CN109085061B - 一种获取金属材料在静态压缩状态下应力应变曲线的方法 - Google Patents
一种获取金属材料在静态压缩状态下应力应变曲线的方法 Download PDFInfo
- Publication number
- CN109085061B CN109085061B CN201810786971.1A CN201810786971A CN109085061B CN 109085061 B CN109085061 B CN 109085061B CN 201810786971 A CN201810786971 A CN 201810786971A CN 109085061 B CN109085061 B CN 109085061B
- Authority
- CN
- China
- Prior art keywords
- stress
- strain
- compression
- metal material
- experimental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本发明提供一种获取金属材料在静态压缩状态下应力应变曲线的方法。该方法是基于应变控制或者位移控制情况下的改进压缩实验和实验数据处理分析的一种方法,主要包含两部分内容:首先是通过改进的压缩实验获取实验数据,其次通过实验数据处理获取材料在极限慢压缩即静态压缩状态下的真实应力应变曲线。本发明的效果是可以通过实验获取材料在长期处于压缩服役过程中材料的真实应力应变曲线,从而可以有效评价材料的真实使用性能,对长期处于压缩服役状态下的金属材料的使用具有重要的指导意义。
Description
技术领域
本发明涉及一种金属材料性能检测领域,涉及一种获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线的方法。
背景技术
金属材料在长期承受压缩载荷服役状态下,尤其在高温环境下,因为材料强度的降低,往往会引发结构失效,造成巨大的经济损失,该方法可以有效的评价材料在该状态下性能的衰减。对材料的安全服役具有重要的指导意义。
在本发明之前,金属材料进行压缩实验,实验加载速率一般保持在10-5s-1以上,无法有效模拟长期受力的使用情况,而且压缩加载速率越快检测到的材料性能越高,与材料在长期承受压缩在状态下的真实材料性能差距越大。松弛实验可以测得单点的真实应力情况,但是其无法得到完整材料拉伸曲线,而且松弛实验耗费时间很长,实验时间成本较高;同时尤其对于各项异性材料,获取材料在拉伸状态下的应力应变曲线,并不能代表材料的压缩性能,因此获取极限慢压缩即静态压缩状态下的金属材料真实应力应变曲线具有重要意义。
发明内容
本发明的目是提供一种获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线的方法,该方法可以得到金属材料在恒压缩服役状态下的真实应力应变曲线,同时可以比松弛实验节约大量时间成本。对长期处于压缩服役状态下的金属材料的使用具有重要的指导意义。
为实现上述目的,本发明提供的一种获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线的方法包括以下步骤:
1、改进型压缩实验方法,该方法可以获取后续处理分析所用的数据,具体包含一下步骤:
1)实验条件:首先,压缩实验机必须具备配套实验环境温度箱和可以应用在对应环境温度下的引伸计,如不具备此功能,该方法只可以获取常温下的实验数据;其次压缩实验机必须具备应变控制或者位移控制功能,如果不具备应变控制或者位移控制,该实验无法进行,推荐采用Gleeble3500等热模拟试验机进行该试验。
2)制备金属材料压缩实验用样,并将实验用样加热到预定实验温度,并在整个实验过程中保持实验温度恒定不变。
3)在一定载荷速率情况下进行压缩,当压缩到材料的应变数值在-0.5%、 -1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%处进行应变控制或者位移控制,保持在该应变30分钟到2小时不等,采集该过程中所有应力、应变、时间数据。
2、实验数据处理,该方法可以获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线,具体实验步骤如下:
1)将从上一步实验数据导出应力应变曲线、应力时间曲线。
2)将工程应变转化为常规压缩状态下的真实应变。
3)将工程应力转化为常规压缩状态下的真实应力。
4)分别对-0.5%、-1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%应变处时间应力曲线进行数据拟合求解。
5)根据拟合求解得出公式,求解时间对应无穷大情况下对应的应力值σs。
6)将不同应变点对应的σs连接绘制金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线。
本发明的效果是,通过一种获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线的方法,能够精确的获得金属材料在不同温度环境下承受恒定压缩时金属材料的实际应力应变曲线。本发明得到的材料性能曲线,对长期处于压缩服役状态下的金属材料的使用具有重要的指导意义。
附图说明
图1是由压缩实验机直接获取的工程压缩应力应变数据曲线;
图2是通过计算得出的真实应力应变曲线;
图3、图6、图9分别是-0.5%、-2.0%、-3.5%应变处时间应力曲线以及数据拟曲线;
图4、图7、图10分别是-0.5%、-2.0%、-3.5%应变处时间应变曲线;
图5、图8、图11分别是-0.5%、-2.0%、-3.5%应变处时间温度曲线;
图12是极限慢压缩情况下对应的真实应力应变曲线;
图13是工程压缩应力应变数据曲线、真实应力应变曲线和极限慢压缩下的应力应变曲线对比图。
具体实施方式
结合附图对本发明的一种获取金属材料在极限慢压缩(静态压缩)状态下的不同温度环境下的真实应力应变曲线的方法加以说明
本发明的一种获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线的方法包括一下步骤:
1、改进型压缩实验方法,该方法可以获取后续处理分析所用的数据,具体包含一下步骤:
1)实验条件:首先,压缩实验机必须具备配套实验环境温度箱和可以应用在对应环境温度下的引伸计,如不具备此功能,该方法只可以获取常温下的实验数据;其次压缩实验机必须具备应变控制或者位移控制功能,如果不具备应变控制或者位移控制,该实验无法进行。
2)制备金属材料压缩实验用样,优选采用圆棒试样,试样长度在保证能够正常试验的前提下尽量缩短,可以保证试样在压缩过程中的稳定性,并将实验用样加热到预定实验温度,并在整个实验过程中保持实验温度恒定不变,如图5、图8、图11时间温度曲线所示,在整个实验保温过程中应保持试验温度温差不超过±3℃,如果温差较大试验结果不建议采用。压缩实验应变加载速率保持在1.0×10-5s-1左右,试验加载速率越慢试验越稳定,得到的试验结果越接近真实值。
3)在一定载荷速率情况下进行压缩,当压缩到材料的应变数值在-0.5%、 -1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%处进行应变控制或者位移控制,如图4、图7、图10时间应变曲线所示,在每个保载时间内控制应变波动在0-0.01%范围内,如果应变波动超出上限,试验结果不建议采用,保持在该应变30分钟到2小时不等,优选时间为1小时,时间越长最终应力数值越稳定,但由于考虑到时间成本和实验设备承受能力,最终推荐时间1小时,采集该过程中所有应力、应变、时间数据。
2、实验数据处理,该方法可以获取金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线,具体实验步骤如下:
1)将从上一步实验数据导出应力应变曲线,如图1所示。
2)将工程应变转化为常规压缩状态下的真实应变。压缩试样在加载过程中存在由于压缩变形的情况(此情况是完全无法避免的),同时实验设备采集到应力应变数据是没考虑这种变形存在的前提下的一种数据,因此称之为工程应力应变数据,所以要通过计算得到材料的真实应力应变数据,真实应变S真实与工程应变S工程的计算公式如下:
S真实=S工程*(1+σ工程)
3)将工程应力转化为真实应力,真实应力σ真实与工程应力σ工程的计算公式如下:
σ真实=ln(1+σ工程)*100
通过数据计算的到真实应力与真实应变数据,将真实应力与真实应变进行数据绘制得到真实应力应变曲线,如图2所示。
4)分别对-0.5%、-1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%等应变处时间应力曲线进行数据拟合求解。
由于材料在保持位移或者应变恒定的情况下,随着时间的增长存在载荷降低的情况,而且随着时间增长载荷降低的趋势会逐渐降低,载荷值最终会趋近于一个恒定不变的较小稳定数值。图3蓝色曲线记录了在-0.5%应变处的时间真实应力曲线。
由于试验时间、成本、设备等的因素的考虑,试验时间不能过长,因此需要通过计算获取对应时间下的载荷值,因此根据曲线特点采用如下公式进行数据计算:
σ真实=σ最终+a*exp(-t/b)+c*exp(-t/d)
式中σ真实是通过上步计算得到的各个点对应的真实应力值;σ最终是曲线最终趋近的稳定最小真实应力值,也是需要通过数据计算得出的常数值;a、 b、c、d是需要通过数据计算得到的常数值;t是对应曲线里面的时间值。
利用以上公式进行数据计算计算得到如下数值与公式:
σ最终=435.92,a=141.85,b=105.30,c=15.42,d=993.2。
σ真实=435.92+141.85exp(-t/105.30)+15.42exp(-t/993.2)
该公式对应的曲线如图3所示,同时在该应变情况下材料长期服役的材料的真实性能σ最终=435.92MPa。
5)根据拟合求解得出公式,求解时间对应无穷大情况下对应的应力值σs。
根据上步拟合求解得到的公式,时间t带入无限大,求得
σs=σ最终=435.92MPa
6)将不同应变点对应的σs连接绘制金属材料在极限慢压缩(静态压缩) 状态下的不同温度环境下的真实应力应变曲线,如图12所示。
图13是图1、图2和图12分别所示的工程压缩应力应变数据曲线、真实应力应变曲线和极限慢压缩下的应力应变曲线对比图。
下面给出四个具体计算实例。
实施例1
如图6所示是压缩试样在应变-2.0%处的真实应力应变曲线,利用该公式σ真实=σ最终+a*exp(-t/b)+c*exp(-t/d)对试验获取的真实应力应变数据进行数据拟合,得到如下结果:
σ最终=474.34,a=6.39e29,b=72.33,c=12365.3,d=657.71
σ真实=474.34+6.39e29*exp(-t/72.33)+12365.3*exp(-t/657.71)
拟合曲线如图6所示,根据上步拟合求解得到的公式,时间t带入无限大,求得
σs=σ最终=474.34MPa
实施例2
如图9所示是压缩试样在应变-3.5%处的真实应力应变曲线,利用该公式σ真实=σ最终+a*exp(-t/b)+c*exp(-t/d)对试验获取的真实应力应变数据进行数据拟合,得到如下结果:
σ最终=527.54,a=2.80e32,b=128.92,c=6120.9,d=1402.10
σ真实=527.54+2.80e32*exp(-t/128.92)+6120.9*exp(-t/1402.10)
拟合曲线如图9所示,根据上步拟合求解得到的公式,时间t带入无限大,求得
σs=σ最终=527.54MPa。
Claims (7)
1.一种获取金属材料在静态压缩状态下应力应变曲线的方法,包括以下步骤:
步骤S1、采用改进型压缩实验方法获取处理分析用数据,具体包含以下步骤:
S101实验条件:压缩实验机具备配套实验环境温度箱和对应环境温度下的引伸计;压缩实验机具备应变控制或位移控制功能;
S102制备金属材料压缩实验用样要求:将实验用样加热到预定实验温度,并在整个实验过程中保持实验温度恒定不变;
S103压缩载荷速率要求:应变加载速率保持在1.0×10-4s-1—1.0×10-6s-1之间;
步骤S2、压缩试验:在压缩实验机上安装制备好的试样开始拉伸,当压缩到材料的应变数值在-0.5%、-1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%处进行应变控制,分别在上述应变数值处保持30—120分钟并采集该过程中所有应力、应变、时间数据;
步骤S3、实验数据处理并绘制应力应变曲线:对步骤S2实验数据进行处理并获取金属材料在静态拉伸状态下的不同温度环境下的真实应力应变曲线,具体实验步骤如下:
S301将步骤S2实验数据导出绘制应力应变曲线、应力时间曲线;
S302将工程应变转化为真实应变;
S303将工程应力转化为真实应力;
S304分别对-0.5%、-1.0%、-1.5%、-2.0%、-2.5%、-3.0%、-3.5%、-4.0%应变处时间应力曲线进行数据拟合求解;
S305根据拟合求解得出公式,求解时间对应无穷大情况下对应的应力值σs;
S306将不同应变点对应的σs连接绘制金属材料在极限慢压缩即静态压缩状态下的不同温度环境下的真实应力应变曲线。
2.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:S101实验条件所述压缩实验机采用Gleeble3500热模拟试验机。
3.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:步骤S102所述金属材料压缩实验用样为圆棒。
4.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:步骤S2中保持时间为1小时。
5.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:步骤S3所述不同温度环境范围:室温—1000℃
6.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:所述S102试样长度小于等于正常试验试样长度。
7.根据权利要求1所述的一种获取金属材料在静态压缩状态下应力应变曲线的方法,其特征是:所述步骤S2、压缩试验采用位移控制。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810786971.1A CN109085061B (zh) | 2018-07-18 | 2018-07-18 | 一种获取金属材料在静态压缩状态下应力应变曲线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810786971.1A CN109085061B (zh) | 2018-07-18 | 2018-07-18 | 一种获取金属材料在静态压缩状态下应力应变曲线的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109085061A CN109085061A (zh) | 2018-12-25 |
CN109085061B true CN109085061B (zh) | 2020-09-29 |
Family
ID=64837641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810786971.1A Active CN109085061B (zh) | 2018-07-18 | 2018-07-18 | 一种获取金属材料在静态压缩状态下应力应变曲线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109085061B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111060407A (zh) * | 2019-12-19 | 2020-04-24 | 河钢股份有限公司 | 一种铜铝连续挤压堵头质量的检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1278597A (zh) * | 1999-06-21 | 2001-01-03 | 吉林工业大学 | 超塑性拉伸真实恒应变速率实验控制装置 |
CN102539253A (zh) * | 2012-02-24 | 2012-07-04 | 西北工业大学 | 测定板料单向压缩状态下真实应力-应变曲线的试验装置 |
KR20130034321A (ko) * | 2011-09-28 | 2013-04-05 | 한국건설기술연구원 | Shtb를 이용한 콘크리트 인장 시험 장치 및 방법 |
CN103471932A (zh) * | 2013-09-26 | 2013-12-25 | 北京机电研究所 | 金属材料应力-应变曲线测量及应用方法 |
CN103542894A (zh) * | 2013-11-12 | 2014-01-29 | 哈尔滨工业大学 | 高温变加载速率下钢筋应力、应变测量方法 |
CN103792143A (zh) * | 2014-02-12 | 2014-05-14 | 奇瑞汽车股份有限公司 | 一种单轴拉伸全程真应力应变曲线的快速获取方法 |
CN104596845A (zh) * | 2014-11-20 | 2015-05-06 | 中国石油天然气集团公司 | 一种金属焊接结构的真实应力应变曲线的测量方法 |
CN107305174A (zh) * | 2016-04-20 | 2017-10-31 | 中国特种设备检测研究院 | 一种材料应力应变本构关系的数值表征方法及系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4289367B2 (ja) * | 2006-05-22 | 2009-07-01 | トヨタ自動車株式会社 | 鋳造部品特性推定装置 |
-
2018
- 2018-07-18 CN CN201810786971.1A patent/CN109085061B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1278597A (zh) * | 1999-06-21 | 2001-01-03 | 吉林工业大学 | 超塑性拉伸真实恒应变速率实验控制装置 |
KR20130034321A (ko) * | 2011-09-28 | 2013-04-05 | 한국건설기술연구원 | Shtb를 이용한 콘크리트 인장 시험 장치 및 방법 |
CN102539253A (zh) * | 2012-02-24 | 2012-07-04 | 西北工业大学 | 测定板料单向压缩状态下真实应力-应变曲线的试验装置 |
CN103471932A (zh) * | 2013-09-26 | 2013-12-25 | 北京机电研究所 | 金属材料应力-应变曲线测量及应用方法 |
CN103542894A (zh) * | 2013-11-12 | 2014-01-29 | 哈尔滨工业大学 | 高温变加载速率下钢筋应力、应变测量方法 |
CN103792143A (zh) * | 2014-02-12 | 2014-05-14 | 奇瑞汽车股份有限公司 | 一种单轴拉伸全程真应力应变曲线的快速获取方法 |
CN104596845A (zh) * | 2014-11-20 | 2015-05-06 | 中国石油天然气集团公司 | 一种金属焊接结构的真实应力应变曲线的测量方法 |
CN107305174A (zh) * | 2016-04-20 | 2017-10-31 | 中国特种设备检测研究院 | 一种材料应力应变本构关系的数值表征方法及系统 |
Non-Patent Citations (2)
Title |
---|
Shale brittleness evaluation based on energy balance analysis of stress-strain curves;I. Rahimzadeh Kivi et al.;《Journal of Petroleum Science and Engineering》;20180313;第1-19页 * |
基于棒材拉伸试验确定金属材料真实应力应变关系的研究;王少辉 等;《塑性工程学报》;20170831;第24卷(第4期);第138-143页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109085061A (zh) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nath et al. | Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique | |
CN109115603B (zh) | 一种获取金属材料在静态拉伸状态下应力应变曲线的方法 | |
Chen et al. | Creep and fatigue behavior of 316L stainless steel at room temperature: experiments and a revisit of a unified viscoplasticity model | |
CN110261247B (zh) | 金属材料各向异性屈服及硬化本构参数同步表征方法 | |
CN105842087A (zh) | 高温应力松弛数据转换为蠕变数据的设计预测方法 | |
CN107843510B (zh) | 基于室温布氏硬度预测超临界机组t/p91耐热钢剩余持久寿命评估方法 | |
CN112730061B (zh) | 一种多级变温变载蠕变寿命评价方法 | |
CN109085061B (zh) | 一种获取金属材料在静态压缩状态下应力应变曲线的方法 | |
Sahadi et al. | Comparison of multiaxial fatigue parameters using biaxial tests of Waspaloy | |
Zhang et al. | Experimental study on loading-rate dependent behavior of scaled high performance rubber bearings | |
Wang et al. | A direct approach toward simulating cyclic and non-cyclic fatigue failure of metals | |
Duan et al. | Study on fracture behavior of nickel-based single crystal superalloy subjected to high temperature fatigue using digital image correlation | |
Casciati et al. | Fatigue damage accumulation in a Cu-based shape memory alloy: preliminary investigation | |
CN109556954A (zh) | 测试零部件在不同交变应力作用下断裂特征的疲劳试验机 | |
Wang et al. | Development of Simplified Model Test Methods for Creep-Fatigue Evaluation | |
CN110411863B (zh) | 一种基于蠕变延性的高温蠕变寿命预测方法 | |
Margetin et al. | Multiaxial fatigue criterion based on parameters from torsion and axial SN curve | |
Dragunov et al. | Stress–strain kinetics in calculations of high-temperature strength and longevity of reactor structures | |
Grązka et al. | Identification methods of parameters for Johnson-Cook constitutive equation–comparison | |
RU2624613C1 (ru) | Способ испытаний металлов на растяжение-сжатие и образец для его осуществления | |
Fan | Infrared thermographic method to rapidly evaluate high-cycle fatigue behavior of welded joints | |
CN113125266A (zh) | 一种岩石粘聚力和内摩擦角时效劣化演化方程获取方法 | |
Jiang et al. | Probabilistic fatigue crack growth analysis under stationary random loading with spike loads | |
Berczyński et al. | Simulation of the process of metal hardness measurement by the rockwell method | |
Christodoulou et al. | ANISOTROPY OF PLASTIC FLOW IN Zr-2.5 Nb PRESSURE TUBE MATERIAL ANALYSED USING A VISCOPLASTIC SELF-CONSISTENT APPROACH |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190701 Address after: No. 396 Jintang Highway, Dongli District, Tianjin 300301 Applicant after: Tianjin Steel Tube Manufacturing Co., Ltd. Address before: No. 396 Jintang Highway, Dongli District, Tianjin 300301 Applicant before: Tianjin Steel Pipe Group Co., Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |