池板缺陷识别方法
CN114627109A (zh) 基于图像增强和深度学习的煤矸分类识别方法与流程
CN114862902A (zh) 一种基于四叉树的光照自适应orb特征提取和匹配方法
CN110188811A (zh) 基于赋范梯度特征与卷积神经网络的水下目标检测方法
CN109523015A (zh) 一种神经网络中图像处理方法
WO2024077979A1 (zh) 基于改进的SOLOv2的蘑菇簇轮廓分割和重构方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant