CN1090335C - 无分立像元光学读出的量子阱红外焦平面芯片 - Google Patents

无分立像元光学读出的量子阱红外焦平面芯片 Download PDF

Info

Publication number
CN1090335C
CN1090335C CN98121959.4A CN98121959A CN1090335C CN 1090335 C CN1090335 C CN 1090335C CN 98121959 A CN98121959 A CN 98121959A CN 1090335 C CN1090335 C CN 1090335C
Authority
CN
China
Prior art keywords
chip
quantum well
infrared
quantum
siccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98121959.4A
Other languages
English (en)
Other versions
CN1219788A (zh
Inventor
陆卫
陈效双
刘兴权
李宁
李娜
陈益栋
刘平
窦红飞
付英
W·马格纳斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN98121959.4A priority Critical patent/CN1090335C/zh
Publication of CN1219788A publication Critical patent/CN1219788A/zh
Application granted granted Critical
Publication of CN1090335C publication Critical patent/CN1090335C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0205Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/0235Spacers, e.g. for avoidance of stiction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0879Optical elements not provided otherwise, e.g. optical manifolds, holograms, cubic beamsplitters, non-dispersive prisms or particular coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供了一种无分立象元光学读出的量子阱红外焦平面芯片的设计。它可以把在芯片上的红外图像直接转换成可见光图象,从而把红外探测技术转换到可见光探测技术,使对红外目标成像的芯片在空间分辨上达到可见光成像的水平。还介绍了该芯片的结构,包括量子阱材料具体结构设计、掺杂条件、芯片的电极设计、偏置电压条件及与可见光探测系统的相互结合。

Description

无分立像元光学读出的量子阱红外焦平面芯片
本专利是关于一种无分立象元且采用光学方法直接进行红外信号读出的量子阱红外焦平面芯片设计。
在目前的量子型红外焦平面技术中,光敏元芯片都是由若干通过空间上电学与光学上分离的象元组成(如HgCdTe,InSb,PtSi,GaAs/A1GaAs多量子阱等红外焦平面器件),焦平面的规模完全由象元数的多少决定,因此焦平面规模完全由当前红外光电子技术与微电子技术的水平决定。至今位于中波和长波红外窗口波段(如3-5μm和8-14μm)红外焦平面的技术水平仍未突破516×516元。而可见光或近红外波段的Si CCD焦平面规模已超过1024×1024元,且发展势头很强,中波或长波红外焦平面规模与硅CCD焦平面规模之间的差异主要是由于中、长波红外材料及器件工艺的相对不成熟所致。同时工业界在Si基器件上投入的强度远大于红外器件上的投入,且还将继续保持这种不均等的态势,因此任何一种有可能将红外焦平面功能转化成由Si CCD辅助实现的技术都是很有实用价值的。
现有的量子型红外焦平面芯片技术可分解成以下二个方面:
1.优质材料的制备:该材料必须有很好的光学和电学性能,最终器件的性能是光学与电学性能的综合表现,即光学性能必须保证入射的红外光应尽可能完全地被材料吸收并产生相应的光电子,接着材料的电学性能要保证电子有足够的平均自由程,从而可以在器件中迁移和输出一个电信号,完成将红外光转换成电信号的任务。
2.器件芯片结构的制备:这一过程需要完成可与读出电路耦合的、在电学上相互隔离的、具有良好光电响应的、空间上均匀分布的、各单元性能一致性好的众多单元列阵,其中要保证拥有成千上万个单元的列阵中各单元性能相一致是极为困难,给整个工艺的流程提出了非常严格的要求。
一旦上述芯片完成,照射在某一单元上红外光引起的面积分电学信号可以通过该单元体现。所以对照射在芯片上红外图像而言,单元器件的尺寸决定了象元的大小,而元数的多少决定了空间分辨率。
本发明的目的是提供一种无分立像元光学读出的量子阱红外焦平面芯片。它独立于上述传统原理,将红外光信号转换成可见或近红外光信号,从而可直接用硅CCD器件进行探测,且可以使整个工艺过程被大大地简化。
本发明的目的通过如下技术方案达到:所说的量子阱芯片是利用外延手段生长出带有n型掺杂和p型掺杂的量子阱结构材料,其两种类型的量子阱中的载流子均可由红外光激发到连续态并在外电场作用下导致电子与空穴相互靠拢,最后复合发光。在量子阱芯片上形成上、下电极,靠近n型量子阱的电极上所加的偏压相对加在靠近p型量子阱电极的偏压是正的,将高灵敏度的SiCCD器件与透镜及量子阱芯片在组件上一体化,透镜置于Si CCD器件与量子阱芯片之间,量子阱芯片置于低于80K的低温下工作,以避免可见光与近红外波段的杂散光进入及降低由热激发导致的可见光发光本底,而用Si CCD器件记录量子阱芯片将红外光图象转换成的可见光图象直接光学读出。
为了便于说明,我们给出了阐述本发明的示意图如下:
图1为本发明中新型量子阱红外焦平面芯片的焦平面功能实施示意图。
图2为GaAs/AlGaAs多量子阱新型红外焦平面芯片光电响应及光学输出的原理示意图。
图3为本发明中量子阱芯片材料结构示意图。
图4为本发明中量子阱芯片电极结构示意图。
图5为本发明中减薄衬底形成光栅示意图。
图6为本发明中芯片置于制冷杜瓦中示意图。
下面我们结合附图对本发明作详细的阐述。
由红外光4辅助产生的光电子仅在入射光方向上传输与复合,在垂直于入射方向上的扩散而引起的受红外光辅助增加的可见光5发光在焦平面上的位置与红外光照射点在焦平面上位置的差别最大极限是载流子平均自由程和由光栅引起的光学串音,只要芯片厚度足够薄(如已报道的小于10μm),则这一差异将小于15μm。所以红外光辅助的可见光5发光在芯片上的图案与照射在芯片上的红外光4自身形成的图案将在误差小于15μm的精度上重合。因此由Si CCD器件3观察到的芯片上红外光辅助的可见光发光图案就表征了在芯片上红外光的热像图案。实现了对红外热像图案的光学直接读出。
1.芯片的具体制备如下:
为了能将原理阐述更清晰,下面以GaAs/AlGaAs量子阱材料为例。
(1)芯片薄膜材料的生长:参见图3,采用分子束外延(MBE)或金属有机气相沉积(MOCVD)等薄膜生长技术,生长典型的量子阱结构材料,如在GaAs衬底110上顺次生长以下结构:1018/cm3浓度的Si掺杂GaAs(1μm)层109,Al0.35Ga0.65As(50nm)层108,GaAs(2.55nm 9个原子层)Si掺杂浓度为1018/cm3层107,Al0.35Ga0.65As(50nm)层106,GaAs(2.36nm 8个原子层)Be掺杂浓度为1018/cm3的层105,Al0.35Ga0.65As(50nm)层104,1018/cm3浓度的Si掺杂GaAs 100nm层103。
在上述结构中宽度为2.55nm的107层GaAs量子阱中第一激发态已处于连续态位置,而基态上由于Si的掺入而有大量电子积累;宽度为2.36nm的105层GaAs量子阱中第一激发态也已进入连续态,而基态上由于Be的掺杂而有大量空穴积累。同时二个阱中基态与第一激发态之间的能量差相同(120meV)。
(2)电极制备:
参见图4,上电极101用于加负偏压,直接做在最顶部的103层上。下电极102加正偏压,直接做在底部的109层上,通过腐蚀把部分103层,104层,105层,106层,107层,108层去除,裸露出109层,再在该层上制备电极。
(3)参见图5,减薄GaAs衬底110到10μm,并在衬底上通过腐蚀方法形成光栅,使入射的红外光能被充分地耦合到量子阱中去,产生量子阱105层中的空穴与量子阱107层中的电子从基态向第一激发态跃迁。
2.芯片工作条件如下:
为了能将原理阐述清楚,继续以上述GaAs/AlGaAs量子阱材料为例。
参见图6,将芯片1放置在一个带有一边为可见光光学窗口7,另一边为红外波段的红外光光学窗口6的致冷杜瓦8中,红外光4入射光线透过红外光学窗口6进入杜瓦8到达量子阱芯片1上,转换成可见光5透过可见光光学窗口7出射出杜瓦。芯片致冷到约80K。
用MBE方法生长出含有n型掺杂和p型掺杂的两种类型量子阱薄膜材料,在两种类型量子阱外侧分别做电极,在n型量子阱的一侧加正偏压,p型量子阱一侧加负偏压,此时由于热激发引起的两种类型量子阱中的逸出电子与空穴将相互靠拢,最终相互散射或形成激子并由辐射复合产生荧光(类似于光二极管的发光过程)。由于把n型掺杂量子阱与p型掺杂阱的基态与第一激发态之差(对n型掺杂阱指导带阱中的子能级,对p型掺杂阱指价带阱中的子能级)相同并为120meV左右(对应光子波长约为10μm),所以当外部有10μm左右的红外辐射照在该结构上时,处于基态上的电子和空穴会吸收红外光子后跃迁到第一激发态,类似于常规的量子阱红外探测器中量子阱的设计,将第一激发态置于阱的势垒口边或更高能量位置,则激发到第一激发态上的电子与空穴也会在外电场驱动下相互接近并产生辐射复合。这样就完成了红外光辅助的可见荧光加强。从某种意义上讲,这样的光电子过程使我们能够把红外光与电能结合后产生可见光光子,从而使我们能够把对红外光的探测转换成对可见光的探测。
然后,我们可把该芯片放在Si CCD器件之前,在芯片与Si CCD之间有一聚光透镜2将芯片上的可见光聚焦到Si CCD器件3上。样品上加的电压方向与红外入射光方向一致。在芯片引出的二个电极按极性加5V的偏置电压,此时类似于发光二极管,芯片会产生微弱的电致发光,并从可见光光学窗口7出射出可见光5(波长约为800nm),再将入射的红外光4(波长约10μm)射入红外光光学窗口6,照到芯片上。这时由于红外光辅助跃迁的电子与空穴会按图2的工作模式参与可见光的发光。
3、参见图1和图6,在杜瓦的可见光学窗口7前放置一个透镜2和一个Si CCD器件3,直接探测由量子阱芯片1发射出的可见光以及可见光发光点在芯片上的分布。由偏置电压直接产生的发光在芯片上是均匀分布的。但红外光辅助的发光点在芯片上分布是与照射在芯片上的红外图像相一致的。这样由Si CCD器件3提供的芯片发光分布图案上是一个均匀的发光本底与一个与在芯片上的红外图像一致的发光图案叠加,至此红外图象信号被光学地读出了。
本发明有如下有益效果和优点:
1、本发明可以很方便地将红外图象转变成可见光图象,从而把相对不成熟的红外光电探测技术问题转化成十分成熟的可见光波段的光电探测技术问题,并直接与Si CCD器件这一发展得十分成熟的技术相结合。
2、本发明对红外图象读出的方式比通常红外焦平面读出方式要简单得多,可以明确地回避在超大规模(如1024×1024元规模)时遇到的对微电子工艺的极高要求。
3、本发明芯片在接受红外图象时不需要分立的象元。从而不需要目前普遍的制备红外焦平面及芯片时的象元分离技术,大大地简化了工艺环节。
4、本发明在图象成象应用中可以有很好的均匀性。从而大大地改善作为焦平面最为重要指标之一的均匀性特性。不同于普遍使用的红外焦平面制备技术,本发明中的芯片均匀性将主要由材料自身性能以及Si CCD器件均匀性决定。而GaAs系列材料已有十分好的均匀性,同样Si CCD器件的均匀性也远优于红外焦平面的均匀性。
5、本发明将消除焦平面中需排除的盲点存在的可能性。芯片起着一种无需电子束扫描的红外荧光屏的作用。

Claims (1)

1.一种无分立象元光学读出的量子阱红外焦平面芯片,包括量子阱芯片、聚焦透镜和SiCCD器件,其特征在于:
(a)所说的量子阱芯片(1)是利用外延手段生长出带有n型掺杂和p型掺杂的量子阱结构材料,其两种类型的量子阱中的载流子均可由红外光激发到连续态并在外电场作用下导致电子与空穴相互靠拢,最后复合发光;在量子阱芯片(1)上形成上、下电极,靠近n型量子阱的电极上所加的偏压相对加在靠近p型量子阱电极的偏压是正的;
(b)将高灵敏度的SiCCD器件(3)与透镜(2)及量子阱芯片(1)在组件上一体化,透镜置于SiCCD器件(3)与量子阱芯片(1)之间,量子阱芯片(1)置于低于80K的低温下工作,用SiCCD器件(3)记录量子阱芯片(1)将红外光图象转换成的可见光图象直接光学读出。
CN98121959.4A 1998-10-22 1998-10-22 无分立像元光学读出的量子阱红外焦平面芯片 Expired - Fee Related CN1090335C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98121959.4A CN1090335C (zh) 1998-10-22 1998-10-22 无分立像元光学读出的量子阱红外焦平面芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98121959.4A CN1090335C (zh) 1998-10-22 1998-10-22 无分立像元光学读出的量子阱红外焦平面芯片

Publications (2)

Publication Number Publication Date
CN1219788A CN1219788A (zh) 1999-06-16
CN1090335C true CN1090335C (zh) 2002-09-04

Family

ID=5227449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98121959.4A Expired - Fee Related CN1090335C (zh) 1998-10-22 1998-10-22 无分立像元光学读出的量子阱红外焦平面芯片

Country Status (1)

Country Link
CN (1) CN1090335C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424897C (zh) * 2005-09-28 2008-10-08 中国科学院上海技术物理研究所 氮化镓基红外-可见波长转换探测器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201487B (zh) * 2011-03-16 2013-01-09 中国科学院上海技术物理研究所 一种优化被照式红外探测器微透镜列阵聚光能力的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424897C (zh) * 2005-09-28 2008-10-08 中国科学院上海技术物理研究所 氮化镓基红外-可见波长转换探测器

Also Published As

Publication number Publication date
CN1219788A (zh) 1999-06-16

Similar Documents

Publication Publication Date Title
CA2210831C (en) Image conversion panel and associated methods
US8399910B2 (en) Sub-pixel NBN detector
US9541450B2 (en) Radiation detector having a bandgap engineered absorber
US7608823B2 (en) Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US5559336A (en) Integrated LPE-grown structure for simultaneous detection of infrared radiation in two bands
US5923033A (en) Integrated SPM sensor having a photodetector mounted on a probe on a free end of a supported cantilever
US5023685A (en) Quantum-well radiation-interactive device, and methods of radiation detection and modulation
CN100365829C (zh) 氮化镓基紫外-红外双色集成探测器
US20030160231A1 (en) Dual wavelength detector
CN100524841C (zh) GaAs/AlGaAs/InGaAs双色焦平面探测器
EP0797255A2 (en) Two spectral bands (LWIR, MWIR) detector
US7030388B2 (en) Illuminant, and, electron beam detector, scanning electron microscope and mass spectroscope each including the same
US6054718A (en) Quantum well infrared photocathode having negative electron affinity surface
CN110021617A (zh) 一种InGaAs雪崩焦平面探测器的串扰抑制结构
KR920009918B1 (ko) 양자-웰 방사선 검출 소자
EP3794643B1 (en) Integration of a short-wave infrared detector with cmos compatible substrates
CN1090335C (zh) 无分立像元光学读出的量子阱红外焦平面芯片
US4952811A (en) Field induced gap infrared detector
CN1123935C (zh) 多量子阱红外级联光伏探测器
Joshi et al. Reduction of 1/f noise in multiplexed linear In/sub 0.53/Ga/sub 0.47/As detector arrays via epitaxial doping
Rogalski Photon detectors
CN1314711A (zh) 多量子阱红外焦平面光伏探测器的光敏元芯片
Becker A review of advances in EO/IR focal plane array technology for space system applications
CN114551412A (zh) 无串扰铟镓砷盖革模式焦平面探测芯片结构及制作方法
CN1696622A (zh) 一种红外焦平面成像方法及红外焦平面芯片

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee