CN109031684A - 一种光子筛像差分析方法 - Google Patents

一种光子筛像差分析方法 Download PDF

Info

Publication number
CN109031684A
CN109031684A CN201810961551.2A CN201810961551A CN109031684A CN 109031684 A CN109031684 A CN 109031684A CN 201810961551 A CN201810961551 A CN 201810961551A CN 109031684 A CN109031684 A CN 109031684A
Authority
CN
China
Prior art keywords
photon screen
aberration
photon
screen
spread function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810961551.2A
Other languages
English (en)
Inventor
成雪清
周鹏云
陈雅丽
唐霞梅
方艾黎
梁军
潘科
谭依玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research and Desigin Institute of Chemical Industry
Original Assignee
Southwest Research and Desigin Institute of Chemical Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research and Desigin Institute of Chemical Industry filed Critical Southwest Research and Desigin Institute of Chemical Industry
Priority to CN201810961551.2A priority Critical patent/CN109031684A/zh
Publication of CN109031684A publication Critical patent/CN109031684A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4216Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting geometrical aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本发明提供了一种光子筛像差分析方法,从光子筛光瞳面相位和点扩散函数的数学关系出发,建立光子筛衍射模型,计算光子筛的点扩散函数;根据光子筛的点扩散函数逆推出光子筛光瞳面的相位,即光瞳面相位就是光子筛的等效波像差。与现有技术相比,本发明打破了惯性的思路,从光子筛光瞳面相位和点扩散函数的数学关系出发,从光子筛的点扩散函数逆推出光子筛光瞳面的相位。波像差是光学系统的重要评估指标,由其可以轻易推导出单项像差比如球差、慧差、象散、场曲和畸变。并且建立光子筛波像差模型也有助于光子筛和其他光学系统比如折射透镜的混合设计。

Description

一种光子筛像差分析方法
技术领域
本发明涉及一种光子筛像差分析方法,涉及衍射光学元件设计技术领域,具体为一种二次光栅型光子筛。
背景技术
传统的透镜都是由玻璃加工而成,光线在透镜中以折射或者反射的方式通过,产生汇聚或发散的效果,这种透镜统称为折射透镜。不同于传统的折射透镜,衍射光学元件通过衍射的方式对光线进行汇聚和发散,称之为衍射透镜。
光子筛是一种新型的衍射光学元件,由德国Kipp教授在传统波带片的基础上提出。它通过分布在波带片亮环上的大量随机分布的小孔代替波带片的亮环,光线通过小孔产生衍射效应,不同的小孔产生衍射相干叠加,进而在中心处产生高质量的聚焦光斑。相对于波带片,由于小孔直径比环带宽度大,可以在相同的加工尺寸情况下获得大口径,产生更小的聚焦光斑。同时光子筛可以在紫外光和X射线下聚焦和成像。此外光子筛可以在非常薄的基底上加工实现,这有利于制作成大口径,也有利于光学系统的轻量化。2003年,麻省理工学院报道了基于高数值孔径的光子筛的无掩模光子筛阵列光刻系统(ZPAL)。中国科学院光电技术研究所开展了大数值孔径光子筛聚焦光刻方法研究。国内外在光子筛聚焦以及成像领域开展了研究工作。
任何非理想系统都存在像差,光子筛也是如此。例如将光子筛应用于空间望远镜必须矫正色差;将光子筛用于显微投影光刻,必须考虑像差对光刻结果的影响;光子筛应用于聚焦光束,比如光子筛直写光刻系统,改进光子筛像差也可以减小光斑尺寸,对提高加工水平意义重大。而以前的光子筛研究大都集中在光子筛设计、制作工艺和应用上,而仅对光子筛的色差和色差矫正进行分析,对于单色像差还未见诸报道。所以无论是光子筛直接成像还是和折射元件结合组成折衍混合系统,迫切需要研究光子筛的单色像差,建立相关的理论基础。
波带片相关的像差理论非常成熟,比如M.Young建立的波带片的像差模型。但是波带片的像差模型由波带片环带组成的透过函数的解析表达式为基础,而由于光子筛是由分布在一系列环带上的小孔组成,甚至小孔是随机分布的。这样,建立光子筛透过函数会是极其困难的,即使建立解析函数,后续的推导也将无法进行。所以波带片的像差计算方法不适用于光子筛像差计算,需要新的思路来计算。
发明内容
本发明提供了一种光子筛像差分析方法,具有分析结果有助于光子筛和其他光学系统比如折射透镜的混合设计的特点。
根据本发明提供的一种光子筛像差分析方法,从光子筛光瞳面相位和点扩散函数的数学关系出发,建立光子筛衍射模型,计算光子筛的点扩散函数;根据光子筛的点扩散函数逆推出光子筛光瞳面的相位,即光瞳面相位就是光子筛的等效波像差。
所述方法还包括,将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差。
建立光子筛衍射模型,计算光子筛的点扩散函数的具体方法包括,
在光子筛中心建立坐标系xyz,光轴方向为z轴方向,像平面坐标为(X,Y,Z),入射点光源距离光子筛距离为p,入射包场为λ;
光子筛单个小孔(xn,yn)在像空间点P(X,Y,Z)上的衍射广场为Un,小孔大小为rn,则有,
X′=X-xn;Y′=Y-yn;x′=x-xn;y′=y-yn
进行极坐标代换x′=r′cosθ,y′=r′sinθ,X″=ρcosφ,Y″=ρsinφ;
计算单个点光源在光子筛像平面的点扩散函数
其中,Jinc(x)=J1(x)/x,J1为1阶贝塞尔函数,
整个光子筛在像平面光场分布为U(X,Y),则有
其中,m为光子筛上所有小孔的数目;n为大于等于1小于等于m的自然数;r′和ρ是极坐标的模;θ和φ是极坐标的角度;
根据光子筛的点扩散函数逆推出光子筛光瞳面的相位的方法包括,
建立光子筛等效衍射模型,其中,光子筛设计焦距为f,口径为D=2r,:得到初始的光子筛等效光瞳函数P0
将P0代入到下式
其中F为傅里叶变换;
得到焦平面的复振幅分布ASF,提取ASF的相位φ1,将P0φ2作为新的光瞳函数P′,进入下一轮迭代,即
采用点扩撒函数的最小二乘误差作为评价函数即设定设定值ε,当时迭代技术RMS≤ε,提取光瞳函数P的相位W(x,y),得到
W(x,y)=arctan(P(x,y))
其中,abs为求取摸的运算,P*是P的共轭函数;PSF是光子筛点扩散函数,PSF=U(x,y)。
将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差的具体方法包括,
将W(xi,yi)进行极坐标化W(ρii),并用37项Zrenike多项式表示:
其中,ak是Zernike系数,Ek(xi,yi)是Zernike多项式,k是指第几项,为大于等于1小于等于37的自然数,i是指某个离散点,为大于等于1小于等于m的自然数,对于m个离散点,具有以下方程组
用矩阵表示为
可简化为W=EA,其中,W是波像差矩阵,E是Zernike多项式矩阵,A是矩阵系数,左乘ET,得到ETW=ETEA;根据广义逆矩阵理论,系数矩阵A为A=(ETE)-1ETW,即为Eernike多项式系数矩阵[a1,a2…,a37];
建立Zernike多项式和结合像差的对应关系;Fringe Zernike多项式根据角度的对称性,划分为五类像差,并与传统的几何像差一一对应:
其中,RMSE5-E37是总的波像差,已经去除前四项离焦和面倾斜,RMSspherical是球差,RMScoma是慧差,RMSastigmationl是象散,RMS3-foil是三叶像差,RMS4-foil是四叶像差。
与现有技术相比,本发明打破了惯性的思路,从光子筛光瞳面相位和点扩散函数的数学关系出发,从光子筛的点扩散函数逆推出光子筛光瞳面的相位,而光瞳面相位就是光子筛的等效波像差。波像差是光学系统的重要评估指标,由其可以轻易推导出单项像差比如球差、慧差、象散、场曲和畸变。并且建立光子筛波像差模型也有助于光子筛和其他光学系统比如折射透镜的混合设计。
附图说明
图1为本发明其中一实施例的光子筛像差分析流程示意图。
图2为本发明其中一实施例的光子筛衍射模型示意图。
图3为本发明其中一实施例的等效光瞳面相位计算流程示意图。
图4为本发明其中一实施例的光子筛等效衍射模型示意图。
图5为本发明其中一实施例的设计光子筛示意图;其中,白色为透光部分,黑色为不透光部分。
图6为本发明其中一实施例的光子筛点扩散函数在一个尺度下的示意图,横坐标和纵坐标分别为空间X、Y轴。
图7为图6所示实施例的光子筛点扩散函数在另一个尺度下的示意图。
图8为本发明其中一实施例的迭代次数和最小二乘误差示意图。
图9为本发明其中一实施例的复原得到的点扩散函数示意图。
图10为图9所示实施例的复原得到的点扩散函数的残差示意图。
图11为本发明其中一实施例的复原光瞳面位相示意图。
图12为本发明其中一实施例的Zernike多项式拟合的光瞳位相示意图,横纵坐标代表归一化的XY坐标。
图13为本发明其中一实施例的Zernike多项式系数示意图。
图14为本发明其中一实施例的像差综合结果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本说明书(包括摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或者具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
根据本发明提供的一种光子筛像差分析方法,如图1所示,从光子筛光瞳面相位和点扩散函数的数学关系出发,建立光子筛衍射模型,计算光子筛的点扩散函数;根据光子筛的点扩散函数逆推出光子筛光瞳面的相位,即光瞳面相位就是光子筛的等效波像差。
本发明打破了惯性的思路,从光子筛光瞳面相位和点扩散函数的数学关系出发,从光子筛的点扩散函数逆推出光子筛光瞳面的相位,而光瞳面相位就是光子筛的等效波像差。波像差是光学系统的重要评估指标,由其可以轻易推导出单项像差比如球差、慧差、象散、场曲和畸变。并且建立光子筛波像差模型也有助于光子筛和其他光学系统比如折射透镜的混合设计。
所述方法还包括,如图1所示,将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差。
如图2所示,建立光子筛衍射模型,计算光子筛的点扩散函数的具体方法包括,
在光子筛中心建立坐标系xyz,光轴方向为z轴方向,像平面坐标为(X,Y,Z),入射点光源距离光子筛距离为p,入射包场为λ;
光子筛单个小孔(xn,yn)在像空间点P(X,Y,Z)上的衍射广场为Un,小孔大小为rn,则有,
X′=X-xn;Y′=Y-yn;x′=x-xn;y′=y-yn
为了计算方便,进行极坐标代换x′=r′cosθ,y′=r′sinθ,X″=ρcosφ,Y″=ρsinφ;
计算单个点光源在光子筛像平面的点扩散函数
其中,Jinc(x)=J1(x)/x,J1为1阶贝塞尔函数,
像平面上光场是众多小孔衍射光场叠加而成,所以整个光子筛在像平面光场分布为U(X,Y),则有
其中,m为光子筛上所有小孔的数目;n为大于等于1小于等于m的自然数;r′和ρ是极坐标的模;θ和φ是极坐标的角度;
如图3和图4所示,根据光子筛的点扩散函数逆推出光子筛光瞳面的相位的方法包括,
建立光子筛等效衍射模型,其中,光子筛设计焦距为f,口径为D=2r,:得到初始的光子筛等效光瞳函数P0
将P0代入到下式
其中F为傅里叶变换;
得到焦平面的复振幅分布ASF,提取ASF的相位φ1,将P0φ2作为新的光瞳函数P′,进入下一轮迭代,即
采用点扩撒函数的最小二乘误差作为评价函数即设定设定值ε,当时迭代技术RMS≤ε,提取光瞳函数P的相位W(x,y),得到
W(x,y)=arctan(P(x,y))
其中,abs为求取摸的运算,P*是P的共轭函数;PSF是光子筛点扩散函数,PSF=U(x,y)。
将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差的具体方法包括,
将W(xi,yi)进行极坐标化W(ρii),并用37项Zrenike多项式表示:
其中,ak是Zernike系数,Ek(xi,yi)是Zernike多项式,k是指第几项,为大于等于1小于等于37的自然数,i是指某个离散点,为大于等于1小于等于m的自然数,对于m个离散点,具有以下方程组
为了求解这个超定方程组,采用广义逆矩阵方法求取其最小二乘解。用矩阵表示为
可简化为W=EA,其中,W是波像差矩阵,E是Zernike多项式矩阵,A是矩阵系数,左乘ET,得到ETW=ETEA;根据广义逆矩阵理论,系数矩阵A为A=(ETE)-1ETW,即为Eernike多项式系数矩阵[a1,a2…,a37];
光学系统一般采用几何像差来评价和改进光学系统成像性能,所以需要建立Zernike多项式和结合像差的对应关系;Fringe Zernike多项式根据角度的对称性,划分为五类像差,并与传统的几何像差一一对应:
其中,RMSE5-E37是总的波像差,已经去除前四项离焦和面倾斜,RMSspherical是球差,RMScoma是慧差,RMSastigmationl是象散,RMS3-foil是三叶像差,RMS4-foil是四叶像差。
作为本发明的一个实施例,分析实例的光子筛设计参数如表1所示,光之筛实例如图5所示,根据本发明技术方案,根据光子筛衍射模型,计算得到光之筛点扩散函数,图6和图7分别是不同尺度观察得到的结果,光子筛光斑尺寸约为100微米。
表1
根据位相复原算法,由点扩散函数反求光瞳面相位分布。如图8所示迭代10次后,反求的光瞳函数求得的点扩散函数和上一步求得的实际点扩散函数最小二乘误差基本不变,约为0.5%。复原得到的点扩散函数和点扩散函数的残差如图9和图10所示。复原光瞳面位相如图11所示,横纵坐标代表像素数,20每个像素为2微米。接下来要用Zernike多项式对位相进行拟合以得到总的波像差和像差分项,拟合结果如图12所示。拟合得到的Zernike多项式系数如图13所示。经过像差综合得到去除Zernike系数前四项即离焦和像面倾斜后的总波像差和单项几何像差如图14所示。

