CN109103271B - 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法 - Google Patents

一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法 Download PDF

Info

Publication number
CN109103271B
CN109103271B CN201810779753.5A CN201810779753A CN109103271B CN 109103271 B CN109103271 B CN 109103271B CN 201810779753 A CN201810779753 A CN 201810779753A CN 109103271 B CN109103271 B CN 109103271B
Authority
CN
China
Prior art keywords
carbon material
film
silicon
nano carbon
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810779753.5A
Other languages
English (en)
Other versions
CN109103271A (zh
Inventor
贾怡
郭楠
肖林
刘军库
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201810779753.5A priority Critical patent/CN109103271B/zh
Publication of CN109103271A publication Critical patent/CN109103271A/zh
Application granted granted Critical
Publication of CN109103271B publication Critical patent/CN109103271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors
    • H01L31/1185Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors of the shallow PN junction detector type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明的纳米碳材料/硅异质结X射线探测器,使用纳米碳材料与硅构成异质结,同时纳米碳材料作为X射线的透明窗口层和器件的上电极。其中,纳米碳材料为原子序数为6的碳元素构成。在同等厚度下,该材料对X射线的透过率相对于传统的金材料(原子序数79)大幅提高。以针对1keV光子能量的X射线为例,250nm的纳米碳材料的射线透过率达95%,而250nm的金材料的射线透过率小于5%。即在同样的辐照条件下,本发明所述探测器可用于使硅中电子空穴电离、并产生电信号的有效X射线光子数目将远大于传统的金硅面垒探测器,从而可以大幅提高探测器的响应率。

Description

一种基于纳米碳材料/硅异质结的X射线探测器及其制备方法
技术领域
本发明涉及一种X射线探测器,特别涉及一种基于纳米碳材料/硅异质结的X射线探测器及其制备方法,属于纳米碳材料应用技术领域,本发明所述的探测器可用于高能物理、天体物理、工业、安全检测、核医学、X光成像、军事等领域的X射线探测。
背景技术
X射线是波长介于紫外线和γ射线之间的电磁波,其波长很短,介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,其在高能物理、天体物理、工业、安全检测、核医学、X光成像、军事等各个领域具有重要应用。
X射线探测器是将X射线转换为电信号的装置。它接收到射线照射,然后产生与辐射强度相关的电信号,是X射线在各个领域应用的基础。因此,探测器的响应率就十分重要。X射线探测器主要包含气体探测器、闪烁体探测器、半导体探测器等类型,其中半导体探测器具有能量分辨率高、性能稳定、探测效率高、体积小、抗磁性好、光电转换效率高以及价格便宜等优点,已被广泛应用。但是,目前的半导体探测器也存在一些问题,例如,高纯锗探测器由于锗材料的带隙较小,为了抑制暗电流,往往需要对探测器进行制冷;金硅面垒探测器的窗口层使用金,而金作为重金属(原子序数79),对X射线的透过性差。例如250nm的金对1keV光子能量的X射线透过率小于5%,这就严重影响了探测器的探测效率;硅PIN探测器在制备过程中需要使用热扩散等技术,并且器件的死层较厚,因此对于较低能量的X射线探测的灵敏度较差。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种基于纳米碳材料/硅异质结的X射线探测器及其制备方法,探测器以纳米碳材料作为窗口层和上电极层,与硅构成异质结,探测器中的纳米碳材料层具有对X射线透过率高、对可见光完全阻碍的特点,因此该器件对X射线波段具有良好的响应,同时有效屏蔽了可见光波段的干扰。探测器结构、制备工艺简单。
本发明的技术解决方案是:
一种基于纳米碳材料/硅异质结的X射线探测器,自上而下依次包括纳米碳材料层(1),硅片(2)和下电极层(3),如附图1所示。本发明所述探测器中的纳米碳材料层对X射线具有良好的透过性,X射线光子可以穿透纳米碳材料层并被硅片衬底吸收,使硅中的空穴电子有效电离,空穴电子分别被纳米碳材料和下电极收集,从而产生电信号。
上述技术方案中,纳米碳材料与硅构成异质结,产生内建电场;纳米碳材料同时作为X射线的透明窗口层和器件的上电极层,硅片作为纳米碳材料的衬底。
上述技术方案中,所使用的纳米碳材料为碳纳米管薄膜或石墨烯薄膜。
上述技术方案中,所使用的碳纳米管薄膜或石墨烯薄膜的厚度为250nm~10μm。
上述技术方案中,所用的碳纳米管薄膜或石墨烯薄膜同时作为X射线的窗口层和可见光的屏蔽层。
上述技术方案中,所使用的碳纳米管薄膜为单壁碳纳米管薄膜、双壁碳纳米管薄膜或多壁碳纳米管薄膜;所使用的石墨烯薄膜为多层石墨烯薄膜。
上述技术方案中,所使用的硅片的导电类型为N型。
上述技术方案中,通过Ti/Au或铟镓合金作为器件的下电极,与纳米碳材料构成的上电极一起组成器件的两极。
纳米碳材料层与硅片构成异质结,纳米碳材料层同时作为X射线的透明窗口层和器件的上电极,硅片作为纳米碳材料的衬底。
所用的纳米碳材料层作为X射线的窗口层和可见光的屏蔽层。
以硅片作为纳米碳材料层的衬底。
所使用的硅片为N型硅片。
以Ti/Au或铟镓合金作为器件的下电极。
一种基于碳纳米管/硅异质结的X射线探测器的制备方法,该方法包括如下步骤:
1)采用化学气相沉积法制备碳纳米管薄膜,通过纯化、铺展,获得厚度为250nm~10μm的碳纳米管薄膜;
2)将步骤1)得到的碳纳米管薄膜转移到N型硅片的一侧表面,并在自然状态或红外烤灯或氮气下干燥;
3)在硅片的另一侧蒸镀Ti/Au金属电极或铟镓合金电极,从而获得碳纳米管/硅异质结X射线探测器。
一种基于石墨烯/硅异质结的X射线探测器的制备方法,该方法包括如下步骤:
1)采用化学气相沉积法在镍箔基底上制备石墨烯薄膜,通过对镍箔的腐蚀,获得漂浮在水面上的石墨烯薄膜,并对石墨烯薄膜进行漂洗。获得厚度为250nm~10μm的石墨烯薄膜;
2)将石墨烯薄膜转移到N型硅片的一侧表面,并在自然状态或红外烤灯或氮气下干燥;
3)在硅片的另一侧蒸镀Ti/Au金属电极或铟镓合金电极,从而获得石墨烯/硅异质结X射线探测器。
有益效果
