CN109117584B - 一种低速飞机突风载荷系数计算方法及设备 - Google Patents

一种低速飞机突风载荷系数计算方法及设备 Download PDF

Info

Publication number
CN109117584B
CN109117584B CN201811029858.5A CN201811029858A CN109117584B CN 109117584 B CN109117584 B CN 109117584B CN 201811029858 A CN201811029858 A CN 201811029858A CN 109117584 B CN109117584 B CN 109117584B
Authority
CN
China
Prior art keywords
coefficient
attack
alf
angle
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811029858.5A
Other languages
English (en)
Other versions
CN109117584A (zh
Inventor
李俊机
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Tengdun Technology Co Ltd
Original Assignee
Sichuan Tengdun Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Tengdun Technology Co Ltd filed Critical Sichuan Tengdun Technology Co Ltd
Priority to CN201811029858.5A priority Critical patent/CN109117584B/zh
Publication of CN109117584A publication Critical patent/CN109117584A/zh
Application granted granted Critical
Publication of CN109117584B publication Critical patent/CN109117584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

本发明公开了一种低速飞机突风载荷系数计算方法及设备,该方法包括:获取随各个迎角变化的飞机升力系数;求取飞机等高等速平飞升力系数CL1和平飞迎角alf1;求取突风引起的迎角变化量Δalf;利用迎角‑升力系数对应关系插值得到alf1+Δalf对应的升力系数CL2;求取升力系数增量ΔCL=CL2‑CL1;使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数。本发明的计算方法及设备可以针对任意类型的升力特性飞机(包括升力线处于线性区域和非线性区域),符合实际情况,数据准确可用。

Description

一种低速飞机突风载荷系数计算方法及设备
技术领域
本发明涉及飞机结构强度设计领域,尤其涉及一种低速飞机突风载荷系数计算方法及设备。
背景技术
突风载荷是飞机在不平衡大气中飞行,由扰动气流引起的附加载荷,是结构强度设计的重要依据之一。
国军标GJB67.2-85和中国民航适航规定CCAR23部分别对军机和民机的突风载荷系数作了具体规定,并提供了估算公式。综合考虑军机和民机规范中离散突风的要求,两者的估算公式基本一致,仅仅对突风大小的规定略有差别。
低速飞机飞行速度小,空中遭遇大自然突风紊流后,引起的突风迎角大,可能触及到飞机升力线偏离线性区域,国军标GJB67.2-85和中国民航适航规定CCAR23部中突风载荷系数经验公式已不适用。
发明内容
本发明所要解决的技术问题是:针对现有技术存在的问题,本发明提出一种低速飞机突风载荷系数计算方法及设备,可以针对任意类型的升力特性飞机(包括升力线处于线性区域和非线性区域),符合实际情况,数据准确可用。
本发明提供的一种低速飞机突风载荷系数计算方法,包括:
获取随各个迎角变化的飞机升力系数;
求取飞机等高等速平飞升力系数CL1和平飞迎角alf1
求取突风引起的迎角变化量Δalf;
利用迎角-升力系数对应关系插值得到alf1+Δalf对应的升力系数CL2
求取升力系数增量ΔCL=CL2-CL1
使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数。
进一步,根据公式
Figure GDA0001856811960000021
求取CL1;利用迎角-升力系数对应关系插值得到alf1;其中,
Figure GDA0001856811960000022
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度。
进一步,求取Δalf的计算公式为
Figure GDA0001856811960000023
其中,Ude为突风速度,V为飞机当量速度。
进一步,计算突风载荷系数的突风载荷系数公式为
Figure GDA0001856811960000024
其中,n为突风载荷系数,
Figure GDA0001856811960000025
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度,Kg为突风缓和系数。
本发明另一方面提供的一种低速飞机突风载荷系数计算设备,包括:
获取装置,用于获取随各个迎角变化的飞机升力系数;
平飞升力系数和平飞迎角求取装置,用于求取飞机等高等速平飞升力系数CL1和平飞迎角alf1
迎角变化量求取装置,用于求取突风引起的迎角变化量Δalf;
升力系数求取装置,用于利用迎角-升力系数对应关系插值得到alf1+Δal对应的升力系数CL2
升力系数增量求取装置,用于求取升力系数增量ΔCL=CL2-CL1
突风载荷系数计算装置,用于使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数。
进一步,平飞升力系数和平飞迎角求取装置根据公式
Figure GDA0001856811960000026
求取CL1,并利用迎角-升力系数对应关系插值得到alf1;其中,
Figure GDA0001856811960000027
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度。
进一步,迎角变化量求取装置求取Δalf的计算公式为
Figure GDA0001856811960000031
其中,Ude为突风速度,V为飞机当量速度。
进一步,突风载荷系数计算装置计算突风载荷系数的突风载荷系数公式为
Figure GDA0001856811960000032
其中,n为突风载荷系数,
Figure GDA0001856811960000033
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度,Kg为突风缓和系数。
本发明另一方面提供的一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上所述的方法的步骤。
与现有技术相比,本发明的方法适用于气动力处于线性区域和非线性区域的飞机,符合实际情况,数据准确可用。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1为升力线示意图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
以中国民航适航规定CCAR23部为例,突风载荷系数按下列公式计算:
Figure GDA0001856811960000041
式中:
Figure GDA0001856811960000042
为突风缓和系数;
Figure GDA0001856811960000043
为飞机质量比;
Ude为中国民航适航规定CCAR23部规定的突风速度,米/秒;
ρ0为海平面大气密度,公斤/米3
ρH为突风计算所在高度的大气密度,公斤/米3
Wg/S为翼载,牛顿/米2
Figure GDA0001856811960000044
为平均气动弦长,米;
g为重力加速度,米/秒2
V为飞机当量速度,米/秒;
a为机翼升力系数曲线CL的斜率(1/弧度)。
通过对突风载荷系数计算公式的深刻理解,可以得到:
Figure GDA0001856811960000045
通过一层一层剥离,各项的物理意义如下:
Figure GDA0001856811960000046
为飞行速压,帕斯卡;
Figure GDA0001856811960000047
为飞机平飞时,遭遇突风后的迎角变化增量(突风向上时引起的迎角变化增量为正);
Figure GDA0001856811960000048
为突风迎角乘以升力系数曲线CL的斜率,表征突风引起的升力系数增量,无量纲量;
Figure GDA0001856811960000049
为速压乘以升力系数乘以参考面积,升力系数变为有量纲量,牛顿;
Figure GDA0001856811960000051
为升力除以重量,法向过载的定义,无量纲量;
Kg为突风缓和系数,是对突风减缓的一个修正因子,是飞机质量比μg的函数。
对于遭遇突风后,升力线处于线性区域的飞机而言,以上公式没有任何问题,但是对于升力线偏离线性区域的飞机,使用升力系数增量
Figure GDA0001856811960000052
得到的数值偏大,如图1所示,其中alf1表示平飞迎角,Δalf表示突风引起的迎角变化量;CL′为中国民航适航规定CCAR23部中规定的升力系数增量,ΔCL为飞机实际的升力系数增量。综上所述,存在以下两种情况:
(1)当alf1+Δalf处于升力线线性区域时,ΔCL=CL′;
(2)当alf1+Δalf处于升力线非线性区域时,ΔCL<CL′。
中国民航适航规定CCAR23部中,
Figure GDA0001856811960000053
——突风引起的升力系数增量不合适,本发明将使用另外一种方法来求取突风引起的升力系数增量,该方法同样适用于升力线处于线性区域的飞机。
本发明使用的方法需要的输入条件是,随各个迎角变化的飞机升力系数,以海高高度0米为例,飞机飞行速度等于飞机当量速度V。
步骤1,求取飞机等高等速平飞升力系数CL1和平飞迎角alf1。等高等速平飞载荷系数为1。已知全机重量W(单位:kg),飞行速压
Figure GDA0001856811960000054
参考面积S。等高等速平飞条件是升力等于重力,即
Figure GDA0001856811960000055
求得平飞升力系数CL1。利用迎角-升力系数对应关系,插值得到飞机等高等速平飞的迎角alf1
步骤2,求取突风引起的迎角变化量Δalf。突风引起的迎角等于突风速度除以飞行速度的反正切函数,
Figure GDA0001856811960000056
步骤3,利用迎角-升力系数对应关系插值得到alf1+Δalf的升力系数CL2。步骤4,升力系数相减求取升力系数增量ΔCL=CL2-CL1。步骤5,使用求取的升力系数增量ΔCL替换突风载荷系数中的升力系数增量
Figure GDA0001856811960000061
利用突风载荷系数公式得到突风载荷系数。
本发明还提供了一种与上述方法步骤一一对应的计算设备,该计算设备包括:获取装置,用于获取随各个迎角变化的飞机升力系数;平飞升力系数和平飞迎角求取装置,用于求取飞机等高等速平飞升力系数CL1和平飞迎角alf1;迎角变化量求取装置,用于求取突风引起的迎角变化量Δalf;升力系数求取装置,用于利用迎角-升力系数对应关系插值得到alf1+Δalf对应的升力系数CL2;升力系数增量求取装置,用于求取升力系数增量ΔCL=CL2-CL1;突风载荷系数计算装置,用于使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random AccessMemory)、磁盘或光盘等。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (3)

1.一种低速飞机突风载荷系数计算方法,其特征在于,包括:
获取随各个迎角变化的飞机升力系数;
求取飞机等高等速平飞升力系数CL1和平飞迎角alf1
求取突风引起的迎角变化量Δalf;
利用迎角-升力系数对应关系插值得到alf1+Δalf对应的升力系数CL2
求取升力系数增量ΔCL=CL2-CL1
使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数;
根据公式
Figure FDA0003940768790000011
求取CL1;利用迎角-升力系数对应关系插值得到alf1;其中,
Figure FDA0003940768790000012
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度;
求取Δalf的计算公式为
Figure FDA0003940768790000013
其中,Ude为突风速度,V为飞机当量速度;
计算突风载荷系数的突风载荷系数公式为
Figure FDA0003940768790000014
其中,n为突风载荷系数,
Figure FDA0003940768790000015
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度,Kg为突风缓和系数。
2.一种低速飞机突风载荷系数计算设备,其特征在于,包括:
获取装置,用于获取随各个迎角变化的飞机升力系数;
平飞升力系数和平飞迎角求取装置,用于求取飞机等高等速平飞升力系数CL1和平飞迎角alf1
迎角变化量求取装置,用于求取突风引起的迎角变化量Δalf;
升力系数求取装置,用于利用迎角-升力系数对应关系插值得到alf1+Δalf对应的升力系数CL2
升力系数增量求取装置,用于求取升力系数增量ΔCL=CL2-CL1
突风载荷系数计算装置,用于使用求取的升力系数增量ΔCL利用突风载荷系数公式计算突风载荷系数;
平飞升力系数和平飞迎角求取装置根据公式
Figure FDA0003940768790000021
求取CL1,并利用迎角-升力系数对应关系插值得到alf1;其中,
Figure FDA0003940768790000022
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度;
迎角变化量求取装置求取Δalf的计算公式为
Figure FDA0003940768790000023
其中,Ude为突风速度,V为飞机当量速度;
突风载荷系数计算装置计算突风载荷系数的突风载荷系数公式为
Figure FDA0003940768790000024
其中,n为突风载荷系数,
Figure FDA0003940768790000025
为飞行速压,S为参考面积,W为全机重量,g为重力加速度,ρ0为海平面大气密度,V为飞机当量速度,Kg为突风缓和系数。
3.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1所述的方法的步骤。
CN201811029858.5A 2018-09-05 2018-09-05 一种低速飞机突风载荷系数计算方法及设备 Active CN109117584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811029858.5A CN109117584B (zh) 2018-09-05 2018-09-05 一种低速飞机突风载荷系数计算方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811029858.5A CN109117584B (zh) 2018-09-05 2018-09-05 一种低速飞机突风载荷系数计算方法及设备

Publications (2)

Publication Number Publication Date
CN109117584A CN109117584A (zh) 2019-01-01
CN109117584B true CN109117584B (zh) 2023-01-13

Family

ID=64858103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811029858.5A Active CN109117584B (zh) 2018-09-05 2018-09-05 一种低速飞机突风载荷系数计算方法及设备

Country Status (1)

Country Link
CN (1) CN109117584B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578816B (zh) * 2021-02-25 2021-05-14 四川腾盾科技有限公司 一种大展翼大型无人机预计到达时间计算方法
CN116560412B (zh) * 2023-07-10 2023-11-07 四川腾盾科技有限公司 一种低速无人机验证最大平飞速度指标的试飞规划方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB815137A (en) * 1956-03-13 1959-06-17 Sperry Rand Corp Flight path angle computers
US4027839A (en) * 1976-03-30 1977-06-07 General Electric Company High angle of attack aircraft control system utilizing a pseudo acceleration signal for control purposes
NO20014597D0 (no) * 2001-09-21 2001-09-21 Hammerfest Stroem As Fremgangsmåte
CN103995918A (zh) * 2014-04-17 2014-08-20 中国航空工业集团公司沈阳飞机设计研究所 一种机翼变形和振动对飞机传递对准影响的分析方法
CN204323687U (zh) * 2014-12-11 2015-05-13 香港理工大学 一种四翼扑翼微型飞行器
CN105183996A (zh) * 2015-09-14 2015-12-23 西北工业大学 面元修正与网格预先自适应计算方法
CN107065899A (zh) * 2015-11-12 2017-08-18 埃姆普里萨有限公司 用于保护飞行器最大升力能力的方法和装置
DE102016111902A1 (de) * 2016-06-29 2018-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Assistenzsystem zur Detektion einer Flugleistungsdegradierung
CN108170886A (zh) * 2017-11-29 2018-06-15 南京航空航天大学 基于预设性能的高超声速飞行器纵向减损控制方法
CN108241767A (zh) * 2016-12-27 2018-07-03 大连理工大学 一种基于叶素理论的海上风机叶片气动载荷分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761970B2 (en) * 2008-10-21 2014-06-24 The Boeing Company Alternative method to determine the air mass state of an aircraft and to validate and augment the primary method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB815137A (en) * 1956-03-13 1959-06-17 Sperry Rand Corp Flight path angle computers
US4027839A (en) * 1976-03-30 1977-06-07 General Electric Company High angle of attack aircraft control system utilizing a pseudo acceleration signal for control purposes
NO20014597D0 (no) * 2001-09-21 2001-09-21 Hammerfest Stroem As Fremgangsmåte
CN103995918A (zh) * 2014-04-17 2014-08-20 中国航空工业集团公司沈阳飞机设计研究所 一种机翼变形和振动对飞机传递对准影响的分析方法
CN204323687U (zh) * 2014-12-11 2015-05-13 香港理工大学 一种四翼扑翼微型飞行器
CN105183996A (zh) * 2015-09-14 2015-12-23 西北工业大学 面元修正与网格预先自适应计算方法
CN107065899A (zh) * 2015-11-12 2017-08-18 埃姆普里萨有限公司 用于保护飞行器最大升力能力的方法和装置
DE102016111902A1 (de) * 2016-06-29 2018-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Assistenzsystem zur Detektion einer Flugleistungsdegradierung
CN108241767A (zh) * 2016-12-27 2018-07-03 大连理工大学 一种基于叶素理论的海上风机叶片气动载荷分析方法
CN108170886A (zh) * 2017-11-29 2018-06-15 南京航空航天大学 基于预设性能的高超声速飞行器纵向减损控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
复合材料机翼结构静强度适航符合性验证分析;刘波浪等;《江苏航空》;20180215(第01期);全文 *
考虑俯仰时鸭式布局飞机突风载荷系数计算;柏振珠,姚卫星;《南京航空航天大学学报》;19941030(第05期);全文 *

Also Published As

Publication number Publication date
CN109117584A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Patel et al. CFD Analysis of an Aerofoil
CN112528407A (zh) 一种固定翼飞机亚音速巡航航程优化设计方法
CN109117584B (zh) 一种低速飞机突风载荷系数计算方法及设备
CN114065398B (zh) 一种大展弦比柔性飞行器飞行性能计算方法
CN113589847B (zh) 一种柔性飞行器飞行半径确定方法
CN105936334B (zh) 一种用于机翼激波控制的减阻针被动控制方法及装置
CN114065399A (zh) 一种考虑复杂气象条件下的无人飞行器飞行性能计算方法
Anyoji et al. Planetary atmosphere wind tunnel tests on aerodynamic characteristics of a Mars airplane scale model
CN114462330A (zh) 飞机结冰冰形预测方法、装置、计算机设备和存储介质
CN113468828A (zh) 一种飞机空中飞行颠簸强度指数计算方法
CN108594653B (zh) 大包线飞行控制律设计的性能极限分析系统
CN116628856A (zh) 一种高效高精度螺旋桨滑流数值模拟方法
Brown et al. The problem of obtaining high lift-drag ratios at supersonic speeds
CN114218684B (zh) 一种民机载荷谱中动态载荷放大因子确定方法
Chen et al. ZONA6 versus the Doublet-Lattice method for unsteady aerodynamics on lifting surfaces
CN205801498U (zh) 一种用于机翼激波控制的减阻针被动控制装置
Hopkins et al. Comparison of Full-Scale Lift and Drag Characteristics of the X-15 Airplane With Wind-Tunnel Results and Theory
Ismail et al. Aerodynamic Performances of MAV Wing Shapes
Blackwell Subsonic Wind-Tunnel Wall Corrections On A Wing With A Clark Y-14 Airfoil
NI et al. Aerodynamic Performances of MAV Wing Shapes/NI Ismail...[et al.]
Thompson et al. Advanced aircraft analysis of the Yak-54 40%
ZHANG et al. Research on modeling of the tilt tri-rotor unmanned aerial vehicle’s dynamic
Singh et al. A Computational Study on Airfoils at a Low Reynolds Number
Jordan Force tests of three thin wings of moderately low aspect ratio at high subsonic Mach numbers
Zhao et al. Research on low-speed aerodynamic characterictics of flying wing standard model with low-aspect ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Junji

Inventor before: Li Junji

Inventor before: Guo Dong

Inventor before: Zeng Dong

GR01 Patent grant
GR01 Patent grant