Claims (5)

1.一种光子筛像差分析方法,从光子筛光瞳面相位和点扩散函数的数学关系出发,建立光子筛衍射模型,计算光子筛的点扩散函数;根据光子筛的点扩散函数逆推出光子筛光瞳面的相位,即光瞳面相位就是光子筛的等效波像差。
2.根据权利要求1所述的光子筛像差分析方法,所述方法还包括,将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差。
3.根据权利要求2所述的光子筛像差分析方法,建立光子筛衍射模型,计算光子筛的点扩散函数的具体方法包括,
在光子筛中心建立坐标系xyz,光轴方向为z轴方向,像平面坐标为(X,Y,Z),入射点光源距离光子筛距离为p,入射包场为λ;
光子筛单个小孔(xn,yn)在像空间点P(X,Y,Z)上的衍射广场为Un,小孔大小为rn,则有,
X′=X-xn;Y′=Y-yn;x′=x-xn;y′=y-yn进行极坐标代换x′=r′cosθ,y′=r′sinθ,X″=ρcosφ,Y″=ρsinφ;
计算单个点光源在光子筛像平面的点扩散函数
其中,Jinc(x)=J1(x)/x,J1为1阶贝塞尔函数,
整个光子筛在像平面光场分布为U(X,Y),则有
其中,m为光子筛上所有小孔的数目;n为大于等于1小于等于m的自然数;r′和ρ是极坐标的模;θ和φ是极坐标的角度;
4.根据权利要求3所述的光子筛像差分析方法,根据光子筛的点扩散函数逆推出光子筛光瞳面的相位的方法包括,
建立光子筛等效衍射模型,其中,光子筛设计焦距为f,口径为D=2r,:
得到初始的光子筛等效光瞳函数P0
将P0代入到下式
其中F为傅里叶变换;
得到焦平面的复振幅分布ASF,提取ASF的相位φ1,将P0φ2作为新的光瞳函数P′,进入下一轮迭代,即
采用点扩撒函数的最小二乘误差作为评价函数即设定设定值ε,当时迭代技术RMS≤ε,提取光瞳函数P的相位W(x,y),得到
W(x,y)=arctan(P(x,y))
其中,abs为求取摸的运算,P*是P的共轭函数;PSF是光子筛点扩散函数,PSF=U(x,y)。
5.根据权利要求4所述的光子筛像差分析方法,将光瞳面相位用Zernike多项式拟合,求出分项像差和总像差的具体方法包括,
将W(xi,yi)进行极坐标化W(ρii),并用37项Zrenike多项式表示:
其中,ak是Zernike系数,Ek(xi,yi)是Zernike多项式,k是指第几项,为大于等于1小于等于37的自然数,i是指某个离散点,为大于等于1小于等于m的自然数,对于m个离散点,具有以下方程组
用矩阵表示为
可简化为W=EA,其中,W是波像差矩阵,E是Zernike多项式矩阵,A是矩阵系数,左乘ET,得到ETW=ETEA;根据广义逆矩阵理论,系数矩阵A为A=(ETE)-1ETW,即为Eernike多项式系数矩阵[a1,a2…,a37];
建立Zernike多项式和结合像差的对应关系;Fringe Zernike多项式根据角度的对称性,划分为五类像差,并与传统的几何像差一一对应:
其中,RMSE5-E37是总的波像差,已经去除前四项离焦和面倾斜,RMSspherical是球差,RMScoma是慧差,RMSastigmationl是象散,RMS3-foil是三叶像差,RMS4-foil是四叶像差。
CN201810961551.2A 2018-08-22 2018-08-22 一种光子筛像差分析方法 Withdrawn CN109031684A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810961551.2A CN109031684A (zh) 2018-08-22 2018-08-22 一种光子筛像差分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810961551.2A CN109031684A (zh) 2018-08-22 2018-08-22 一种光子筛像差分析方法

Publications (1)

Publication Number Publication Date
CN109031684A true CN109031684A (zh) 2018-12-18

Family

ID=64628014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810961551.2A Withdrawn CN109031684A (zh) 2018-08-22 2018-08-22 一种光子筛像差分析方法

Country Status (1)

Country Link
CN (1) CN109031684A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579098A (zh) * 2020-06-19 2020-08-25 中国科学院上海光学精密机械研究所 基于大口径光子筛的焦面哈特曼波前传感器
CN112493983A (zh) * 2020-12-02 2021-03-16 上海美沃精密仪器股份有限公司 一种间接实现分析人眼内外及全眼波前像差方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程依光: "光子筛光学特性分析及应用研究", 《中国博士学位论文全文数据库(电子期刊)基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579098A (zh) * 2020-06-19 2020-08-25 中国科学院上海光学精密机械研究所 基于大口径光子筛的焦面哈特曼波前传感器
CN112493983A (zh) * 2020-12-02 2021-03-16 上海美沃精密仪器股份有限公司 一种间接实现分析人眼内外及全眼波前像差方法
CN112493983B (zh) * 2020-12-02 2022-09-16 上海美沃精密仪器股份有限公司 一种间接实现分析人眼内外及全眼波前像差方法

Similar Documents

Publication Publication Date Title
CN109031660B (zh) 消单色像差大视场双级联变焦透镜及其设计方法
Artzner Microlens arrays for Shack-Hartmann wavefront sensors
JP5769285B2 (ja) マイクロリソグラフィのための照明光学ユニット及び露光装置
JP5616983B2 (ja) マスク検査装置の照明系及び投影対物系
CN109031684A (zh) 一种光子筛像差分析方法
CN109556531A (zh) 一种基于图像信息的点衍射干涉仪光路精确校准系统及方法
CN105137513B (zh) 一种位相编码的宽带光子筛
CN111221122B (zh) 较大视场强容差超分辨望远成像系统设计方法
CN108152939B (zh) 离轴非球面三反光学系统
CN107885041B (zh) 一种大视场曝光系统
CN113703170B (zh) 一种新型三维中空形光场生成方法与装置
CN108957716B (zh) 空间光调制器中心位置干涉对准装置及方法
US20220252871A1 (en) Method for designing freeform concave grating imaging spectrometer
CN103901593A (zh) 一种离轴无遮拦极紫外投影光刻物镜
TW201243388A (en) System and methods for producing homogeneous light intensity distribution
CN111061063B (zh) 光瞳滤波远场超分辨成像系统及光瞳滤波器设计方法
TW574720B (en) An apparatus and method of focusing
DE102017217372A1 (de) Verfahren und Vorrichtung zur Charakterisierung der Oberflächenform eines optischen Elements
CN103092011B (zh) 用于光刻系统的对准装置
CN114355601A (zh) 显微成像系统的led阵列光源位姿偏差校正方法及装置
CN103092000A (zh) 极紫外光刻复眼匀光离轴照明系统及实现离轴照明的方法
CN109297675B (zh) 基于阴影的二次共轭成像光路
Morton et al. Electron optics of an image tube
CN112946906A (zh) 一种用于dmd投影光刻的空间光强度匀化系统及其设计方法
CN113391527A (zh) 一种基于ccd成像检焦对准的微结构加工方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20181218