CN109111030A - 一体化污水处理智能控制系统及控制方法 - Google Patents

一体化污水处理智能控制系统及控制方法 Download PDF

Info

Publication number
CN109111030A
CN109111030A CN201810983627.1A CN201810983627A CN109111030A CN 109111030 A CN109111030 A CN 109111030A CN 201810983627 A CN201810983627 A CN 201810983627A CN 109111030 A CN109111030 A CN 109111030A
Authority
CN
China
Prior art keywords
flow
unit
control
dissolved oxygen
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810983627.1A
Other languages
English (en)
Other versions
CN109111030B (zh
Inventor
李志刚
王振峰
翟鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Solid Run Science And Technology Development Co Ltd
Original Assignee
Chongqing Solid Run Science And Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Solid Run Science And Technology Development Co Ltd filed Critical Chongqing Solid Run Science And Technology Development Co Ltd
Priority to CN201810983627.1A priority Critical patent/CN109111030B/zh
Publication of CN109111030A publication Critical patent/CN109111030A/zh
Application granted granted Critical
Publication of CN109111030B publication Critical patent/CN109111030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明公开了一种一体化污水处理智能控制系统及控制方法。所述的控制系统包括:流量智能调节单元,用于保持污水处理池进水流量稳定在要求的数值;水质监测单元,用于全程检测污水处理池中的水质参数;精准曝气控制单元,用于控制曝气风机的频率;IO配置单元,用于配置系统的通讯接口;和周边配置单元,用于根据污水处理池的监控进行报警和排放。本发明具有远程操作、监视和监测的特点,可以将整个污水处理区域的多台分散式处理设备统一监控,分别操作,精确判断其运行情况和水处理情况,并结合云平台远程监控、操作,更加智能的控制处理过程。

Description

一体化污水处理智能控制系统及控制方法
技术领域
本发明涉及污水处理领域,尤其涉及一体化污水处理智能控制系统及控制方法。
背景技术
随着时代的发展,人们在物质生活上面的要求也有明显的提高,随之而来的是生活垃圾也不断增多。工业污水由于集中产生,可集中处理,但生活垃圾由于分布的不均匀性和零散性,使得集散式污水处理设备应运而生。传统的污水处理设备的电气控制系统一般采用纯硬件电路控制或者简单的PLC控制,由于水处理工程师对电路元件的功能了解不足,往往会将电气功能理想化,使得电气控制回路过于简单,无法很好的长期稳定运行和及时发现问题,再加上地区气候因素,使得之前的调试经验不一定通用。而且,设备稍微老化就会产生大量的无法预测的问题。
发明内容
针对以上问题,本发明提出一种一体化污水处理智能控制系统及控制方法。本发明设计了一整套拥有完整反馈能力且对现场安装环境有极高适应力的技术方案,可实现远程监控、操作和及时的报警通知。
本发明提出的一体化污水处理智能控制系统包括:
流量智能调节单元,用于保持污水处理池进水流量稳定在要求的数值;
水质监测单元,用于全程检测污水处理池中的水质参数;
精准曝气控制单元,用于控制曝气风机的频率;
IO配置单元,用于配置系统的通讯接口;
周边配置单元,用于根据污水处理池的监控进行报警和排放。
优选地,所述流量智能调节单元包括流量采集模块,用于实时采集流量数据;比较模块,用于将采集的流量数据与设定的阈值进行比较,并根据比较结果输出控制信号;调节模块,用于接收控制信号对水泵进行调节。
优选地,所述水质监测单元采用全闭环式处理检测方案,包括出水传感器、预处理传感器和进水传感器,用于检测溶解氧(DO)、酸碱度(PH)、化学需氧量(COD)、污泥浓度(SS)和/或温度。
优选地,所述精准曝气控制单元根据采集到的预处理的溶解氧(DO)量,通过延滞型PID调节算法,结合变频控制方式和曝气占空比的调节,控制溶解氧(DO)量达到合格要求。
优选地,所述IO配置单元通过界面设定和485通信接口实现与控制水质参数的传感器、与外部元件(包括水泵、风机、以及各级电磁阀、各个传感器)、与控制器通讯,并实现与云平台的上传及下发。
本发明提出的控制系统还包括电气设备的生命周期管理单元,该单元包括时间检测模块、次数检测模块、比较模块、显示模块和报警模块。
本发明还提出一种一体化污水处理智能控制方法,包括以下步骤:
(1)污水处理池流量智能调节:当污水处理池液位计显示为高液位时,启动水泵和消毒器,流量调节开始,流量调节包括初步调试阶段,设置为:频率跟随模式;中后期养菌阶段,设置为:流量调节模式;稳定运行后阶段,设置为:自学习流量调节。
(2)对水质进行监测,在污水处理池设进水传感器、预处理传感器和出水传感器,这些传感器检测的信号通过通讯线路发送至监控终端显示;
(3)对污水处理池进行精准曝气,包括:a.采集预处理池的溶解氧;b.将采集的溶解氧值与预设的溶解氧值作比较;c.打开精准曝气开关,风机则根据设定的溶解氧值与反馈回来的溶解氧值来调节水泵的频率。
所述的自学习流量调节包括:a通过流量传感器采集流量的瞬时流量,对其进行存储;b.对存储的数据进行累加,分别产生日流量、周流量和月流量;c.对日流量、周流量和月流量,分别取平均值,计算出平均瞬时流量;d.将所得的最长周期的瞬时流量作为计算结果输出。
本发明提出的控制方法,还包括对所有电器设备的生命周期进行管理,包括:采集数字量反馈信号;将采集的反馈信号与设定寿命进行比较,根据比较结果决定是否更换。
与现有技术相比,本发明具有以下有益效果:
本发明提出的一体化污水处理智能控制系统具有远程操作、监视和监测的特点,可以将整个污水处理区域的多台分散式处理设备统一监控,分别操作,精确判断其运行情况和水处理情况。
附图说明
图1为本发明系统整体示意图;
图2为本发明中流量智能调节示意图;
图3为本发明中水质监测示意图;
图4为本发明中生命周期管理示意图;
图5为本发明中精准曝气示意图;
图6为本发明中IO配置示意图;
图7为本发明中周边配置示意图。
具体实施方式
下面结合附图和实施例对发明进行详细的说明。
污水处理流程包括采集污水;对污水进行简单的过滤,防止大型污物堵塞管道;进入设备后分别经厌氧生物、缺氧生物、好氧生物进行消灭有害化学元素;再进行曝气保证水中的含氧量;接着物理沉淀掉一些表面悬浮物;最后在出水前对大肠杆菌等菌落进行消毒处理。
图1为本发明提出的一体化污水处理智能控制系统,该系统具有远程操作、监视和监测的特点,里面包含了流量智能调节单元、水质监测单元、生命周期管理单元、精准曝气控制单元、IO配置单元和周边配置单元。
流量智能调节单元,其作用是保持污水处理池进水流量稳定在一定的数值。经过长期的调试发现,当污水处理池进水稳定且不间断的情况下,可以产生更加优秀的处理效果。现场由于天气因素,早晚工作内容差异等客观情况,使得污水产生量存在明显的差异。
如图2所示,本发明中的流量智能调节单元包括流量采集模块,用于实时采集流量数据;比较模块,用于将采集的流量数据与设定的阈值进行比较,并根据比较结果输出控制信号;调节模块,用于接收控制信号对水泵进行调节。通过流量采集模块实时采集流量数据,并将采集的流量与设定的阈值进行比较,并根据比较结果对水泵进行控制。本发明中的智能流量调节单元保留原有操作习惯的同时,通过学习最近一个规律周期的排水量,使得系统产生自适应的流量调节模式,从而保证稳定进水、高效处理、合格排放,以达到处理设备最高效的使用。
水质监测单元,如图2所示,用于检测全程处理的水质参数,包括进水传感器、预处理传感器和出水传感器,主要检测溶解氧(DO)、酸碱度(PH)、化学需氧量(COD)、 污泥浓度(SS)和/或温度等参数。传统污水处理工艺采用开环或者半开环式处理方案,利用专业人员的现场勘测和调试,试图通过简单的工艺参数实现全年稳定的出水达标,但是由于季节、地理、水质差异、设备老化等综合因素,使得处理效果一旦离开专业人员就会逐渐变得不太理想。因此,本发明设计出全闭环式处理检测方案,在处理前、中、后三个阶段分别布置传感器进行监测。预处理过程中,若溶解氧偏大,则减少曝气强度,若溶解氧偏小,则增加曝气强度,而采用的方式是控制鼓风机变频器的频率来改变曝气强度,以克服存在的传统问题。
生命周期管理,用于监测电器设备的使用情况,比如监测泵实际运行的多长时间,与泵规定的能使用时间比较,若达到规定的时间则会报警,提醒更换,而阀之类的则监测其实际启动的次数,用于比较。由于传统的PLC操作系统开放了多项可调节周期的电器元件,电器元件由于型号、工作环境、工作强度等客观条件也存在使用次数或者时间的限制,存在电器元件老化更换不及时而影响设备正常运行,或者电器元件没有得到充分使用就被置换等情况。如图4所示,本发明设计的生命周期管理解决方案包括:采集数字量反馈信号;将采集的反馈信号与设定寿命进行比较,根据比较结果决定是否更换。通过对控制回路反馈状态的监测,结合现场使用经验,从次数和时间两个维度进行监测,从而更加充分的解决这类问题。
精准曝气控制单元,用于控制曝气风机的频率。在污水处理过程中,溶解氧的达标需要一定的曝气量,而厌氧菌的生长则对高频曝气动作有较强的排斥作用,加上分散式污水处理设备容积有限,可能在不同的工作时段进水DO不一样等因素,简单的根据经验开环式控制曝气时间未必可达到稳定的控制效果,因此,本发明在传统的污水处理工艺流程上,加入采集到的预处理的DO量,通过一套成熟的延滞型PID调节算法,结合变频控制方式和曝气占空比的调节,控制DO达到合格要求。如图4所示,本发明中,精准曝气控制单元根据采集到的预处理的溶解氧(DO)量,通过延滞型PID调节算法,结合变频控制方式和曝气占空比的调节,控制溶解氧(DO)量达到合格要求。
IO配置单元,用于配置通讯接口。数字量模拟块IO接口,市场上的PLC程序为固定IO口,如DI1为浮球反馈就为指定的IO口,不可更换,而我们的程序却可以将任意DI作为浮球反馈信号。在污水处理行业,工作环境潮湿闭塞,有时发生化学作用时甚至会产生腐蚀性气体,即使采用进口优质的电器元件,在一年的使用后也会有接近百分之一的损坏率,经常需要更换。传统的方式是请专业电工在厂家电气工程师的指导下进行一到两天的检查维修。
如图6所示,本发明采用可配置式IO配置功能,通过界面设定和485通信接口实现与控制水质参数的传感器、与外部元件(包括水泵、风机、以及各级电磁阀、各个传感器)、与控制器通讯,并实现与云平台的上传及下发。在现场出现问题时,一名普通现场运维人员半个小时之内仅操作触摸屏进行调换完成。485通讯也有高度的可调节性,甚至可以通过通讯协议进行其他平台的扩展,方便接入客户指定的平台。
周边配置单元,如图7所示,用于根据污水处理池的监控、报警和排放,
包括报警系统和可以设置周期启停的排泥排渣系统。该单元可以使用手机APP,实现随时随地监控。周边配置单元还可跟云平台通信,实现数据的上传和下发。
本发明提出的一体化污水处理智能控制方法中,各个单元的操作具体包括:
1、流量智能调节:液位计显示为高液位时,水泵启动(可设置为间歇性启动),消毒器也跟着启动(可设置停止时间),流量调节开始。初步调试阶段可设置为:频率跟随模式;中后期养菌阶段可设置为:流量调节模式;c.稳定运行后可设置为:自学习流量调节。
自学习流量调节功能包括:a通过流量传感器采集流量的瞬时流量,对其进行存储;b.对存储的数据进行累加,分别产生日流量、周流量和月流量;c.对日流量、周流量和月流量分别取平均值,计算出平均瞬时流量;d.将所得的最长周期的瞬时流量作为计算结果输出。
图2中包括:(1)通过流量采集模块采集污水处理池进水流量;(2)通过比较模块将采集的流量值与设置的阈值进行比较;(3)通过调节模块调节泵的频率和/或阀的开度调节流量。频率调节是一种较传统的调节模式,流量调节由于反馈流量的滞后性会存在一个偏差,稳定性不如频率调节,但流量调节可使用于长期无人值守的设备。
2、水质监测:在污水处理池设进水传感器、预处理传感器和出水传感器。
这些传感器检测的信号通过通讯线路发送至监控终端显示。可以采用折线图显示最近一段时间的变化情况。以上的传感器主要检测水质的溶解氧、化学需氧量、污泥浓度、温度、酸碱度等,检测到的信号将在折线图上进行显示。
3、生命周期管理包括:
a.采集数字量反馈信号;采集使用到的所有电气设备数据的反馈信号,例如采集中间继电器、交流接触器、电磁阀等的开合次数,防止因设备老化未能及时更换而造成工艺处理不正常。
b.将采集的反馈信号与设定寿命进行比较,根据比较结果决定是否更换,设定寿命分为使用次数和使用时间,根据这两个指标分别考虑。判断结果通过通讯线路发送至云平台和显示终端显示,当达到使用寿命时报警。
4、精准曝气:根据水泵的启停情况,风机启停时间设定,风机起动时,缺氧/厌氧池分别循环启停,多个气提阀分别循环启停。
a.采集预处理池的溶解氧;
b.将采集的溶解氧值与预设的溶解氧值作比较;
c.打开精准曝气开关,风机则根据设定的溶解氧值与反馈回来的溶解氧值来调节频率,而风机的启停仅受工艺的控制。
5、IO配置包括:
a.采集用户界面数据;
b.结合设置的参数,将数据分配至对应的输入输出;
c.结合用户界面的信息,各个参数是否有取反操作;
d.需要取反的将实际内容取反并高亮显示;
e.根据用户界面的通讯地址,定时读取各下位机参数;
f.根据用户界面设置的下位机RTU通讯模式,当接收到对应指令时进行通讯。
6、周边配置包括:
a.将需要上发的放入制定寄存器通过指令发出;
b.当接收到云平台下发指令时,匹配到对应变量进行修改;
c.根据界面设定值,排泥阀和排渣阀定时打开;
d.当报警变量触发的时候,显示在界面上并上传到云平台已经对应的邮
箱、手机号;
e.存储此变量到控制器中,并显示在历史记录中。
本发明具有远程操作、监视和监测的特点,可以将整个污水处理区域的多台分散式处理设备统一监控,分别操作,精确判断其运行情况和水处理情况,并结合云平台远程监控、操作,更加智能的控制处理过程。
上述实施例仅用于说明本发明的具体实施方式。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和变化,这些变形和变化都应属于本发明的保护范围。

Claims (9)

1.一体化污水处理智能控制系统,其特征在于,包括:
流量智能调节单元,用于保持污水处理池进水流量稳定在要求的数值;
水质监测单元,用于全程检测污水处理池中的水质参数;
精准曝气控制单元,用于控制曝气风机的频率;
IO配置单元,用于配置系统的通讯接口;
周边配置单元,用于根据污水处理池的监控进行报警和排放。
2.如权利要求1所述的控制系统,其特征在于,所述流量智能调节单元包括流量采集模块,用于实时采集流量数据;比较模块,用于将采集的流量数据与设定的阈值进行比较,并根据比较结果输出控制信号;调节模块,用于接收控制信号对水泵进行调节。
3.如权利要求1所述的控制系统,其特征在于,所述水质监测单元采用全闭环式处理检测方案,包括出水传感器、预处理传感器和进水传感器,用于检测溶解氧(DO)、酸碱度(PH)、化学需氧量 (COD)、污泥浓度 (SS)和/或温度。
4.如权利要求1所述的控制系统,其特征在于,所述精准曝气控制单元根据采集到的预处理的溶解氧(DO)量,通过延滞型PID调节算法,结合变频控制方式和曝气占空比的调节,控制溶解氧(DO)量达到合格要求。
5.如权利要求1所述的控制系统,其特征在于,所述IO配置单元通过界面设定和485通信接口实现与控制水质参数的传感器、与外部元件;与程序内部通讯,并实现与云平台的上传及下发。
6.如权利要求1所述的控制系统,其特征在于,还包括电气设备的生命周期管理单元,该单元包括时间检测模块、次数检测模块、比较模块和报警模块。
7.一体化污水处理智能控制方法,其特征在于,包括以下步骤:
(1)污水处理池流量智能调节:当液位计显示为高液位时,启动水泵和消毒器,流量调节开始,流量调节包括初步调试阶段,设置为:频率跟随模式;中后期养菌阶段,设置为:流量调节模式;稳定运行后阶段,设置为:自学习流量调节;
(2)对水质进行监测,在污水处理池设进水传感器、预处理传感器和出水传感器,这些传感器检测的信号通过通讯线路发送至监控终端显示;
(3)对所有电器设备的生命周期进行管理,包括:采集数字量反馈信号;将采集的反馈信号与设定寿命进行比较,根据比较结果决定是否更换;
(4)对污水处理池进行精准曝气,包括:a.采集预处理池的溶解氧;b.将采集的溶解氧值与预设的溶解氧值作比较;c.打开精准曝气开关,风机则根据设定的溶解氧值与反馈回来的溶解氧值来调节水泵的频率。
8.如权利要求7所述的控制方法,其特征在于,所述的自学习流量调节包括:a通过流量传感器采集流量的瞬时流量,对其进行存储;b.对存储的数据进行累加,分别产生日流量、周流量和月流量;c.对日流量、周流量和月流量,分别取平均值,计算出平均瞬时流量;d.将所得的最长周期的瞬时流量作为计算结果输出。
9.如权利要求8所述的控制方法,其特征在于,还包括对系统进行周边配置,包括:
a.将需要上发的放入制定寄存器通过指令发出;
b.当接收到云平台下发指令时,匹配到对应变量进行修改;
c.根据界面设定值,排泥阀和排渣阀定时打开;
d.当报警变量触发的时候,显示在界面上并上传到云平台已经对应的邮箱和手机号;
e.存储此变量到控制器中,并显示在历史记录里。
CN201810983627.1A 2018-08-27 2018-08-27 一体化污水处理智能控制系统及控制方法 Active CN109111030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810983627.1A CN109111030B (zh) 2018-08-27 2018-08-27 一体化污水处理智能控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810983627.1A CN109111030B (zh) 2018-08-27 2018-08-27 一体化污水处理智能控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN109111030A true CN109111030A (zh) 2019-01-01
CN109111030B CN109111030B (zh) 2021-12-07

Family

ID=64861139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810983627.1A Active CN109111030B (zh) 2018-08-27 2018-08-27 一体化污水处理智能控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN109111030B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987754A (zh) * 2019-05-22 2019-07-09 山东大学 一种全自动智能化家庭水循环再利用装置、系统及方法
CN111538229A (zh) * 2020-04-28 2020-08-14 重庆工商大学 基于氨氮和溶解氧精准控制的水产养殖循环水处理系统
CN112666331A (zh) * 2020-12-31 2021-04-16 河南平煤神马环保节能有限公司 一种工业污水处理智能控制系统
CN112777654A (zh) * 2021-01-07 2021-05-11 桂林电子科技大学 基于fpga的分散式污水处理方法、系统及存储介质
CN112939199A (zh) * 2021-02-05 2021-06-11 河南德中互利环境科技有限公司 一种基于生物膜法的5g远程智能控制污水处理系统
CN114167764A (zh) * 2021-11-08 2022-03-11 江苏启德水务有限公司 一种基于AIoT的农污设备自动控制系统及控制方法
CN114163087A (zh) * 2021-12-22 2022-03-11 北京桑德环境工程有限公司 一种模块化智能农村污水处理系统
CN117682682A (zh) * 2024-01-31 2024-03-12 河北保蓝环保科技有限公司 污水处理曝气过程的优化控制系统及方法
CN117902745A (zh) * 2024-03-18 2024-04-19 广州崇实自动控制科技有限公司 数字化平台污水曝气方法、装置、设备以及存储介质

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (en) * 1990-03-09 1991-09-11 Hitachi, Ltd. Control apparatus
WO1994019729A1 (de) * 1993-02-16 1994-09-01 Optum Umwelttechnik Gmbh Verfahren zum betrieb einer abwasserreinigungsanlage sowie zugehörige abwasserreinigungsanlage
JPH06312104A (ja) * 1993-04-28 1994-11-08 Meidensha Corp 初沈汚泥引抜制御装置
DE19827877A1 (de) * 1998-06-23 2000-01-20 Michael Bongards Prozeßoptimierung einer nach dem Belebungsverfahren arbeitenden Kläranlage
JP2003140712A (ja) * 2001-11-07 2003-05-16 Toshiba Corp 水処理プラント制御システム
CN101021725A (zh) * 2007-03-23 2007-08-22 陈金龙 污水泵站监控系统
CN201071325Y (zh) * 2007-07-13 2008-06-11 绍兴水处理发展有限公司 曝气池智能供氧系统
CN101261145A (zh) * 2008-04-21 2008-09-10 东南大学 一种水污染物排放总量的智能化测量方法
CN101341097A (zh) * 2005-10-27 2009-01-07 废物流技术有限责任公司 流量均衡的旋转生物接触器
CN101369135A (zh) * 2007-08-14 2009-02-18 上海大地自动化系统工程有限公司 污水处理智能管理系统
CN201242682Y (zh) * 2008-08-15 2009-05-20 孙亦武 污水处理智能化运营监控系统
CN101638287A (zh) * 2009-08-24 2010-02-03 重庆大学 利用排水沟渠的污水原位净化系统
CN102455661A (zh) * 2010-10-26 2012-05-16 上海化学工业区中法水务发展有限公司 适用于污水处理系统中的搅拌器的自适应控制方法
CN102491507A (zh) * 2011-12-13 2012-06-13 西部水务集团(贵州)有限公司 序批式处理工艺在非do状态下的自动控制方法及装置
CN102897980A (zh) * 2012-10-31 2013-01-30 华北水利水电学院 组合式城镇污水处理人工湿地系统及城镇污水处理方法
CN103034929A (zh) * 2012-12-11 2013-04-10 北京恩菲环保股份有限公司 用于污水厂的运营管理系统和远程信息化管理系统
CN103197539A (zh) * 2013-04-01 2013-07-10 鞍山市海汇自动化有限公司 污水处理智能优化控制曝气量的方法
CN203224769U (zh) * 2013-04-24 2013-10-02 鞍山市海汇自动化有限公司 一种污水处理曝气量智能优化控制系统
CN103488195A (zh) * 2013-09-06 2014-01-01 浙江大学 一种建立pwm喷雾流量模型的方法及装置
CN103663674A (zh) * 2013-12-18 2014-03-26 清华大学 一种污水处理厂鼓风曝气过程实时控制装置及控制方法
CN104763644A (zh) * 2014-09-11 2015-07-08 北京城市排水集团有限责任公司 动态下污水处理厂剩余污泥泵优化运行控制装置及方法
CN105430690A (zh) * 2016-01-22 2016-03-23 青岛海信移动通信技术股份有限公司 一种流量显示的方法、系统及移动终端
CN205594403U (zh) * 2016-05-18 2016-09-21 浙江爱迪曼环保科技股份有限公司 一种基于云平台的农村污水处理站远程管理监控系统
CN106020259A (zh) * 2016-08-03 2016-10-12 江苏商达水务有限公司 用于水环境治理的溶氧智能调控装置及其方法
CN106557029A (zh) * 2016-11-11 2017-04-05 中国科学院生态环境研究中心 一种黑臭河流水污染控制与治理的方法
CN106707757A (zh) * 2017-01-23 2017-05-24 中国农业大学 一种灌水时间动态调控方法及其系统
CN107010717A (zh) * 2017-05-21 2017-08-04 桂林理工大学 一种曝气生物滤池的自动检测与控制装置
CN107200428A (zh) * 2016-03-18 2017-09-26 浙江汉诺软件有限公司 污水处理检测系统
CN107942914A (zh) * 2017-12-21 2018-04-20 湖州中科星农科技有限公司 一种水处理设备远程运维系统
CN107986428A (zh) * 2017-12-15 2018-05-04 中原环保股份有限公司 一种污水处理精确曝气方法
CN108171408A (zh) * 2017-12-19 2018-06-15 北京华安普惠高新技术有限公司 一种污水来水与出水量建模方法
CN108217786A (zh) * 2018-03-27 2018-06-29 南方创业(天津)科技发展有限公司 污水脉动净化控制方法及系统
CN108439580A (zh) * 2018-05-30 2018-08-24 北京天诚同创电气有限公司 溶解氧浓度控制系统、方法和装置

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0446036A2 (en) * 1990-03-09 1991-09-11 Hitachi, Ltd. Control apparatus
WO1994019729A1 (de) * 1993-02-16 1994-09-01 Optum Umwelttechnik Gmbh Verfahren zum betrieb einer abwasserreinigungsanlage sowie zugehörige abwasserreinigungsanlage
JPH06312104A (ja) * 1993-04-28 1994-11-08 Meidensha Corp 初沈汚泥引抜制御装置
DE19827877A1 (de) * 1998-06-23 2000-01-20 Michael Bongards Prozeßoptimierung einer nach dem Belebungsverfahren arbeitenden Kläranlage
JP2003140712A (ja) * 2001-11-07 2003-05-16 Toshiba Corp 水処理プラント制御システム
CN101341097A (zh) * 2005-10-27 2009-01-07 废物流技术有限责任公司 流量均衡的旋转生物接触器
CN101021725A (zh) * 2007-03-23 2007-08-22 陈金龙 污水泵站监控系统
CN201071325Y (zh) * 2007-07-13 2008-06-11 绍兴水处理发展有限公司 曝气池智能供氧系统
CN101369135A (zh) * 2007-08-14 2009-02-18 上海大地自动化系统工程有限公司 污水处理智能管理系统
CN101261145A (zh) * 2008-04-21 2008-09-10 东南大学 一种水污染物排放总量的智能化测量方法
CN201242682Y (zh) * 2008-08-15 2009-05-20 孙亦武 污水处理智能化运营监控系统
CN101638287A (zh) * 2009-08-24 2010-02-03 重庆大学 利用排水沟渠的污水原位净化系统
CN102455661A (zh) * 2010-10-26 2012-05-16 上海化学工业区中法水务发展有限公司 适用于污水处理系统中的搅拌器的自适应控制方法
CN102491507A (zh) * 2011-12-13 2012-06-13 西部水务集团(贵州)有限公司 序批式处理工艺在非do状态下的自动控制方法及装置
CN102897980A (zh) * 2012-10-31 2013-01-30 华北水利水电学院 组合式城镇污水处理人工湿地系统及城镇污水处理方法
CN103034929A (zh) * 2012-12-11 2013-04-10 北京恩菲环保股份有限公司 用于污水厂的运营管理系统和远程信息化管理系统
CN103197539A (zh) * 2013-04-01 2013-07-10 鞍山市海汇自动化有限公司 污水处理智能优化控制曝气量的方法
CN203224769U (zh) * 2013-04-24 2013-10-02 鞍山市海汇自动化有限公司 一种污水处理曝气量智能优化控制系统
CN103488195A (zh) * 2013-09-06 2014-01-01 浙江大学 一种建立pwm喷雾流量模型的方法及装置
CN103663674A (zh) * 2013-12-18 2014-03-26 清华大学 一种污水处理厂鼓风曝气过程实时控制装置及控制方法
CN104763644A (zh) * 2014-09-11 2015-07-08 北京城市排水集团有限责任公司 动态下污水处理厂剩余污泥泵优化运行控制装置及方法
CN105430690A (zh) * 2016-01-22 2016-03-23 青岛海信移动通信技术股份有限公司 一种流量显示的方法、系统及移动终端
CN107200428A (zh) * 2016-03-18 2017-09-26 浙江汉诺软件有限公司 污水处理检测系统
CN205594403U (zh) * 2016-05-18 2016-09-21 浙江爱迪曼环保科技股份有限公司 一种基于云平台的农村污水处理站远程管理监控系统
CN106020259A (zh) * 2016-08-03 2016-10-12 江苏商达水务有限公司 用于水环境治理的溶氧智能调控装置及其方法
CN106557029A (zh) * 2016-11-11 2017-04-05 中国科学院生态环境研究中心 一种黑臭河流水污染控制与治理的方法
CN106707757A (zh) * 2017-01-23 2017-05-24 中国农业大学 一种灌水时间动态调控方法及其系统
CN107010717A (zh) * 2017-05-21 2017-08-04 桂林理工大学 一种曝气生物滤池的自动检测与控制装置
CN107986428A (zh) * 2017-12-15 2018-05-04 中原环保股份有限公司 一种污水处理精确曝气方法
CN108171408A (zh) * 2017-12-19 2018-06-15 北京华安普惠高新技术有限公司 一种污水来水与出水量建模方法
CN107942914A (zh) * 2017-12-21 2018-04-20 湖州中科星农科技有限公司 一种水处理设备远程运维系统
CN108217786A (zh) * 2018-03-27 2018-06-29 南方创业(天津)科技发展有限公司 污水脉动净化控制方法及系统
CN108439580A (zh) * 2018-05-30 2018-08-24 北京天诚同创电气有限公司 溶解氧浓度控制系统、方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘载文: "《水环境系统智能化软测量与控制方法》", 31 March 2013, 中国轻工业出版社 *
孙世兵: "《小城镇污水处理设计与运行管理指南》", 31 July 2014, 天津大学出版社 *
范磊等: "时滞过程中流量调节的自适应学习方法研究", 《自动化仪表》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109987754A (zh) * 2019-05-22 2019-07-09 山东大学 一种全自动智能化家庭水循环再利用装置、系统及方法
CN111538229A (zh) * 2020-04-28 2020-08-14 重庆工商大学 基于氨氮和溶解氧精准控制的水产养殖循环水处理系统
CN112666331A (zh) * 2020-12-31 2021-04-16 河南平煤神马环保节能有限公司 一种工业污水处理智能控制系统
CN112777654A (zh) * 2021-01-07 2021-05-11 桂林电子科技大学 基于fpga的分散式污水处理方法、系统及存储介质
CN112939199A (zh) * 2021-02-05 2021-06-11 河南德中互利环境科技有限公司 一种基于生物膜法的5g远程智能控制污水处理系统
CN114167764A (zh) * 2021-11-08 2022-03-11 江苏启德水务有限公司 一种基于AIoT的农污设备自动控制系统及控制方法
CN114163087A (zh) * 2021-12-22 2022-03-11 北京桑德环境工程有限公司 一种模块化智能农村污水处理系统
CN114163087B (zh) * 2021-12-22 2024-03-12 北京桑德环境工程有限公司 一种模块化智能农村污水处理系统
CN117682682A (zh) * 2024-01-31 2024-03-12 河北保蓝环保科技有限公司 污水处理曝气过程的优化控制系统及方法
CN117902745A (zh) * 2024-03-18 2024-04-19 广州崇实自动控制科技有限公司 数字化平台污水曝气方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
CN109111030B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
CN109111030A (zh) 一体化污水处理智能控制系统及控制方法
CN103197539B (zh) 污水处理智能优化控制曝气量的方法
CN107258658A (zh) 基于物联网技术的斑马鱼养殖系统
CN108569756B (zh) 一种智能化污水处理工艺控制新方法(ebis)
CN106227147A (zh) 污水处理厂控制系统
CN203048680U (zh) 无人值守远程遥控分布污水处理控制系统
CN105005261A (zh) 一种循环水养殖中溶解氧自动监控系统及方法
JP2022068358A (ja) 排水処理設備の運転制御装置及び運転制御方法
CN103744362A (zh) 一种污水电化处理过程智能控制系统及其智能控制方法
CN116088450A (zh) 一种污水处理厂智能终端控制系统、构建方法及控制方法
CN109211317A (zh) 净水器控制方法、装置、净水器及计算机可读介质
CN105785951B (zh) 利用统计建模技术实现污水的处理自动化运行系统
CN109362638B (zh) 用于鱼类增殖放流站循环水处理设备的控制系统
CN112099458A (zh) 一种人工智能污水运营系统
Wahid Design of an automated hybrid system for aquaculture and agriculture process and its performance analysis
CN207011539U (zh) 基于物联网技术的斑马鱼养殖系统
Delsy et al. Smart village monitoring and control using PLC and SCADA
CN109775845B (zh) 污水处理中的曝氧量控制方法与装置
CN115879050A (zh) 一种基于iot的智慧农污应急响应方法及系统
Sung et al. Employing a Fuzzy Approach for Monitoring Fish Pond Culture Environment.
US20230042523A1 (en) Smart farm using self-contained hydrogen power system
Madli et al. Intelligent irrigation control system using wireless sensors and android application
CN110240223B (zh) 一种紫外消毒装置的控制方法、装置和系统
CN110865667A (zh) 一种水产养殖区环境智能控制系统
JP6168545B1 (ja) 下水排出方法と下水浄化システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant