CN109103264A - 基于纳米带的晶体管及其制备方法 - Google Patents

基于纳米带的晶体管及其制备方法 Download PDF

Info

Publication number
CN109103264A
CN109103264A CN201810953689.8A CN201810953689A CN109103264A CN 109103264 A CN109103264 A CN 109103264A CN 201810953689 A CN201810953689 A CN 201810953689A CN 109103264 A CN109103264 A CN 109103264A
Authority
CN
China
Prior art keywords
boron nitride
nitride nanometer
active layer
band
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810953689.8A
Other languages
English (en)
Other versions
CN109103264B (zh
Inventor
卢年端
李泠
耿玓
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201810953689.8A priority Critical patent/CN109103264B/zh
Publication of CN109103264A publication Critical patent/CN109103264A/zh
Application granted granted Critical
Publication of CN109103264B publication Critical patent/CN109103264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于纳米带的晶体管,包括:衬底;设置于所述衬底上的栅电极;设置于所述栅电极上的栅介质层;设置于所述栅介质层上的有源层,所述有源层包括至少一条氮化硼纳米带,所述至少一条氮化硼纳米带均包括用于打开带隙的材料;以及设置于所述有源层上的源电极和漏电极。

Description

基于纳米带的晶体管及其制备方法
技术领域
本发明的实施例涉及半导体领域,特别涉及一种基于纳米带的晶体管。
背景技术
相对于传统的块体材料,二维材料由于其优越的光学、电学及热学特性而被广泛应用于半导体器件。二维材料中最典型的代表是石墨烯,然而,带隙为零这一特性阻碍了石墨烯在电子器件(如晶体管)中的应用。对此,一些具有较高电子迁移率并具有带隙的二维材料(例如,二硫化钼(MoS2)、氮化硼(BN)、黑磷等)替代石墨烯在晶体管器件中发挥了重要作用。
随着器件小型化发展,MoS2、BN、黑磷等的尺寸也需要相应缩小,然而,当MoS2、BN、黑磷等二维材料缩小到纳米带尺寸时,其半导体特性将消失,即二维材料的纳米带带隙为零,不再适于制备晶体管。
因此,有必要研究一种基于小尺寸二维材料的晶体管。
发明内容
本发明的实施例旨在提出一种基于纳米带的晶体管及其制备方法。
根据本发明的一个方面,提出一种基于纳米带的晶体管,包括:衬底;设置于所述衬底上的栅电极;设置于所述栅电极上的栅介质层;设置于所述栅介质层上的有源层,所述有源层包括至少一条氮化硼纳米带,所述至少一条氮化硼纳米带均包括用于打开带隙的材料;以及设置于所述有源层上的源电极和漏电极。
根据一些实施方式,所述用于打开带隙的材料包括非金属元素H、O、S、Se、F、Cl,惰性气体He、Ne、Ar、Kr、Xe,以及金属元素Li、K、Y、V、Mn、Co、Pd、Ag、Au、Zn、Al、In、Si中的一种或多种。
根据一些实施方式,单条氮化硼纳米带包括钝化原子,所述钝化原子用于与所述单条氮化硼纳米带边缘的悬挂键结合。
根据一些实施方式,单条氮化硼纳米带的层数为1-10层;以及单条氮化硼纳米带的宽度为1-10nm。
根据一些实施方式,所述栅电极包括Mo、Pt、Au、Cu、Ag中的一种或多种;所述栅介质层包括Al2O3;以及所述源电极和所述漏电极包括Pt、Au、Cu、Ag中的一种或多种。
根据本发明的另一方面,提出一种制备基于纳米带的晶体管的方法,包括:提供衬底;在所述衬底上形成栅电极;在所述栅电极上形成栅介质层;在所述栅介质层上形成有源层,所述有源层包括至少一条氮化硼纳米带,并使得所述至少一条氮化硼纳米带均包括用于打开带隙的材料;在所述有源层上形成源电极和漏电极。
根据一些实施方式,所述方法还包括:在单条氮化硼纳米带上设置钝化原子,使得所述钝化原子与所述单条氮化硼纳米带边缘的悬挂键结合。
根据一些实施方式,所述方法还包括:提供临时衬底;在所述临时衬底上形成所述有源层,之后将所述有源层转移至所述栅介质层表面。
根据一些实施方式,所述方法还包括:基于第一性原理,计算得出所述用于打开带隙的材料。
在根据本发明的实施例的基于纳米带的晶体管中,通过将用于打开带隙的材料用于有源层的至少一条氮化硼纳米带的每一条中,使得纳米带尺寸的氮化硼可具有带隙,适于制备不同纳米尺寸的晶体管,满足了器件的小型化发展需求。并且,氮化硼纳米带具有较高的电子迁移率,可改善器件性能。此外,本发明的晶体管结构简单、便于制作。
附图说明
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
图1示出了根据本发明的一个示例性实施例的基于纳米带的晶体管的结构示意图;
图2示出了制备图1的基于纳米带的晶体管的方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。附图中未绘示或描述的实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明的保护范围。
图1示出了根据本发明的一个示例性实施例的基于纳米带的晶体管100的结构示意图。如图1所示,晶体管100可以包括:衬底1;设置于衬底1上的栅电极2;设置于栅电极2上的栅介质层3;设置于栅介质层3上的有源层4,有源层4可包括至少一条氮化硼纳米带41,至少一条氮化硼纳米带41可均包括用于打开带隙的材料;以及设置于有源层4上的源电极5和漏电极6。在根据本发明的实施例的基于纳米带的晶体管100中,通过将用于打开带隙的材料用于有源层的至少一条氮化硼纳米带的每一条中,使得纳米带尺寸的氮化硼可具有带隙,适于制备不同纳米尺寸的晶体管,满足了器件的小型化发展需求。并且,氮化硼纳米带具有较高的电子迁移率,可改善器件性能。此外,本发明的晶体管结构简单、便于制作。
衬底1可以是包括任何合适材料的绝缘衬底,例如可以为玻璃衬底。衬底1的厚度可以为1-10mm。栅电极2可以包括Mo、Pt、Au、Cu、Ag中的一种或多种,厚度可以为10-100nm。栅介质层3可以包括Al2O3,厚度可以为50-100nm。有源层4所包括的至少一条氮化硼纳米带41中的单条氮化硼纳米带的层数可以为1-10层;以及单条氮化硼纳米带的宽度可以为1-10nm。至少一条氮化硼纳米带41可包括一条或多条氮化硼纳米带,具体数量可根据实际需求确定。源电极5和漏电极6可包括Pt、Au、Cu、Ag中的一种或多种。源电极5和漏电极6的宽度可以为1-10nm,厚度可以为10-50nm。
在本发明的实施例中,用于打开带隙的材料可包括非金属元素H、O、S、Se、F、Cl,惰性气体He、Ne、Ar、Kr、Xe,以及金属元素Li、K、Y、V、Mn、Co、Pd、Ag、Au、Zn、Al、In、Si中的一种或多种。用于打开带隙的材料可基于第一性原理计算得到。第一性原理是指:根据原子核和电子相互作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法。带隙是导带的最低点和价带的最高点的能量之差,带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低。带隙是电学应用的关键,能使材料实现电子流的开与关,决定器件的开关特性。本发明选用合适的材料打开氮化硼纳米带的带隙,拓宽了氮化硼二维材料在纳米带尺寸的应用。
继续参照图1,单条氮化硼纳米带包括钝化原子42,钝化原子42用于与单条氮化硼纳米带边缘的悬挂键结合。悬挂键是一种化学键,一般晶体因晶格在表面处突然终止,在表面的最外层的每个原子将有一个未配对的电子,即有一个未饱和的键,这个键称为悬挂键。钝化原子42与单条氮化硼纳米带边缘的悬挂键结合形成共价键,使纳米带边缘钝化,保证器件的稳定性和可靠性。
图2示出了制备图1的基于纳米带的晶体管100的方法的流程图。如图2所示,基于纳米带的晶体管100可如下制备:
S1,提供衬底1;
S2,在衬底1上形成栅电极2,形成栅电极2可采用电子束蒸发、化学气相沉积、脉冲激光沉积、原子层沉积或磁控溅射等方法;
S3,例如采用化学气相沉积法在栅电极2上形成栅介质层3;
S4,在栅介质层3上形成有源层4,有源层4包括至少一条氮化硼纳米带41,并使得至少一条氮化硼纳米带41均包括用于打开带隙的材料;
S5,在有源层4上形成源电极5和漏电极6,形成源电极5和漏电极6的方法可包括:例如通过电子束蒸发等方法在有源层4上生长源电极材料和漏电极材料,然后对生长的源电极材料和漏电极材料进行图形化处理,即可得到源电极5和漏电极6。
进一步地,制备晶体管100的方法还包括:在单条氮化硼纳米带上设置钝化原子42,使得钝化原子42与单条氮化硼纳米带边缘的悬挂键结合,即,进行边缘钝化处理。具体地,可采用合适的方法使单条氮化硼纳米带的边缘吸咐上钝化原子42。
进一步地,在栅介质层3上形成有源层4可包括直接通过例如化学气相沉积或热淀积的方法在栅介质层3上生长至少一条氮化硼纳米带,并使得至少一条氮化硼纳米带均包括用于打开带隙的材料;此外,也可包括:
提供临时衬底;
在临时衬底上形成所述有源层4,之后例如采用机械剥离法将有源层4从临时衬底剥离,并转移至栅介质层3表面。
下面通过具体的实施例进行说明。
实施例1
制备基于氮化硼纳米带的晶体管。
首先,利用电子束蒸发工艺,在玻璃衬底上形成1nm厚的Au薄膜作为栅电极;
然后,通过化学沉积方法在栅电极上生长厚度为100nm的Al2O3栅介质层;
然后,采用转移的方法将包括非金属元素S、并经过边缘钝化后的氮化硼纳米带转移到Al2O3栅介质层上,氮化硼纳米带为单层结构,宽度为10nm;
然后,利用磁控溅射方法在氮化硼纳米带表面制备10nm厚的Au薄膜作为源电极材料层和漏电极材料层;
最后,进行图形化处理以得到源电极和漏电极。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明的实施方式进行示例性说明,而不能理解为对本发明的一种限制。
本领域普通技术人员将理解,在不背离本发明总体构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (9)

1.一种基于纳米带的晶体管,包括:
衬底;
设置于所述衬底上的栅电极;
设置于所述栅电极上的栅介质层;
设置于所述栅介质层上的有源层,所述有源层包括至少一条氮化硼纳米带,所述至少一条氮化硼纳米带均包括用于打开带隙的材料;以及
设置于所述有源层上的源电极和漏电极。
2.根据权利要求1所述的晶体管,其特征在于,所述用于打开带隙的材料包括非金属元素H、O、S、Se、F、Cl,惰性气体He、Ne、Ar、Kr、Xe,以及金属元素Li、K、Y、V、Mn、Co、Pd、Ag、Au、Zn、Al、In、Si中的一种或多种。
3.根据权利要求1所述的晶体管,其特征在于,单条氮化硼纳米带包括钝化原子,所述钝化原子用于与所述单条氮化硼纳米带边缘的悬挂键结合。
4.根据权利要求1所述的晶体管,其特征在于,单条氮化硼纳米带的层数为1-10层;以及单条氮化硼纳米带的宽度为1-10nm。
5.根据权利要求1所述的晶体管,其特征在于,所述栅电极包括Mo、Pt、Au、Cu、Ag中的一种或多种;所述栅介质层包括Al2O3;以及所述源电极和所述漏电极包括Pt、Au、Cu、Ag中的一种或多种。
6.一种制备基于纳米带的晶体管的方法,包括:
提供衬底;
在所述衬底上形成栅电极;
在所述栅电极上形成栅介质层;
在所述栅介质层上形成有源层,所述有源层包括至少一条氮化硼纳米带,并使得所述至少一条氮化硼纳米带均包括用于打开带隙的材料;
在所述有源层上形成源电极和漏电极。
7.根据权利要求6所述的方法,其特征在于,还包括:在单条氮化硼纳米带上设置钝化原子,使得所述钝化原子与所述单条氮化硼纳米带边缘的悬挂键结合。
8.根据权利要求6所述的方法,其特征在于,还包括:
提供临时衬底;
在所述临时衬底上形成所述有源层,之后将所述有源层转移至所述栅介质层表面。
9.根据权利要求6所述的方法,其特征在于,还包括:基于第一性原理,计算得出所述用于打开带隙的材料。
CN201810953689.8A 2018-08-21 2018-08-21 基于纳米带的晶体管及其制备方法 Active CN109103264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810953689.8A CN109103264B (zh) 2018-08-21 2018-08-21 基于纳米带的晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810953689.8A CN109103264B (zh) 2018-08-21 2018-08-21 基于纳米带的晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN109103264A true CN109103264A (zh) 2018-12-28
CN109103264B CN109103264B (zh) 2022-05-10

Family

ID=64850524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810953689.8A Active CN109103264B (zh) 2018-08-21 2018-08-21 基于纳米带的晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN109103264B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406923A1 (en) * 2021-06-17 2022-12-22 Honda Motor Co., Ltd. Bilayer metal dichalcogenides, syntheses thereof, and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024676A1 (ko) * 2014-08-12 2016-02-18 포항공과대학교 산학협력단 시냅스 모방 소자 및 이의 제조방법
WO2018076261A1 (zh) * 2016-10-28 2018-05-03 华为技术有限公司 场效应晶体管及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024676A1 (ko) * 2014-08-12 2016-02-18 포항공과대학교 산학협력단 시냅스 모방 소자 및 이의 제조방법
WO2018076261A1 (zh) * 2016-10-28 2018-05-03 华为技术有限公司 场效应晶体管及其制造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ALEJANDRO LOPEZ-BEZANILA等: "boron nitride nanoribbons become metallic", 《NANO LETTERS》 *
C.ATACA 等: "functionalization of BN honeycomb structure by adsorption and substitution of foreign atoms", 《PHYSICAL REVIEW B》 *
CHEOL-HWAN PARK等: "energy gaps and stark effect in boron nitride nanoribbons", 《NANO LETTERS》 *
CHONG WANG等: "the noble gases adsorption on boron-rich boron nitride nanotubes: a theoretical investigation", 《SUPERLATTICES AND MICROSTRUCTURES》 *
QING TANG 等: "Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field", 《NANOSCALE》 *
YANLI WANG 等: "Fluorination-induced half-metallicity in zigzag boron nitride nanoribbons: First-principles calculations", 《PHYSICAL REVIEW B》 *
YI DING等: "the stabilities of boron nitride nanoribbons with different hydrogen-terminated edges", 《APPLIED PHYSICS LETTERS》 *
刘娟 等: "过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220406923A1 (en) * 2021-06-17 2022-12-22 Honda Motor Co., Ltd. Bilayer metal dichalcogenides, syntheses thereof, and uses thereof

Also Published As

Publication number Publication date
CN109103264B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
Choudhary et al. Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma
Wang et al. Synthesis, properties and applications of 2D non-graphene materials
Xu et al. Stacking and electric field effects in atomically thin layers of GaN
Li et al. Laterally stitched heterostructures of transition metal dichalcogenide: chemical vapor deposition growth on lithographically patterned area
Wu et al. High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping
US9640391B2 (en) Direct and pre-patterned synthesis of two-dimensional heterostructures
Kim et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction
JP5515073B2 (ja) 電子素子および電子素子の製造方法
Bersch et al. Selective-area growth and controlled substrate coupling of transition metal dichalcogenides
Qi et al. Reducing the Schottky barrier between few-layer MoTe2 and gold
Aras et al. Lateral and vertical heterostructures of transition metal dichalcogenides
Geyer et al. Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching
Li et al. Lateral and vertical two-dimensional layered topological insulator heterostructures
Choi et al. Synthesis of large-area tungsten disulfide films on pre-reduced tungsten suboxide substrates
Li et al. Electronic transport through zigzag/armchair graphene nanoribbon heterojunctions
Xing et al. HfO2-passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio
Dong et al. Wafer bonding solution to epitaxial graphene–silicon integration
Maeda et al. AlN/Al0. 5Ga0. 5N HEMTs with heavily Si-doped degenerate GaN contacts prepared via pulsed sputtering
Lin et al. Photoluminescence of monolayer transition metal dichalcogenides integrated with VO2
An et al. Multifunctional 2D CuSe monolayer nanodevice
CN109103264A (zh) 基于纳米带的晶体管及其制备方法
Kotin et al. High carrier mobility in chemically modified graphene on an atomically flat high-resistive substrate
Park et al. Atomic layer etching of InGaAs by controlled ion beam
Nikpay et al. Sputtered MoS2 layer as a promoter in the growth of MoS2 nanoflakes by TCVD
Trivedi et al. Versatile large-area custom-feature van der Waals epitaxy of topological insulators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant