CN109034388A - A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network - Google Patents
A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network Download PDFInfo
- Publication number
- CN109034388A CN109034388A CN201810839016.XA CN201810839016A CN109034388A CN 109034388 A CN109034388 A CN 109034388A CN 201810839016 A CN201810839016 A CN 201810839016A CN 109034388 A CN109034388 A CN 109034388A
- Authority
- CN
- China
- Prior art keywords
- neural network
- model
- genetic algorithm
- data
- mainstream smoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 65
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 40
- 230000002068 genetic effect Effects 0.000 title claims abstract description 33
- 235000019504 cigarettes Nutrition 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 title claims abstract description 20
- 239000000779 smoke Substances 0.000 title claims abstract description 20
- 239000000470 constituent Substances 0.000 title 1
- 238000012549 training Methods 0.000 claims abstract description 33
- 238000003062 neural network model Methods 0.000 claims abstract description 26
- 238000005457 optimization Methods 0.000 claims abstract description 22
- 230000000694 effects Effects 0.000 claims abstract description 6
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 14
- 210000002569 neuron Anatomy 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 230000035772 mutation Effects 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 11
- 241000208125 Nicotiana Species 0.000 description 7
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 7
- 238000013507 mapping Methods 0.000 description 6
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010219 correlation analysis Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 229960002715 nicotine Drugs 0.000 description 2
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 239000002641 tar oil Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Human Resources & Organizations (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Strategic Management (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Genetics & Genomics (AREA)
- Physiology (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于遗传算法优化神经网络的卷烟材料与主流烟气成分的预测模型,包括以下步骤:样本预处理;基于遗传算法得到神经网络最优的权值和阈值参数;基于遗传算法得到的最佳权值和阈值,构建神经网络,并训练神经网络模型;对训练得到的神经网络模型进行验证,评估模型应用于实际的效果。与不采用优化算法的神经网络相比,基于遗传算法优化的神经网络模型先使用遗传算法选择使模型误差达到最小的权值和阈值作为训练神经网络的初始参数,可以避免模型陷入局部最优解,而无法得到全局最优解。
A prediction model of cigarette material and mainstream smoke components based on a genetic algorithm optimized neural network, including the following steps: sample preprocessing; obtaining the optimal weight and threshold parameters of the neural network based on the genetic algorithm; obtaining the optimal weight and threshold parameters based on the genetic algorithm. Weights and thresholds, construct a neural network, and train the neural network model; verify the trained neural network model, and evaluate the actual effect of the model. Compared with the neural network without optimization algorithm, the neural network model based on genetic algorithm optimization first uses the genetic algorithm to select the weight and threshold that minimize the model error as the initial parameters of the training neural network, which can avoid the model from falling into a local optimal solution , but the global optimal solution cannot be obtained.
Description
技术领域technical field
本发明涉及一种预测模型,属于工业设计与生产领域,利用遗传算法优化神经网络建立卷烟材料与主流烟气成分之间的映射关系,为卷烟制造业合理调整卷烟材料配方,生产符合规格的香烟提供了模型,具体说是一种基于神经网络的卷烟材料与主流烟气成分的预测模型。The invention relates to a predictive model, which belongs to the field of industrial design and production. The genetic algorithm is used to optimize the neural network to establish the mapping relationship between cigarette materials and mainstream smoke components, so as to rationally adjust the formula of cigarette materials for the cigarette manufacturing industry and produce cigarettes that meet specifications. A model is provided, specifically a neural network-based predictive model for cigarette material and mainstream smoke components.
背景技术Background technique
在烟草制造业中,烟草释放的有害气体成分和含量一直是烟草制造公司和消费者关心的问题。为了优化产品设计,加快生产效率,生产合格且低危害的产品,烟草制造行业需要利用统计学相关的知识,对烟草原材料进行典型相关分析、主成分分析和偏相关分析等,得到与主流烟气相关程度最高的卷烟材料,然后对分析得到的主成分和主流烟气建立适当的模型,以协助烟草制造过程中的取材和生产。随着信息技术的发展,计算机的计算和处理能力不断提高,利用计算机对数据进行统计学分析、处理和建模成为趋势。利用计算机可以快速的进行分析和建模,可是传统的统计学分析方法是基于少量数据和人们的先验知识进行数据分析和建模,这种建模方法具有很强的针对性,且模型的适用性很差。In the tobacco manufacturing industry, the composition and content of harmful gases released by tobacco has always been a concern of tobacco manufacturing companies and consumers. In order to optimize product design, speed up production efficiency, and produce qualified and low-hazard products, the tobacco manufacturing industry needs to use statistics-related knowledge to conduct canonical correlation analysis, principal component analysis, and partial correlation analysis on tobacco raw materials, and obtain the results related to mainstream smoke. The most relevant cigarette material is then modeled appropriately for the principal components and mainstream smoke from the analysis to assist in material extraction and production during tobacco manufacturing. With the development of information technology, the computing and processing capabilities of computers have been continuously improved, and it has become a trend to use computers to conduct statistical analysis, processing and modeling of data. Computers can be used for rapid analysis and modeling, but traditional statistical analysis methods are based on a small amount of data and people's prior knowledge for data analysis and modeling. This modeling method is highly targeted, and the model's Applicability is poor.
近年来,深度学习再次兴起,神经网络依靠复杂的网络结构和自学习能力可以较好的拟合各种看似无规律的数据,不仅为规律不明显的数据建模提供了新的建模方法,而且相比传统的统计学建模方法的拟合效果更好。BP神经网络是一种将学习规则一般化,对非线性可微分函数进行权值训练的多层网络权值的调整采用反向传播的学习算法。学习的过程分为两个阶段:(1)信息正向传播;(2)误差反向传播。在BP神经网络的训练过程中,如果一次的输出结果与期望的输出结果之间的差值超过某个标准,并且训练的次数没有达到设定的最大训练次数,那么误差以某种形式回传,并修正各层的权值,使输出值一步步接近期望的输出值,直到误差减小到可接受的程度或者训练次数达到预先设定的次数。目前,神经网络相关的技术已经开始在卷烟感官评价与主流烟气成分关系的模型得到应用,但还没有利用遗传算法优化BP神经网络建立卷烟材料与主流烟气模型的先例。In recent years, deep learning has risen again. Relying on complex network structure and self-learning ability, neural network can better fit various seemingly irregular data, which not only provides a new modeling method for data modeling with no obvious rules. , and the fitting effect is better than the traditional statistical modeling method. BP neural network is a learning algorithm that generalizes the learning rules and performs weight training on nonlinear differentiable functions. The learning process is divided into two stages: (1) information forward propagation; (2) error back propagation. In the training process of BP neural network, if the difference between the output result of one time and the expected output result exceeds a certain standard, and the number of training times does not reach the set maximum number of training times, then the error is returned in some form , and correct the weights of each layer, so that the output value is close to the expected output value step by step, until the error is reduced to an acceptable level or the number of training times reaches the preset number of times. At present, neural network-related technologies have begun to be applied in the model of the relationship between cigarette sensory evaluation and mainstream smoke components, but there is no precedent for using genetic algorithm to optimize BP neural network to establish a model of cigarette materials and mainstream smoke.
发明内容Contents of the invention
本发明针对现有技术的不足,提出了一种基于遗传算法优化BP神经网络建立卷烟材料与主流烟气成分预测模型的方法。Aiming at the deficiencies of the prior art, the present invention proposes a method for establishing a prediction model of cigarette materials and mainstream smoke components based on genetic algorithm optimization of BP neural network.
本发明公开了一种建立卷烟材料与主流烟气成分的预测模型和使用模型的方法,首先利用遗传算法基于神经网络的结构选择最佳的初始权值和阈值;然后基于遗传算法得到的最佳初始权值和阈值训练神经网络,以避免模型陷入局部最优解,而不是全局最优解;最后,基于训练的模型,以真实数据为输入,评估模型是否可以应用于生产实际。The invention discloses a method for establishing a prediction model and a use model of cigarette materials and mainstream smoke components. First, the genetic algorithm is used to select the best initial weight and threshold based on the structure of the neural network; The initial weights and thresholds train the neural network to avoid the model from falling into the local optimal solution instead of the global optimal solution; finally, based on the trained model, use real data as input to evaluate whether the model can be applied to actual production.
本发明采用的技术方案是:一种基于遗传算法优化神经网络的卷烟材料与主流烟气成分的预测模型,其特征在于,包括以下步骤:The technical solution adopted by the present invention is: a prediction model of cigarette material and mainstream smoke components based on genetic algorithm optimization neural network, characterized in that it comprises the following steps:
步骤1:样本预处理;Step 1: Sample preprocessing;
步骤2:基于遗传算法得到神经网络最优的权值和阈值参数;Step 2: Obtain the optimal weight and threshold parameters of the neural network based on the genetic algorithm;
步骤3:基于遗传算法得到的最佳权值和阈值,构建神经网络,并训练神经网络模型;Step 3: Construct a neural network based on the optimal weight and threshold obtained by the genetic algorithm, and train the neural network model;
步骤4:对训练得到的神经网络模型进行验证,评估模型应用于实际的效果。Step 4: Verify the trained neural network model and evaluate the actual effect of the model.
进一步的,步骤1的具体实现包括以下子步骤:Further, the specific implementation of step 1 includes the following sub-steps:
步骤1.1:去除样本中存在缺失值和数据明显不符合实际的数据记录;Step 1.1: Remove data records with missing values and data that obviously do not conform to reality in the sample;
步骤1.2:原始数据中的数据按照下述表达式进行归一化,x代表原始数据,y代表归一化之后的数据,Minvalue和MaxValue分别代表原始数据的最小值最大值,y=(x-MinValue)/(MaxValue-Minvalue);Step 1.2: The data in the original data is normalized according to the following expression, x represents the original data, y represents the data after normalization, Minvalue and MaxValue represent the minimum and maximum values of the original data, y=(x- MinValue)/(MaxValue-Minvalue);
步骤1.3:将归一化之后的数据划分为训练集和测试集。Step 1.3: Divide the normalized data into training set and test set.
进一步的,步骤2的具体实现包括以下子步骤:Further, the specific implementation of step 2 includes the following sub-steps:
步骤2.1:定义神经网络的常数参数,输入层节点数INPUT_NODE、隐藏层节点数LAYER1_NODE、输出层节点数OUTPUT_NODE、基础的学习率LEARNING_RATE_BASE、学习率的衰减率LEARNING_RATE_DECAY、描述模型复杂度的正则化项在损失函数中的系数REAULARIZATION_RATE、训练轮数TRAINING_SETPS、滑动平均衰减率MOVING_AVERAGE_DECAY;Step 2.1: Define the constant parameters of the neural network, the number of input layer nodes INPUT_NODE, the number of hidden layer nodes LAYER1_NODE, the number of output layer nodes OUTPUT_NODE, the basic learning rate LEARNING_RATE_BASE, the decay rate LEARNING_RATE_DECAY of the learning rate, and the regularization item describing the complexity of the model in The coefficient REAULARIZATION_RATE in the loss function, the number of training rounds TRAINING_SETPS, and the moving average decay rate MOVING_AVERAGE_DECAY;
步骤2.2:定义激活函数tf.nn.relu()、损失函数loss()、优化损失函数的优化算法tf.train.GradientDescentOptimizer();Step 2.2: Define the activation function tf.nn.relu(), the loss function loss(), and the optimization algorithm tf.train.GradientDescentOptimizer() for optimizing the loss function;
步骤2.3:设置种群的进化代数,种群规模,交叉和变异概率,并对神经元的初始权重和阈值进行实数编码;Step 2.3: Set the evolutionary algebra, population size, crossover and mutation probability of the population, and encode the initial weight and threshold of neurons in real numbers;
步骤2.4:计算种群的适应度,从当前种群中选择最优部分个体;Step 2.4: Calculate the fitness of the population, and select the best individuals from the current population;
步骤2.5:种群进行选择、交叉、变异操作;Step 2.5: The population is selected, crossed, and mutated;
步骤2.6:判断是否达到了优化目标,若达到了优化目标,选择最佳的权值和阈值执行下一步,否则执行步骤2.4;Step 2.6: Judging whether the optimization goal is reached, if the optimization goal is reached, select the best weight and threshold to execute the next step, otherwise execute step 2.4;
进一步的,步骤3的具体实现包括以下子步骤:Further, the specific implementation of step 3 includes the following sub-steps:
步骤3.1:基于上一步得到的最佳权值和阈值和其他神经网络参数构建BP神经网络;Step 3.1: Construct a BP neural network based on the optimal weights and thresholds and other neural network parameters obtained in the previous step;
步骤3.2:训练神经网络模型;Step 3.2: Train the neural network model;
步骤3.3:计算训练的神经网络模型输出的值与数据集中的真实值之间的误差,根据误差逐层向前更新神经网络各层的权值和阈值;Step 3.3: Calculate the error between the output value of the trained neural network model and the real value in the data set, and update the weights and thresholds of each layer of the neural network layer by layer according to the error;
步骤3.4:判断得到的模型是否达到了预期的精度或者最大迭代次数,若是,则执行下一步,否则返回步骤3.2;Step 3.4: Determine whether the obtained model has reached the expected accuracy or the maximum number of iterations, if so, execute the next step, otherwise return to step 3.2;
进一步的,步骤4的具体实现包括以下子步骤:Further, the specific implementation of step 4 includes the following sub-steps:
步骤4.1:把测试集中的数据输入步骤3中得到的神经网络模型,得到对应的输出值;Step 4.1: Input the data in the test set into the neural network model obtained in step 3, and obtain the corresponding output value;
步骤4.2:计算模型输出值与真实值之间的误差,若误差达到了预期的要求,则模型可以应用于实际生产中,否则,返回步骤2,调整各项参数,重新训练模型。Step 4.2: Calculate the error between the model output value and the real value. If the error meets the expected requirements, the model can be applied in actual production. Otherwise, return to step 2, adjust various parameters, and retrain the model.
本发明的有益效果和特点是:本发明是第一个基于遗传算法优化BP神经网络的卷烟材料到主流烟气成分的预测模型。传统的线性回归拟合曲线在处理多输入多输出非线性映射关系时,常常欠拟合。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。采用BP神经网络训练模型的过程中反复修正权值,不断优化模型,可以使模型以任意精度拟合训练数据。卷烟材料与主流烟气成分之间存在某种复杂的非线性映射关系,因此使用遗传算法优化BP神经网络建立卷烟材料与主流烟气之间的预测模型不仅比传统的回归方法更合适,而且由于未优化的神经网络模型。The beneficial effects and characteristics of the present invention are: the present invention is the first predictive model based on genetic algorithm optimization of BP neural network from cigarette material to mainstream smoke components. The traditional linear regression fitting curve often underfits when dealing with the nonlinear mapping relationship between multiple inputs and multiple outputs. The BP network can learn and store a large number of input-output pattern mapping relationships without revealing the mathematical equations describing the mapping relationship in advance. In the process of using the BP neural network to train the model, the weights are repeatedly corrected and the model is continuously optimized, which can make the model fit the training data with arbitrary precision. There is a certain complex nonlinear mapping relationship between cigarette materials and mainstream smoke components, so using genetic algorithm to optimize BP neural network to establish a prediction model between cigarette materials and mainstream smoke is not only more suitable than traditional regression methods, but also because Unoptimized neural network model.
附图说明Description of drawings
图1是本发明实施例的原理框架结构;Fig. 1 is the principle framework structure of the embodiment of the present invention;
图2是基于遗传算法选择最佳神经网络初始化参数过程中,适应度变化曲线;Figure 2 is the fitness change curve during the process of selecting the optimal neural network initialization parameters based on the genetic algorithm;
图3、图4分别是未使用遗传算法优化的神经网络模型对焦油和CO的预测误差对比图;Figure 3 and Figure 4 are the comparison charts of the prediction errors of tar oil and CO without using the neural network model optimized by the genetic algorithm;
图5、图6分别是使用遗传算法优化的神经网络模型对焦油和CO的预测准确度对比图。Figure 5 and Figure 6 are comparisons of the prediction accuracy of tar oil and CO by the neural network model optimized by genetic algorithm.
具体实施方式Detailed ways
下面结合附图对本发明进行进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
本实例中,把全部的实验数据集划分成两部分,一部分作为BP神经网络的训练集,另一部分作为BP神经网络的测试集,训练集中的数据取总数据量的2/3—4/5。定义D是n×m的数据集,每一行代表一条数据记录,每一列表示一个属性。令集合A和B分别表示划分数据集得到的训练集和测试集。先基于训练集A基于遗传算法得到最佳的神经网络权值和阈值,再把最佳的神经网络权值和阈值作为训练BP神经网络模型的初始参数训练神经网络,当网络的输出结果与期望的输出结果之间的差值达到某个标准或者达到了最大的迭代次数,就认为BP神经网络已经训练完成了,然后使用测试集B检验训练的模型在新数据集上的预测精度。In this example, the entire experimental data set is divided into two parts, one part is used as the training set of BP neural network, and the other part is used as the test set of BP neural network. The data in the training set takes 2/3-4/5 of the total data volume . Definition D is an n×m data set, each row represents a data record, and each column represents an attribute. Let sets A and B denote the training set and test set obtained by dividing the dataset, respectively. First, based on the training set A, the optimal neural network weights and thresholds are obtained based on the genetic algorithm, and then the optimal neural network weights and thresholds are used as the initial parameters for training the BP neural network model to train the neural network. When the output of the network is in line with the expected If the difference between the output results reaches a certain standard or reaches the maximum number of iterations, it is considered that the BP neural network has been trained, and then the test set B is used to test the prediction accuracy of the trained model on the new data set.
本发明提出了一种基于遗传算法优化BP神经网络建立卷烟材料与主流烟气成分的预测模型和使用模型的方法。包括以下步骤(可参照图1):The invention proposes a method for establishing a prediction model and a use model of cigarette materials and mainstream smoke components based on genetic algorithm optimization BP neural network. Including the following steps (refer to Figure 1):
步骤1:样本预处理;Step 1: Sample preprocessing;
步骤1.1:去除样本中存在缺失值和数据明显不符合实际的数据记录;Step 1.1: Remove data records with missing values and data that obviously do not conform to reality in the sample;
步骤1.2:原始数据中的数据按照下述表达式进行归一化,x代表原始数据,y代表归一化之后的数据,Minvalue和MaxValue分别代表原始数据的最小值最大值,y=(x-MinValue)/(MaxValue-Minvalue);Step 1.2: The data in the original data is normalized according to the following expression, x represents the original data, y represents the data after normalization, Minvalue and MaxValue represent the minimum and maximum values of the original data, y=(x- MinValue)/(MaxValue-Minvalue);
步骤1.3:将归一化之后的数据划分为训练集和测试集。Step 1.3: Divide the normalized data into training set and test set.
实施例具体的实施过程说明如下:The specific implementation process of the embodiment is described as follows:
对数据集中每个数据记录中每个属性的值x按照y=(x-MinValue)/(MaxValue-Minvalue)的方式得到归一化之后的值y,把计算得到的每一个y值作为对应属性的值,从而组成新的n×m的数据集。For the value x of each attribute in each data record in the data set, the normalized value y is obtained according to the method of y=(x-MinValue)/(MaxValue-Minvalue), and each calculated y value is used as the corresponding attribute The value of , thus forming a new n×m data set.
把归一化之后的数据集中2/3—4/5的数据记录划分到训练集,剩下的数据划分到测试集,在划分训练集和测试的过程中,要采用随机划分的方式,以避免数据集划分过程中认为因素对实验结果的影响。Divide 2/3-4/5 of the data records in the normalized data set into the training set, and divide the remaining data into the test set. Avoid the influence of factors considered in the process of data set division on the experimental results.
步骤2:基于遗传算法得到神经网络最优的权值和阈值参数;Step 2: Obtain the optimal weight and threshold parameters of the neural network based on the genetic algorithm;
步骤2.1:定义神经网络的常数参数,输入层节点数INPUT_NODE、隐藏层节点数LAYER1_NODE、输出层节点数OUTPUT_NODE、基础的学习率LEARNING_RATE_BASE、学习率的衰减率LEARNING_RATE_DECAY、描述模型复杂度的正则化项在损失函数中的系数REAULARIZATION_RATE、训练轮数TRAINING_SETPS、滑动平均衰减率MOVING_AVERAGE_DECAY;Step 2.1: Define the constant parameters of the neural network, the number of input layer nodes INPUT_NODE, the number of hidden layer nodes LAYER1_NODE, the number of output layer nodes OUTPUT_NODE, the basic learning rate LEARNING_RATE_BASE, the decay rate LEARNING_RATE_DECAY of the learning rate, and the regularization item describing the complexity of the model in The coefficient REAULARIZATION_RATE in the loss function, the number of training rounds TRAINING_SETPS, and the moving average decay rate MOVING_AVERAGE_DECAY;
步骤2.2:定义激活函数tf.nn.relu()、损失函数loss()、优化损失函数的优化算法tf.train.GradientDescentOptimizer();Step 2.2: Define the activation function tf.nn.relu(), the loss function loss(), and the optimization algorithm tf.train.GradientDescentOptimizer() for optimizing the loss function;
步骤2.3:设置种群的进化代数,种群规模,交叉和变异概率,并对神经元的初始权重和阈值进行实数编码;Step 2.3: Set the evolutionary algebra, population size, crossover and mutation probability of the population, and encode the initial weight and threshold of neurons in real numbers;
步骤2.4:计算种群的适应度,从当前种群中选择最优部分个体;Step 2.4: Calculate the fitness of the population, and select the best individuals from the current population;
步骤2.5:种群进行选择、交叉、变异操作;Step 2.5: The population is selected, crossed, and mutated;
步骤2.6:判断是否达到了优化目标,若达到了优化目标,选择最佳的权值和阈值执行下一步,否则执行步骤2.4;Step 2.6: Judging whether the optimization goal is reached, if the optimization goal is reached, select the best weight and threshold to execute the next step, otherwise execute step 2.4;
实施例具体的实施过程说明如下:The specific implementation process of the embodiment is described as follows:
在使用遗传算法获得最佳的权值和阈值之前,先确定神经网络的输入层节点数INPUT_NODE、隐藏层的数量和隐藏层节点数LAYER1_NODE、输出层节点数量OUTPUT_NODE等一系列神经网络需要的参数和遗传算法中需要的参数,如:进化代数、种群规模等。然后初始化神经元的初始权值和阈值进行实数编码,逐一计算种群的适应度,并依次进行神经元的选择、交叉和变异操作。每执行一轮选择、交叉和变异,种群就更新一次,需要重新计算种群的适应度。种群适应度是刻画种群对问题最优解逼近程度的一项指标,这里采用计算训练集中全部数据与模型的预测值误差之和的方式求解每个个体的适应度。根据个体的适应度,选择适应度数值较小的部分个体组成新的种群,在新种群中,继续进行选择、交叉和变异,使种群不断迭代,不端逼近最优解。每次计算适应度之后,保存之前所有迭代中获得最佳适应度的神经元,最终得到的最佳神经元将作为下一步训练最终神经网络模型的初始权值和阈值。Before using the genetic algorithm to obtain the optimal weight and threshold, first determine the number of input layer nodes INPUT_NODE of the neural network, the number of hidden layers and the number of hidden layer nodes LAYER1_NODE, the number of output layer nodes OUTPUT_NODE and a series of parameters required by the neural network and The parameters required in the genetic algorithm, such as: evolutionary algebra, population size, etc. Then initialize the initial weights and thresholds of neurons to encode real numbers, calculate the fitness of the population one by one, and perform neuron selection, crossover and mutation operations in sequence. Every time a round of selection, crossover and mutation is performed, the population is updated, and the fitness of the population needs to be recalculated. The fitness of the population is an index that describes the degree of approximation of the population to the optimal solution of the problem. Here, the fitness of each individual is calculated by calculating the sum of the errors of all the data in the training set and the predicted value of the model. According to the fitness of individuals, some individuals with smaller fitness values are selected to form a new population. In the new population, selection, crossover and mutation are continued to make the population iterate continuously and approach the optimal solution improperly. After each calculation of the fitness, save the neuron that obtained the best fitness in all previous iterations, and the final best neuron will be used as the initial weight and threshold for the next step of training the final neural network model.
步骤3:基于遗传算法得到的最佳权值和阈值,构建神经网络,并训练神经网络模型;Step 3: Construct a neural network based on the optimal weight and threshold obtained by the genetic algorithm, and train the neural network model;
步骤3.1:基于上一步得到的最佳权值和阈值和其他神经网络参数构建BP神经网络;Step 3.1: Construct a BP neural network based on the optimal weights and thresholds and other neural network parameters obtained in the previous step;
步骤3.2:训练神经网络模型;Step 3.2: Train the neural network model;
步骤3.3:计算训练的神经网络模型输出的值与数据集中的真实值之间的误差,根据误差逐层向前更新神经网络各层的权值和阈值;Step 3.3: Calculate the error between the output value of the trained neural network model and the real value in the data set, and update the weights and thresholds of each layer of the neural network layer by layer according to the error;
步骤3.4:判断得到的模型是否达到了预期的精度或者最大迭代次数,若是,则执行下一步,否则返回步骤3.2;Step 3.4: Determine whether the obtained model has reached the expected accuracy or the maximum number of iterations, if so, execute the next step, otherwise return to step 3.2;
实施例具体的实施过程说明如下:The specific implementation process of the embodiment is described as follows:
根据步骤2中得到的最佳神经元初始化神经网络的最初权值和阈值。在训练过程中,各层的权值将根据输出值与期望的输出值之间的差值逐渐调整,直到得到按照当前网络结构下的最佳状态。BP神经网络的训练过程不仅需要多轮训练,还有可能经过多次调整网络的隐藏层数量和各层的节点数,使输出结果不断优化。Initialize the initial weights and thresholds of the neural network according to the best neurons obtained in step 2. During the training process, the weights of each layer will be gradually adjusted according to the difference between the output value and the expected output value until the best state according to the current network structure is obtained. The training process of the BP neural network not only requires multiple rounds of training, but also may adjust the number of hidden layers of the network and the number of nodes in each layer many times to continuously optimize the output results.
在神经网络隐藏层和输出层,需要使用非线性函数作为激活函数,使模型建立非线性映射。在输出层,为了评估模型训练的好坏,定义一个损失函数对模型效用进行评估。在网络训练刚刚的开始阶段,为了提升训练速度,采用指数下降策略来调整权值,达到快速收敛的效用,为了避免模型的过拟合,在损失函数中加入描述模型复杂度的正则化项,经过若干次迭代,使用优化算法优化网络中各层的权值。In the hidden layer and output layer of the neural network, it is necessary to use a nonlinear function as the activation function to make the model establish a nonlinear mapping. In the output layer, in order to evaluate the quality of model training, a loss function is defined to evaluate the utility of the model. In the initial stage of network training, in order to increase the training speed, an exponential descent strategy is used to adjust the weights to achieve rapid convergence. In order to avoid over-fitting of the model, a regularization term describing the complexity of the model is added to the loss function. After several iterations, an optimization algorithm is used to optimize the weights of each layer in the network.
在确定了网络结构、激活函数、损失函数和优化算法之后,就可以开始基于训练数据集训练神经网络。在训练BP神经网络的过程中,神经网络内部会不断调整各层节点的权值,直到达到当前网络配置下最佳的训练结果。此时,BP神经网络的训练并没有结束,在一次神经网络的配置下完成训练之后,还应该根据实验结果确定是否对神经网络的结构和某些参数进行调整后重新训练,以得到最佳的网络模型。After the network structure, activation function, loss function and optimization algorithm are determined, the neural network can be trained based on the training data set. In the process of training the BP neural network, the weights of the nodes in each layer will be continuously adjusted inside the neural network until the best training result under the current network configuration is achieved. At this time, the training of the BP neural network is not over. After the training is completed under the configuration of the neural network, it should be determined according to the experimental results whether to adjust the structure of the neural network and some parameters before retraining to obtain the best performance. network model.
步骤4:对训练得到的神经网络模型进行验证,评估模型应用于实际的效果。。Step 4: Verify the trained neural network model and evaluate the actual effect of the model. .
步骤4.1:把测试集中的数据输入步骤3中得到的神经网络模型,得到对应的输出值;Step 4.1: Input the data in the test set into the neural network model obtained in step 3, and obtain the corresponding output value;
步骤4.2:计算模型输出值与真实值之间的误差,若误差达到了预期的要求,则模型可以应用于实际生产中,否则,返回步骤2,调整各项参数,重新训练模型。Step 4.2: Calculate the error between the model output value and the real value. If the error meets the expected requirements, the model can be applied in actual production. Otherwise, return to step 2, adjust various parameters, and retrain the model.
在训练好神经网络之后,再用测试集检测训练得到的模型是否可以应用于生产实际中,如果在测试集中基于BP神经网络的预测值与测试集中的输出值之差在某个规定的范围内,就认为训练得到的BP神经网络模型是可以应用于生产实际的;否则,BP神经网络模型需要重新构建和训练。After training the neural network, use the test set to check whether the trained model can be applied to actual production. If the difference between the predicted value based on the BP neural network in the test set and the output value in the test set is within a specified range , it is considered that the trained BP neural network model can be applied to actual production; otherwise, the BP neural network model needs to be rebuilt and trained.
通过图3、图4、图5、图6的对比说明,本专利通过使用遗传算法优化的神经网络模型得出的焦油、烟碱和CO的预测值精度相对于未使用遗传算法优化的神经网络模型得出的焦油、烟碱和CO的预测值精度有了较大的提高,说明本专利采用的技术方案的确能取得较好的实际效果,对协助烟草制造过程中的取材和生产会产生积极作用。Through the comparison of Fig. 3, Fig. 4, Fig. 5, and Fig. 6, the accuracy of the predicted values of tar, nicotine and CO obtained by using the neural network model optimized by genetic algorithm in this patent is higher than that of the neural network optimized by genetic algorithm. The accuracy of the predicted values of tar, nicotine and CO obtained by the model has been greatly improved, which shows that the technical solution adopted in this patent can indeed achieve better practical results, and will have a positive effect on assisting in the extraction and production of tobacco during the manufacturing process. effect.
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的结构关系及原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the structural relationship and principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention There are also various changes and improvements which fall within the scope of the claimed invention. The protection scope of the present invention is defined by the appended claims and their equivalents.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810839016.XA CN109034388A (en) | 2018-07-27 | 2018-07-27 | A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810839016.XA CN109034388A (en) | 2018-07-27 | 2018-07-27 | A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109034388A true CN109034388A (en) | 2018-12-18 |
Family
ID=64646907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810839016.XA Pending CN109034388A (en) | 2018-07-27 | 2018-07-27 | A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109034388A (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110059821A (en) * | 2019-03-19 | 2019-07-26 | 埃睿迪信息技术(北京)有限公司 | Neural network optimization, device, computer equipment and storage medium |
CN110457758A (en) * | 2019-07-16 | 2019-11-15 | 江西理工大学 | Method, device, system and storage medium for predicting rock mass instability stage |
CN110490244A (en) * | 2019-08-14 | 2019-11-22 | 吉林大学 | A kind of data processing method and device |
CN110516954A (en) * | 2019-08-23 | 2019-11-29 | 昆明理工大学 | A Method of Optimizing Mineral Processing Production Index Based on GA-BP Neural Network Algorithm |
CN110656385A (en) * | 2019-10-28 | 2020-01-07 | 季华实验室 | A neural network-based prediction method for the average diameter of electrospinning fibers |
CN110826229A (en) * | 2019-11-07 | 2020-02-21 | 长沙学院 | Modeling and optimal setting control method of drying head process based on long-term prediction |
CN111126560A (en) * | 2019-11-07 | 2020-05-08 | 云南民族大学 | Method for optimizing BP neural network based on cloud genetic algorithm |
CN111210877A (en) * | 2020-01-03 | 2020-05-29 | 山东天岳先进材料科技有限公司 | Method and device for deducing physical property parameters |
CN111242278A (en) * | 2019-12-29 | 2020-06-05 | 杭州拓深科技有限公司 | Composite smoke sense low-false-alarm method based on intelligent algorithm |
CN111950099A (en) * | 2020-08-03 | 2020-11-17 | 中国石油大学(华东) | Method, system, medium and computer equipment for testing mechanical property of equipment material |
CN112016249A (en) * | 2020-08-31 | 2020-12-01 | 华北电力大学 | SCR denitration system bad data identification method based on optimized BP neural network |
CN112099355A (en) * | 2020-09-18 | 2020-12-18 | 湖北中烟工业有限责任公司 | A method and device for controlling the coating rate of tobacco sheet based on BP-PID |
CN112231978A (en) * | 2020-10-15 | 2021-01-15 | 西安特种设备检验检测院 | Boiler flue gas acid dew point testing method based on artificial neural network |
CN112308278A (en) * | 2019-08-02 | 2021-02-02 | 中移信息技术有限公司 | Optimization method, device, equipment and medium for prediction model |
CN112464554A (en) * | 2020-11-03 | 2021-03-09 | 桂林理工大学 | Operating parameter optimization method of gasoline refining equipment |
CN112456639A (en) * | 2020-11-10 | 2021-03-09 | 盐城工学院 | Intelligent prediction method for hydrogen sulfide production in anaerobic digestion |
CN112464566A (en) * | 2020-12-07 | 2021-03-09 | 广东电网有限责任公司佛山供电局 | Transformer oil temperature prediction method based on genetic algorithm and BP neural network |
CN112485622A (en) * | 2020-12-09 | 2021-03-12 | 西安华谱电力设备制造有限公司 | Partial discharge pattern recognition method based on GA-BPNN |
CN112765883A (en) * | 2021-01-18 | 2021-05-07 | 电子科技大学 | Method for determining valve closing process based on genetic algorithm and neural network |
CN113077041A (en) * | 2020-01-06 | 2021-07-06 | 大唐环境产业集团股份有限公司 | Deep neural network modeling independent variable dimension reduction method based on genetic algorithm |
CN113268927A (en) * | 2021-05-21 | 2021-08-17 | 哈尔滨工业大学 | High-power laser device output energy prediction method based on full-connection neural network |
CN113449930A (en) * | 2021-07-27 | 2021-09-28 | 威海长和光导科技有限公司 | Optical fiber preform preparation quality prediction method based on BP neural network |
CN113779858A (en) * | 2020-06-10 | 2021-12-10 | 国家能源投资集团有限责任公司 | Combustion optimization method and system, storage medium and electronic equipment |
CN113887636A (en) * | 2021-10-09 | 2022-01-04 | 四川大学 | Selectable data enhancement method and system based on genetic algorithm |
CN114354455A (en) * | 2022-01-17 | 2022-04-15 | 北京石油化工学院 | Method for online measurement of particle size distribution of battery slurry |
CN114564366A (en) * | 2022-03-08 | 2022-05-31 | 中国工商银行股份有限公司 | Mobile APP user experience acquisition method and device based on neural network |
CN115796011A (en) * | 2022-11-16 | 2023-03-14 | 四川大学 | A Method for Optimizing Heat Transfer Performance of Hydrogen Storage Bed Based on Neural Network and Genetic Algorithm |
CN116611349A (en) * | 2023-07-18 | 2023-08-18 | 华东交通大学 | Method and system for optimizing process parameters of drum silk drying based on neural network |
CN117238397A (en) * | 2023-09-12 | 2023-12-15 | 无锡格林通安全装备有限公司 | Methods to improve the measurement accuracy of multiple toxic gas concentrations in PID multiple ranges |
CN117408166A (en) * | 2023-12-14 | 2024-01-16 | 沧州经济开发区武理工京津冀协同产业科技研究院 | A method for predicting dissolved gas concentration in transformer oil |
CN117852611A (en) * | 2024-03-07 | 2024-04-09 | 哈尔滨工业大学(威海) | Ionosphere F2 layer maximum height prediction method and system |
CN118211755A (en) * | 2024-03-30 | 2024-06-18 | 常州通用自来水有限公司 | Genetic algorithm optimization-based BP neural network secondary water supply flow prediction method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1359646A (en) * | 2000-12-21 | 2002-07-24 | 青岛海洋大学 | Method for creating fuzzy-neural network expert system for evaluating sensing quality of cigarette |
CN101385571A (en) * | 2008-10-27 | 2009-03-18 | 川渝中烟工业公司 | Formula Design Method of Cigarette Leaf Group |
CN102854289A (en) * | 2012-10-11 | 2013-01-02 | 云南烟草科学研究院 | Method for predicting release amount of phenol in mainstream smoke of flue-cured tobaccos |
-
2018
- 2018-07-27 CN CN201810839016.XA patent/CN109034388A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1359646A (en) * | 2000-12-21 | 2002-07-24 | 青岛海洋大学 | Method for creating fuzzy-neural network expert system for evaluating sensing quality of cigarette |
CN101385571A (en) * | 2008-10-27 | 2009-03-18 | 川渝中烟工业公司 | Formula Design Method of Cigarette Leaf Group |
CN102854289A (en) * | 2012-10-11 | 2013-01-02 | 云南烟草科学研究院 | Method for predicting release amount of phenol in mainstream smoke of flue-cured tobaccos |
Non-Patent Citations (3)
Title |
---|
L. B. FAZLIC ET AL.: "GA-ANFIS expert system prototype for detection of tar content in the manufacturing process", 《2015 38TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO)》 * |
张忠良 等: "基于DE_BPANN的单料烟烟气指标预测方法", 《烟草科技》 * |
徐翔禹: "基于数据挖掘的单料烟感官评吸指标预测硏究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110059821A (en) * | 2019-03-19 | 2019-07-26 | 埃睿迪信息技术(北京)有限公司 | Neural network optimization, device, computer equipment and storage medium |
CN110457758A (en) * | 2019-07-16 | 2019-11-15 | 江西理工大学 | Method, device, system and storage medium for predicting rock mass instability stage |
CN110457758B (en) * | 2019-07-16 | 2023-03-24 | 江西理工大学 | Method, device and system for predicting unstable phase of rock mass and storage medium |
CN112308278A (en) * | 2019-08-02 | 2021-02-02 | 中移信息技术有限公司 | Optimization method, device, equipment and medium for prediction model |
CN110490244A (en) * | 2019-08-14 | 2019-11-22 | 吉林大学 | A kind of data processing method and device |
CN110516954A (en) * | 2019-08-23 | 2019-11-29 | 昆明理工大学 | A Method of Optimizing Mineral Processing Production Index Based on GA-BP Neural Network Algorithm |
CN110656385B (en) * | 2019-10-28 | 2021-01-12 | 季华实验室 | A neural network-based prediction method for the average diameter of electrospinning fibers |
CN110656385A (en) * | 2019-10-28 | 2020-01-07 | 季华实验室 | A neural network-based prediction method for the average diameter of electrospinning fibers |
CN111126560A (en) * | 2019-11-07 | 2020-05-08 | 云南民族大学 | Method for optimizing BP neural network based on cloud genetic algorithm |
CN110826229B (en) * | 2019-11-07 | 2023-06-09 | 长沙学院 | Modeling and optimizing setting control method for filament drying head drying process based on long-term prediction |
CN110826229A (en) * | 2019-11-07 | 2020-02-21 | 长沙学院 | Modeling and optimal setting control method of drying head process based on long-term prediction |
CN111242278A (en) * | 2019-12-29 | 2020-06-05 | 杭州拓深科技有限公司 | Composite smoke sense low-false-alarm method based on intelligent algorithm |
CN111210877A (en) * | 2020-01-03 | 2020-05-29 | 山东天岳先进材料科技有限公司 | Method and device for deducing physical property parameters |
CN111210877B (en) * | 2020-01-03 | 2023-11-24 | 山东天岳先进科技股份有限公司 | Method and device for deducing physical parameters |
CN113077041A (en) * | 2020-01-06 | 2021-07-06 | 大唐环境产业集团股份有限公司 | Deep neural network modeling independent variable dimension reduction method based on genetic algorithm |
CN113779858A (en) * | 2020-06-10 | 2021-12-10 | 国家能源投资集团有限责任公司 | Combustion optimization method and system, storage medium and electronic equipment |
CN111950099A (en) * | 2020-08-03 | 2020-11-17 | 中国石油大学(华东) | Method, system, medium and computer equipment for testing mechanical property of equipment material |
CN112016249A (en) * | 2020-08-31 | 2020-12-01 | 华北电力大学 | SCR denitration system bad data identification method based on optimized BP neural network |
CN112099355A (en) * | 2020-09-18 | 2020-12-18 | 湖北中烟工业有限责任公司 | A method and device for controlling the coating rate of tobacco sheet based on BP-PID |
CN112231978A (en) * | 2020-10-15 | 2021-01-15 | 西安特种设备检验检测院 | Boiler flue gas acid dew point testing method based on artificial neural network |
CN112231978B (en) * | 2020-10-15 | 2022-01-28 | 西安特种设备检验检测院 | Boiler flue gas acid dew point testing method based on artificial neural network |
CN112464554A (en) * | 2020-11-03 | 2021-03-09 | 桂林理工大学 | Operating parameter optimization method of gasoline refining equipment |
CN112456639B (en) * | 2020-11-10 | 2022-11-22 | 盐城工学院 | Intelligent prediction method for hydrogen sulfide generation amount in anaerobic digestion |
CN112456639A (en) * | 2020-11-10 | 2021-03-09 | 盐城工学院 | Intelligent prediction method for hydrogen sulfide production in anaerobic digestion |
CN112464566A (en) * | 2020-12-07 | 2021-03-09 | 广东电网有限责任公司佛山供电局 | Transformer oil temperature prediction method based on genetic algorithm and BP neural network |
CN112464566B (en) * | 2020-12-07 | 2023-01-24 | 广东电网有限责任公司佛山供电局 | Transformer oil temperature prediction method based on genetic algorithm and BP neural network |
CN112485622A (en) * | 2020-12-09 | 2021-03-12 | 西安华谱电力设备制造有限公司 | Partial discharge pattern recognition method based on GA-BPNN |
CN112765883A (en) * | 2021-01-18 | 2021-05-07 | 电子科技大学 | Method for determining valve closing process based on genetic algorithm and neural network |
CN113268927A (en) * | 2021-05-21 | 2021-08-17 | 哈尔滨工业大学 | High-power laser device output energy prediction method based on full-connection neural network |
CN113268927B (en) * | 2021-05-21 | 2024-04-30 | 哈尔滨工业大学 | Output energy prediction method of high-power laser device based on fully-connected neural network |
CN113449930A (en) * | 2021-07-27 | 2021-09-28 | 威海长和光导科技有限公司 | Optical fiber preform preparation quality prediction method based on BP neural network |
CN113887636A (en) * | 2021-10-09 | 2022-01-04 | 四川大学 | Selectable data enhancement method and system based on genetic algorithm |
CN114354455B (en) * | 2022-01-17 | 2023-12-08 | 北京石油化工学院 | Method for online measurement of size distribution of battery slurry |
CN114354455A (en) * | 2022-01-17 | 2022-04-15 | 北京石油化工学院 | Method for online measurement of particle size distribution of battery slurry |
CN114564366A (en) * | 2022-03-08 | 2022-05-31 | 中国工商银行股份有限公司 | Mobile APP user experience acquisition method and device based on neural network |
CN115796011A (en) * | 2022-11-16 | 2023-03-14 | 四川大学 | A Method for Optimizing Heat Transfer Performance of Hydrogen Storage Bed Based on Neural Network and Genetic Algorithm |
CN116611349A (en) * | 2023-07-18 | 2023-08-18 | 华东交通大学 | Method and system for optimizing process parameters of drum silk drying based on neural network |
CN116611349B (en) * | 2023-07-18 | 2023-10-10 | 华东交通大学 | Optimization method and system of drum drying process parameters based on neural network |
CN117238397A (en) * | 2023-09-12 | 2023-12-15 | 无锡格林通安全装备有限公司 | Methods to improve the measurement accuracy of multiple toxic gas concentrations in PID multiple ranges |
CN117408166A (en) * | 2023-12-14 | 2024-01-16 | 沧州经济开发区武理工京津冀协同产业科技研究院 | A method for predicting dissolved gas concentration in transformer oil |
CN117852611A (en) * | 2024-03-07 | 2024-04-09 | 哈尔滨工业大学(威海) | Ionosphere F2 layer maximum height prediction method and system |
CN118211755A (en) * | 2024-03-30 | 2024-06-18 | 常州通用自来水有限公司 | Genetic algorithm optimization-based BP neural network secondary water supply flow prediction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109034388A (en) | A kind of prediction model of cigarette material and mainstream smoke constituents based on Genetic Algorithm Optimized Neural Network | |
CN110362738B (en) | Deep learning-based individual recommendation method combining trust and influence | |
CN111563706A (en) | Multivariable logistics freight volume prediction method based on LSTM network | |
CN115099519B (en) | Oil well yield prediction method based on multi-machine learning model fusion | |
CN109558664B (en) | Method for formulating composite material manufactured by injection molding | |
CN106777874A (en) | The method that forecast model is built based on Recognition with Recurrent Neural Network | |
CN110149333B (en) | A network security situation assessment method based on SAE+BPNN | |
CN111695719A (en) | User value prediction method and system | |
CN103150611A (en) | Hierarchical prediction method of II type diabetes mellitus incidence probability | |
CN110232420A (en) | A kind of clustering method of data | |
CN114678080A (en) | Prediction model and construction method of phosphorus content at the end point of converter, and phosphorus content prediction method | |
CN112700326A (en) | Credit default prediction method for optimizing BP neural network based on Grey wolf algorithm | |
CN110503508A (en) | A hierarchical multi-granularity matrix factorization method for item recommendation | |
CN108596078A (en) | A kind of seanoise signal recognition method based on deep neural network | |
CN111310918A (en) | Data processing method and device, computer equipment and storage medium | |
CN114861980A (en) | BP-LSTM model-based carbon prediction method | |
CN114118567A (en) | Power service bandwidth prediction method based on dual-channel fusion network | |
CN112926999B (en) | Self-adaptive recommendation method and system for association supervision range of bulk commodity transaction platform | |
CN113837834A (en) | A shopping basket recommendation method based on deep learning | |
CN114861917A (en) | Knowledge graph inference model, system and inference method for Bayesian small sample learning | |
CN117408736A (en) | Enterprise fund demand mining method and medium based on improved Stacking fusion algorithm | |
TWI853288B (en) | Adaptive learning algorithm | |
CN119379350A (en) | Method, system and device for simulating customer approval results based on historical data learning | |
CN115796244B (en) | A Parameter Identification Method Based on CFF for Ultra-Nonlinear Input-Output System | |
CN118821909A (en) | A federated learning method for heterogeneous data based on improved aggregation algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181218 |
|
RJ01 | Rejection of invention patent application after publication |