(1)本发明的纳米碳材料/硅异质结X射线探测器,使用纳米碳材料与硅构成异质结,同时纳米碳材料作为X射线的透明窗口层和器件的上电极。其中,纳米碳材料为原子序数为6的碳元素构成。在同等厚度下,该材料对X射线的透过率相对于传统的金材料(原子序数79)大幅提高。以针对1keV光子能量的X射线为例,250nm的纳米碳材料的射线透过率达95%,而250nm的金材料的射线透过率小于5%。即在同样的辐照条件下,本发明所述探测器可用于使硅中电子空穴电离、并产生电信号的有效X射线光子数目将远大于传统的金硅面垒探测器,从而可以大幅提高探测器的响应率。
(2)纳米碳材料/硅异质结X射线探测器中纳米碳材料层对X射线优异的透过率,在钨靶的X射线管产生的X射线辐照下,在X射线的强度为6.5mGyair/s时,碳纳米管/硅异质结X射线探测器在零偏压下的短路电流密度为3.85μA/cm2(见实施例1),而作为对照样品的金硅面垒探测器的短路电流密度仅为2.5μA/cm2,本发明所述探测器的响应较对照样品提升幅度达54%。
(3)本发明所使用的纳米碳材料层在保证高的X射线透过率的同时,有效阻止了可见光的透过,从而屏蔽的可见光对器件响应的干扰。
(4)本发明所述的纳米碳材料/硅异质结X射线探测器,器件结构简单,加工过程中不需要高温扩散等工艺,加工成本低廉,体积小巧,便于在高能物理、天体物理、工业、安全检测等领域展开应用。
(5)本发明设计一种基于纳米碳材料/硅异质结的X射线探测器,属于纳米碳材料应用领域。所述的X射线探测器自上而下依次包括纳米碳材料层(1),硅片(2),下电极层(3)。其中,纳米碳材料层因其完全由原子序数仅为6的碳元素构成,其对X射线具有良好的透过性;进一步,穿透纳米碳材料层的X射线被硅吸收并使硅中的空穴电子电离,硅中产生的空穴电子分别被纳米碳材料和下电极收集,从而产生电信号。该探测器具有纳米碳材料层对X射线透过性高,器件对X射线响应好、器件结构简单的优点。
附图说明
图1为基于纳米碳材料/硅异质结X射线探测器的结构示意图。自上而下依次包括纳米碳材料层(1),硅片(2),下电极层(3)。
图2为实施例1中,以碳纳米管薄膜为探测器中的纳米碳材料层时,碳纳米管薄膜的扫描电镜照片。
图3为实施例1中,以碳纳米管薄膜为探测器中的纳米碳材料层时,器件在6.5mGyair/s的X射线辐照下,器件的电流-电压特性曲线。
图4为实施例1中,以碳纳米管薄膜为探测器中的纳米碳材料层时,器件在不同的X射线的辐照下,器件的短路电流密度-辐照强度的关系曲线;并将其与对照样品(金硅面垒探测器)的短路电流密度-辐照强度关系曲线进行比较。
图5为实施例2中,以石墨烯薄膜为探测器中的纳米碳材料层时,石墨烯薄膜的扫描电镜照片。
图6为实施例2中,以石墨烯薄膜为探测器中的纳米碳材料层时,器件在4mGyair/s的X射线的辐照下,器件的电流-电压特性曲线。
具体实施方式
下面结合附图和实施例对本发明做进一步描述。
实施例1
(1)采用化学气相沉积法制备单壁碳纳米管。通过纯化、铺展,获得厚度为250nm的薄膜;
(2)将单壁碳纳米管薄膜转移到N型硅片的一侧表面,并在自然状态下干燥;
(3)在硅片的另一侧蒸镀50nm的Ti/Au金属电极,从而获得碳纳米管/硅异质结X射线探测器,其结构如图1所示。图2所示是探测器中碳纳米管薄膜的扫描电镜照片;
(4)将该探测器在6.5mGyair/s的X射线的辐照下,器件的电流-电压特性曲线如图3所示,其短路电流密度达3.85μA/cm2,而作为对照样品的金硅面垒探测器的短路电流密度仅为2.5μA/cm2,本发明器件的响应较对照样品提升幅度达54%;
(5)对该探测在不同剂量率下进行测试,结果如图4所示:器件响应的线性度很好,且响应的短路电流密度远高于对照样品。
实施例2
(1)采用化学气相沉积法在镍箔上制备石墨烯。通过氯化铁溶液腐蚀镍基底,获得厚度为1μm的石墨烯薄膜;
(2)将石墨烯薄膜转移到N型硅片的一侧表面,并在红外烤灯照射下干燥;
(3)在硅片的另一侧涂覆铟镓合金作为下电极,从而获得石墨烯/硅异质结X射线探测器。图5所示是探测器中石墨烯薄膜的扫描电镜照片。
(4)将该探测器在4mGyair/s的X射线下辐照,器件的电流-电压特性曲线如图6所示,其短路电流密度达2.16μA/cm2,高于同样测试条件下对照样品金硅面垒探测器的短路电流密度(仅为1.57μA/cm2),本发明的器件的响应较对照样品提升幅度达37.5%。
实施例3
(1)采用化学气相沉积法制备多壁碳纳米管。通过纯化、铺展,获得厚度为10μm的薄膜;
(2)将多壁碳纳米管薄膜转移到N型硅片的一侧表面,并在通过氮气吹干;
(3)在硅片的另一侧涂覆100nm的铟镓合金作为下电极,从而获得碳纳米管/硅异质结X射线探测器。
(4)将该探测器在2mGyair/s的X射线的辐照下,器件的电流-电压特性曲线显示其短路电流密度达1.15μA/cm2,而作为对照样品的金硅面垒探测器的短路电流密度仅为0.79μA/cm2,本发明的器件的响应较对照样品提升幅度达45.6%。

Claims (1)

1.一种基于纳米碳材料/硅异质结的X射线探测器,其特征在于:该探测器包括纳米碳材料层(1)、硅片(2)和下电极层(3);硅片(2)的上面为纳米碳材料层(1),硅片(2)的下面为下电极层(3);
所述的纳米碳材料层(1)的厚度为250nm~10μm;
所述的纳米碳材料层(1)为碳纳米管薄膜或石墨烯薄膜,碳纳米管薄膜为单壁碳纳米管薄膜、双壁碳纳米管薄膜或多壁碳纳米管薄膜,石墨烯薄膜为多层石墨烯薄膜;
所述的硅片(2)的导电类型为N型;
所述的下电极层(3)的材料为Ti/Au合金或铟镓合金;
该X射线探测器的制备方法,纳米碳材料层(1)为碳纳米管薄膜时,包括如下步骤:
(1)采用化学气相沉积法制备碳纳米管薄膜,通过纯化、铺展,获得厚度为250nm-10μm的碳纳米管薄膜;
(2)将步骤(1)得到的碳纳米管薄膜转移到N型硅片的一侧表面,并在自然状态或红外烤灯或氮气下干燥;
(3)在硅片的另一侧蒸镀Ti/Au金属电极或铟镓合金电极,获得碳纳米管/硅异质结X射线探测器;
该X射线探测器的制备方法,纳米碳材料层(1)为石墨烯薄膜时,包括如下步骤:
(1)采用化学气相沉积法在镍箔基底上制备石墨烯薄膜,通过对镍箔的腐蚀,获得漂浮在水面上的石墨烯薄膜,并对石墨烯薄膜进行漂洗,获得厚度为250nm~10μm的石墨烯薄膜;
(2)将石墨烯薄膜转移到N型硅片的一侧表面,并在自然状态或红外烤灯或氮气下干燥;
(3)在硅片的另一侧蒸镀Ti/Au金属电极或铟镓合金电极,获得石墨烯/硅异质结X射线探测器。
CN201810779753.5A 2018-07-16 2018-07-16 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法 Active CN109103271B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810779753.5A CN109103271B (zh) 2018-07-16 2018-07-16 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810779753.5A CN109103271B (zh) 2018-07-16 2018-07-16 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN109103271A CN109103271A (zh) 2018-12-28
CN109103271B true CN109103271B (zh) 2020-11-20

Family

ID=64846426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810779753.5A Active CN109103271B (zh) 2018-07-16 2018-07-16 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN109103271B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
JP2006059676A (ja) * 2004-08-20 2006-03-02 Konica Minolta Holdings Inc 電子放出素子およびその製造方法
WO2009085351A2 (en) * 2007-09-28 2009-07-09 Brigham Young University X-ray window with carbon nanotube frame
CN107256899B (zh) * 2017-06-28 2019-03-08 泰州巨纳新能源有限公司 无源位置灵敏探测器、其制备方法及其测量方法

Also Published As

Publication number Publication date
CN109103271A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
Thirimanne et al. High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response
Büchele et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors
Zhuang et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4) 3Bi2I9 single crystal with anisotropic response
Ciavatti et al. Towards Low-Voltage and Bendable X-ray Direct Detectors Based on Organic Semiconducting Single Crystals
CN110168408B (zh) 直接转换辐射检测器
Overdick et al. Status of direct conversion detectors for medical imaging with X-rays
Wronski et al. A solid‐state amorphous selenium avalanche technology for low photon flux imaging applications
Tsai et al. Quasi‐2D Perovskite Crystalline Layers for Printable Direct Conversion X‐Ray Imaging
Zhang et al. Electron bombardment induced photoconductivity and high gain in a flat panel photodetector based on a ZnS photoconductor and ZnO nanowire field emitters
Zhang et al. ε‐Ga2O3 Thin Film Avalanche Low‐Energy X‐Ray Detectors for Highly Sensitive Detection and Fast‐Response Applications
CN108183119A (zh) 一种具有能量分辨的x射线探测器及其探测方法
Torrisi et al. Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas
Hou et al. Facile fabrication of infrared photodetector using metastable vanadium dioxide VO2 (B) nanorod networks
Xu et al. High-performance self-powered ultraviolet photodetector in SnO2 microwire/p-GaN heterojunction using graphene as charge collection medium
Shabbir et al. Printable Perovskite Diodes for Broad‐Spectrum Multienergy X‐Ray Detection
CN109103271B (zh) 一种基于纳米碳材料/硅异质结的x射线探测器及其制备方法
Kang et al. From photovoltaics to medical imaging: Applications of thin-film CdTe in x-ray detection
Hellier et al. Performance evaluation of an amorphous selenium photodetector at high fields for application integration
Ahnood et al. Vertical CNT-Si photodiode array
Chen et al. High-performance self-driven near-infrared photodetector based on single-walled carbon nanotube/graphene/Al2O3/InP
Bai et al. Theoretical analysis and verification of electron-bombardment-induced photoconductivity in vacuum flat-panel detectors
Overdick et al. Towards direct conversion detectors for medical imaging with X-rays
Ambrosio et al. A new radiation detector made of multi-walled carbon nanotubes
Ding et al. Highly sensitive InGaAs/InAlAs X-ray avalanche photodiodes with fast time response
CN112054087A (zh) 一种石墨烯半导体辐射探测器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant