CN109067484A - 一种利用以往感知时隙数据的能量检测频谱感知方法 - Google Patents

一种利用以往感知时隙数据的能量检测频谱感知方法 Download PDF

Info

Publication number
CN109067484A
CN109067484A CN201811059979.4A CN201811059979A CN109067484A CN 109067484 A CN109067484 A CN 109067484A CN 201811059979 A CN201811059979 A CN 201811059979A CN 109067484 A CN109067484 A CN 109067484A
Authority
CN
China
Prior art keywords
time slot
sensing time
energy
current sensing
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811059979.4A
Other languages
English (en)
Other versions
CN109067484B (zh
Inventor
金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201811059979.4A priority Critical patent/CN109067484B/zh
Publication of CN109067484A publication Critical patent/CN109067484A/zh
Application granted granted Critical
Publication of CN109067484B publication Critical patent/CN109067484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种利用以往感知时隙数据的能量检测频谱感知方法,其处理过程为:针对当前感知时隙及多个以往感知时隙,在相应的感知时隙内,对来自1个通道的信号进行多次采样,每次采样得到一个样本;然后根据相应的感知时隙内采样得到的所有样本计算相应的感知时隙对应的能量;接着对所有以往感知时隙对应的能量按从小到大的顺序进行排序;之后利用排序后的能量来估计噪声功率;再根据当前感知时隙对应的能量及噪声功率,计算检验统计量;最后通过比较检验统计量与判决门限的大小,判定当前感知时隙内是否存在授权用户信号;优点是其无需知道噪声功率本身,且感知性能好。

Description

一种利用以往感知时隙数据的能量检测频谱感知方法
技术领域
本发明涉及一种认知无线电频谱感知技术,尤其是涉及一种利用以往感知时隙数据的能量检测频谱感知方法。
背景技术
移动通信业务多样化的迅猛发展极大程度地丰富和便利了人们的工作和生活,但是,相应地无线设备数量和移动数据流量的需求呈爆炸式增长,这就导致了频谱资源短缺问题。近几年,频谱资源短缺问题已经逐渐显现,而且在可预见的未来会变得愈加严重。然而,这却不是因为物理频谱资源不足造成的,而是因为现有的固定频谱分配策略使很多频谱资源无法得到充分利用,极大地降低了频谱利用率。因此,提高频谱利用率成为了解决这个问题的关键。针对这个问题,Mitola博士提出了认知无线电技术。认知无线电技术是指无线设备能够与所处的通信环境进行交互并根据交互结果改变自身传输参数,从而实现以动态、自适应的方式灵活地利用潜在的空闲频谱。为了避免对授权用户产生干扰,认知无线电技术需要能够准确、快速地发现空闲频谱,实现稳健地频谱感知。因此,频谱感知成为了认知无线电的关键技术之一。
目前,能量检测法已被广泛应用于认知无线电的频谱感知中,然而,传统的能量检测频谱感知方法需要知道噪声功率本身,而实际中噪声功率本身往往是未知的,当噪声功率本身未知时,传统的能量检测频谱感知方法使用人为设定的噪声功率的上界值来代替噪声功率本身,这会引起噪声功率不确定性的问题,从而会严重降低频谱感知的性能。
发明内容
本发明所要解决的技术问题是提供一种利用以往感知时隙数据的能量检测频谱感知方法,其无需知道噪声功率本身,且感知性能好。
本发明解决上述技术问题所采用的技术方案为:一种利用以往感知时隙数据的能量检测频谱感知方法,其特征在于处理过程为:针对当前感知时隙及多个以往感知时隙,在相应的感知时隙内,对来自1个通道的信号进行多次采样,每次采样得到一个样本;然后根据相应的感知时隙内采样得到的所有样本计算相应的感知时隙对应的能量;接着对所有以往感知时隙对应的能量按从小到大的顺序进行排序;之后利用排序后的能量来估计噪声功率;再根据当前感知时隙对应的能量及噪声功率,计算检验统计量;最后通过比较检验统计量与判决门限的大小,判定当前感知时隙内是否存在授权用户信号。
该利用以往感知时隙数据的能量检测频谱感知方法具体包括以下步骤:
步骤一:在认知无线电系统中仅配置有1个通道;将当前想要采样的感知时隙定义为当前感知时隙;
步骤二:在当前感知时隙内,对来自通道的信号进行N次采样,每次采样得到一个样本,将当前感知时隙内第n次采样得到的样本记为x(n);其中,N≥10,n为正整数,1≤n≤N;
步骤三:根据当前感知时隙内采样得到的N个样本,计算当前感知时隙对应的能量,记为E,其中,符号“||”为取绝对值符号;
步骤四:在下一个想要采样的感知时隙来临时,将该感知时隙作为当前感知时隙,然后返回步骤二继续执行,直至计算得到当前感知时隙对应的能量及当前感知时隙之前的至少K个感知时隙各自对应的能量,再执行步骤五;其中,K≥10;
步骤五:将当前感知时隙之前的最近的K个感知时隙定义为以往感知时隙,将当前感知时隙对应的能量重新记为Ecur
步骤六:对K个以往感知时隙对应的能量按从小到大的顺序进行排序,将排序后的第k个能量记为 其中,k为正整数,1≤k≤K,对应表示排序后的第1个能量、排序后的第2个能量、排序后的第K个能量;
步骤七:利用的平均值来估计噪声功率,记为 其中,表示排序后的第个能量,符号为向下取整运算符号,q为正整数, 表示排序后的第q个能量;
步骤八:根据Ecur计算检验统计量,记为T,
步骤九:判断T是否大于判决门限d,如果T>d,则判定当前感知时隙内存在授权用户信号;否则,判定当前感知时隙内不存在授权用户信号;其中,d满足给定的虚警概率Pf,并通过计算机仿真获得,Pf∈[0,1]。
与现有技术相比,本发明的优点在于:
1)本发明方法利用多个以住感知时隙对应的能量来估计得到噪声功率,由于采用了具有较小能量的以往感知时隙的数据,因此能够准确地估计出噪声功率,解决了传统的能量检测频谱感知方法需要知道噪声功率本身的问题。
2)本发明方法在计算检验统计量时利用了能量和估计的噪声功率,解决了传统的能量检测频谱感知方法中的噪声功率不确定性的问题,从而使得本发明方法能够获得较好的感知性能。
附图说明
图1为本发明方法的总体流程框图;
图2为取N=100、K=100、Pf=0.1、信噪比区间为-15分贝到0分贝时,采用本发明方法和传统的能量检测频谱感知方法的检测概率示意图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本发明提出的一种利用以往感知时隙数据的能量检测频谱感知方法,其总体流程框图如图1所示,其处理过程为:针对当前感知时隙及多个以往感知时隙,在相应的感知时隙内,对来自1个通道的信号进行多次采样,每次采样得到一个样本;然后根据相应的感知时隙内采样得到的所有样本计算相应的感知时隙对应的能量;接着对所有以往感知时隙对应的能量按从小到大的顺序进行排序;之后利用排序后的能量来估计噪声功率;再根据当前感知时隙对应的能量及噪声功率,计算检验统计量;最后通过比较检验统计量与判决门限的大小,判定当前感知时隙内是否存在授权用户信号。
本发明的利用以往感知时隙数据的能量检测频谱感知方法具体包括以下步骤:
步骤一:在认知无线电系统中仅配置有1个通道;将当前想要采样的感知时隙定义为当前感知时隙。
步骤二:在当前感知时隙内,对来自通道的信号进行N次采样,每次采样得到一个样本,将当前感知时隙内第n次采样得到的样本记为x(n);其中,N≥10,在本实施例中取N=100,n为正整数,1≤n≤N。
步骤三:根据当前感知时隙内采样得到的N个样本,计算当前感知时隙对应的能量,记为E,其中,符号“||”为取绝对值符号。
步骤四:在下一个想要采样的感知时隙来临时,将该感知时隙作为当前感知时隙,然后返回步骤二继续执行,直至计算得到当前感知时隙对应的能量及当前感知时隙之前的至少K个感知时隙各自对应的能量,再执行步骤五;其中,K≥10,在本实施例中取K=100;取K=100时,若步骤一中当前想要采样的感知时隙为第j个感知时隙,则当步骤四执行时的当前感知时隙为第100+j个感知时隙时,第j个感知时隙至第100+j-1个感知时隙为以往感知时隙,j为正整数。
步骤五:将当前感知时隙之前的最近的K个感知时隙定义为以往感知时隙,将当前感知时隙对应的能量重新记为Ecur
步骤六:对K个以往感知时隙对应的能量按从小到大的顺序进行排序,将排序后的第k个能量记为 其中,k为正整数,1≤k≤K,对应表示排序后的第1个能量、排序后的第2个能量、排序后的第K个能量。
步骤七:利用的平均值来估计噪声功率,记为 其中,表示排序后的第个能量,符号为向下取整运算符号,q为正整数, 表示排序后的第q个能量。
步骤八:根据Ecur计算检验统计量,记为T,
步骤九:判断T是否大于判决门限d,如果T>d,则判定当前感知时隙内存在授权用户信号;否则,判定当前感知时隙内不存在授权用户信号;其中,d满足给定的虚警概率Pf,并通过计算机仿真获得,Pf∈[0,1],在本实施例中取Pf=0.1,满足给定的虚警概率Pf的判决门限可采用现有技术并通过计算机仿真获得。
本发明方法的可行性和有效性可以通过以下仿真结果进一步说明。
假设信号采样次数为N=100,以往感知时隙的个数K=100,给定的虚警概率为Pf=0.1,信噪比区间为-15分贝到0分贝,采用本发明方法和传统的能量检测频谱感知方法的检测概率如图2所示。从图2中可以看出,随着信噪比的增大,采用本发明方法的检测概率和采用传统的能量检测频谱感知方法的检测概率都在增大,但是信噪比小于-8分贝时,采用传统的能量检测频谱感知方法的检测概率随信噪比的增大变化不明显,而采用本发明方法的检测概率明显得到提升;当信噪比为-5分贝时,采用本发明方法的检测概率在0.8附近,而采用传统的能量检测频谱感知方法的检测概率只有0.7左右;当信噪比大于或等于-3分贝时,采用本发明方法的检测概率和采用传统的能量检测频谱感知方法的检测概率基本相同,都能达到1,这足以说明本发明方法的感知性能优于传统的能量检测频谱感知方法的感知性能。

Claims (2)

1.一种利用以往感知时隙数据的能量检测频谱感知方法,其特征在于处理过程为:针对当前感知时隙及多个以往感知时隙,在相应的感知时隙内,对来自1个通道的信号进行多次采样,每次采样得到一个样本;然后根据相应的感知时隙内采样得到的所有样本计算相应的感知时隙对应的能量;接着对所有以往感知时隙对应的能量按从小到大的顺序进行排序;之后利用排序后的能量来估计噪声功率;再根据当前感知时隙对应的能量及噪声功率,计算检验统计量;最后通过比较检验统计量与判决门限的大小,判定当前感知时隙内是否存在授权用户信号。
2.根据权利要求1所述的一种利用以往感知时隙数据的能量检测频谱感知方法,其特征在于具体包括以下步骤:
步骤一:在认知无线电系统中仅配置有1个通道;将当前想要采样的感知时隙定义为当前感知时隙;
步骤二:在当前感知时隙内,对来自通道的信号进行N次采样,每次采样得到一个样本,将当前感知时隙内第n次采样得到的样本记为x(n);其中,N≥10,n为正整数,1≤n≤N;
步骤三:根据当前感知时隙内采样得到的N个样本,计算当前感知时隙对应的能量,记为E,其中,符号“| |”为取绝对值符号;
步骤四:在下一个想要采样的感知时隙来临时,将该感知时隙作为当前感知时隙,然后返回步骤二继续执行,直至计算得到当前感知时隙对应的能量及当前感知时隙之前的至少K个感知时隙各自对应的能量,再执行步骤五;其中,K≥10;
步骤五:将当前感知时隙之前的最近的K个感知时隙定义为以往感知时隙,将当前感知时隙对应的能量重新记为Ecur
步骤六:对K个以往感知时隙对应的能量按从小到大的顺序进行排序,将排序后的第k个能量记为 其中,k为正整数,1≤k≤K,对应表示排序后的第1个能量、排序后的第2个能量、排序后的第K个能量;
步骤七:利用的平均值来估计噪声功率,记为其中,表示排序后的第个能量,符号为向下取整运算符号,q为正整数, 表示排序后的第q个能量;
步骤八:根据Ecur计算检验统计量,记为T,
步骤九:判断T是否大于判决门限d,如果T>d,则判定当前感知时隙内存在授权用户信号;否则,判定当前感知时隙内不存在授权用户信号;其中,d满足给定的虚警概率Pf,并通过计算机仿真获得,Pf∈[0,1]。
CN201811059979.4A 2018-09-12 2018-09-12 一种利用以往感知时隙数据的能量检测频谱感知方法 Active CN109067484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811059979.4A CN109067484B (zh) 2018-09-12 2018-09-12 一种利用以往感知时隙数据的能量检测频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811059979.4A CN109067484B (zh) 2018-09-12 2018-09-12 一种利用以往感知时隙数据的能量检测频谱感知方法

Publications (2)

Publication Number Publication Date
CN109067484A true CN109067484A (zh) 2018-12-21
CN109067484B CN109067484B (zh) 2021-06-15

Family

ID=64760098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811059979.4A Active CN109067484B (zh) 2018-09-12 2018-09-12 一种利用以往感知时隙数据的能量检测频谱感知方法

Country Status (1)

Country Link
CN (1) CN109067484B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760635A (zh) * 2022-03-18 2022-07-15 宁波大学 一种基于图学习的联合空时机会检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256286A (zh) * 2011-05-06 2011-11-23 中国人民解放军理工大学 基于状态转移概率估计的感知时隙长度优化方法
CN102291191A (zh) * 2011-08-19 2011-12-21 电子科技大学 一种频谱感知方法
CN106549722A (zh) * 2016-11-09 2017-03-29 宁波大学 一种基于历史感知信息的双门限能量检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102256286A (zh) * 2011-05-06 2011-11-23 中国人民解放军理工大学 基于状态转移概率估计的感知时隙长度优化方法
CN102291191A (zh) * 2011-08-19 2011-12-21 电子科技大学 一种频谱感知方法
CN106549722A (zh) * 2016-11-09 2017-03-29 宁波大学 一种基于历史感知信息的双门限能量检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭晨等: "基于循环前缀相关性的频谱感知方法及USRP实现", 《无线通信技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760635A (zh) * 2022-03-18 2022-07-15 宁波大学 一种基于图学习的联合空时机会检测方法

Also Published As

Publication number Publication date
CN109067484B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
CN106549722B (zh) 一种基于历史感知信息的双门限能量检测方法
CN108322277B (zh) 一种基于协方差矩阵反特征值的频谱感知方法
CN106713190B (zh) 基于随机矩阵理论和特征阈值估计的mimo发射天线数目盲估计算法
CN104821852B (zh) 一种基于多天线瞬时功率的频谱感知方法
CN107276696A (zh) 一种低信噪比条件下信号检测算法
CN101710848A (zh) 基于模糊积分和最优化理论的合作式频谱感知方法
CN109194417A (zh) 一种协方差矩阵频谱感知方法
CN110649982A (zh) 基于次用户节点选择的双阈值能量检测方法
CN109067484B (zh) 一种利用以往感知时隙数据的能量检测频谱感知方法
CN105429913B (zh) 基于特征值的多电平检测与识别方法
CN103346849B (zh) 一种抵抗模仿主用户信号的恶意攻击的频谱感知方法
CN108900268B (zh) 利用小特征值估计噪声功率的最大特征值频谱感知方法
CN109120360A (zh) 在授权用户静默期估计噪声功率的能量检测频谱感知方法
CN106788817A (zh) 一种基于贝叶斯准则和能量检测法的频谱感知方法
CN106972900B (zh) 基于广义t2统计量的盲频谱感知方法
CN109150342A (zh) 一种最大特征值频谱感知方法
CN109067483B (zh) 一种利用以往感知时隙数据的最大特征值频谱感知方法
CN109120361B (zh) 一种利用以往感知时隙数据的协方差矩阵频谱感知方法
CN109286937B (zh) 利用小特征值估计噪声功率的协方差矩阵频谱感知方法
CN103973381B (zh) 基于Cholesky矩阵分解的协作频谱检测方法
CN105813089A (zh) 一种对抗噪声不确定性的匹配滤波频谱感知方法
CN102869091A (zh) 一种确定定位参考信号到达时间的方法及装置
CN104320209A (zh) 一种基于拟合优度检验的频谱感知方法
CN102882617A (zh) 一种基于谱相关特征的频谱检测方法
CN110289924B (zh) 一种变分推断估计噪声功率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant