CN109030961A - 一种目标天线垂直辐射场型的测试方法 - Google Patents

一种目标天线垂直辐射场型的测试方法 Download PDF

Info

Publication number
CN109030961A
CN109030961A CN201810797583.3A CN201810797583A CN109030961A CN 109030961 A CN109030961 A CN 109030961A CN 201810797583 A CN201810797583 A CN 201810797583A CN 109030961 A CN109030961 A CN 109030961A
Authority
CN
China
Prior art keywords
antenna
target antenna
ground
point
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810797583.3A
Other languages
English (en)
Other versions
CN109030961B (zh
Inventor
白宇俊
陆冉菁
何勇
解皓杰
瞿淳清
赵博
李海铭
高彦杰
沈彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Civil Aviation Huadong Air Traffic Control Engineering Technology Co Ltd
Original Assignee
Shanghai Civil Aviation Huadong Air Traffic Control Engineering Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Civil Aviation Huadong Air Traffic Control Engineering Technology Co Ltd filed Critical Shanghai Civil Aviation Huadong Air Traffic Control Engineering Technology Co Ltd
Priority to CN201810797583.3A priority Critical patent/CN109030961B/zh
Publication of CN109030961A publication Critical patent/CN109030961A/zh
Application granted granted Critical
Publication of CN109030961B publication Critical patent/CN109030961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Abstract

本发明涉及一种目标天线垂直辐射场型的测试方法,包括:计算临界距离;设定测试距离和无人机的飞行参数;使无人机以目标天线在地面上的位置点为正方形中心,以该正方形的地面上的边为飞行轨迹,在垂直面内绕所述目标天线飞行;在无人机的飞行轨迹上的各个测试点测试空间场强数据;比较临界距离与测试距离,确定为远场情况测试或近场情况测试;分别计算目标天线在远场和近场情况下的真实垂直辐射场型图。本发明一方面可以实现不停机对设备的天线垂直辐射场型测试,从而能够及时发现设备天线的运行隐患,提高在用空管设备保障的力度和工作效率。另一方面实现远距离、高空探测信号分布特征的测试,突破了近地区地空测试瓶颈。

Description

一种目标天线垂直辐射场型的测试方法
技术领域
本发明涉及航空无线电测量技术,尤其涉及一种目标天线垂直辐射场型的测试方法。
背景技术
目前,随着中国航空事业的高速发展,空管通信导航监视设备增长势头迅猛,因此,对于设备的保障要求也越来越高。然而,现有技术中,对于在用老旧设备的天线部分没有科学且全面的测试手段,而且对于在用设备天线的测试,只有拆下天线送至专业的测试场所(如微波暗室)进行,而天线的拆卸必须要在停机后才能进行,因此,造成了设备安全保障隐患。
另外,对于在用天线,尤其是老旧设备,由于长年污垢的累积,金属生锈等原因,导致天线无法正常拆卸,拆卸天线工作可能会对天线端造成致命损坏。同时,对于天线的测试环境也有一定的要求,对于微波暗室,需要一个很大的空间,而且还要提供大型反射面来还原现场,从而确保天线真实位置的正确性。
需要注意的是,在天线领域中,天线在不同维度上,空间信号的分布是不同与天线本身的。不同于水平方向辐射,由于地面反射作用的影响,垂直方向的辐射分布会发生改变,天线的极化方式不同,反射信号也会随之发生改变,另外,相同的天线,距离地面高度不同,空间的合成信号也会大相径庭。
发明内容
为了解决上述现有技术存在的问题,本发明旨在提供一种目标天线垂直辐射场型的测试方法,以避免拆除天线,从而在不影响在用空管设备保障的前提下,直接在现场有效测试在用空管设备天线的垂直辐射场型。
本发明所述的一种目标天线垂直辐射场型的测试方法,其包括以下步骤:
步骤S1,确定目标天线的经度和纬度,并根据所述目标天线的结构,确定其高度;
步骤S2,设定所述目标天线的工作频段;
步骤S3,根据所述目标天线的工作频段,计算该目标天线的工作波长;
步骤S4,根据所述目标天线的工作波长和所述目标天线的结构,计算临界距离;
步骤S5,将具有预设强度的载波信号馈送至所述目标天线,以使该载波信号辐射至空间;
步骤S6,确定测试距离,并设定无人机的飞行参数,包括;将所述无人机的距离所述目标天线的飞行水平距离、距离地面的飞行垂直高度均设定为等于所述测试距离;
步骤S7,根据所述无人机的飞行参数,使该无人机以所述目标天线在地面上的位置点为正方形中心、所述飞行水平距离为该正方形半边长,以该正方形的地面上的边为飞行轨迹,在垂直面内绕所述目标天线飞行;
步骤S8,在所述无人机的飞行轨迹上的各个测试点测试空间场强数据,并获取所述各个测试点的经度、纬度和高度;
步骤S9,根据所述目标天线的经度、纬度以及各个测试点的经度、纬度和高度,计算得到所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角;
步骤S10,判断所述测试距离是否大于所述临界距离,若是,则执行步骤S11-步骤S13,否则,执行步骤S14-步骤S16;
步骤S11,在以所述目标天线在地面上的位置点为圆心、所述飞行水平距离为半径的半圆形轨迹上确定与所述各个测试点位置对应的转换点的位置,并计算所述各个转换点对应的空间场强数据,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,以所述各个转换点对应的空间场强数据为纵坐标,绘制得到所述目标天线的相对于测试距离的辐射场型图;
步骤S12,将与地面垂直极化的全向无增益天线作为替代天线放置于所述目标天线的同一位置并贴近地面,同时使该替代天线的至少10m以内的周边范围内具有平整的反射面;将所述载波信号馈送至所述替代天线,以使该载波信号辐射至空间,以所述无人机围绕目标天线飞行时的起飞点或降落点为基准点,在该基准点测试空间场强数据,并将该基准点对应的空间场强数据减去增益量,以获得所述替代天线的归一化数据;
步骤S13,计算所述各个转换点对应的空间场强数据相对于所述步骤S12中替代天线的归一化数据的天线增益量,并以该天线增益量为纵坐标,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,绘制得到所述目标天线的真实垂直辐射场型图;
步骤S14,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,以所述各个测试点对应的空间场强数据为纵坐标,绘制得到所述目标天线的相对于测试距离的辐射场型图;
步骤S15,将与地面垂直极化的全向无增益天线作为替代天线放置于所述目标天线的同一位置并贴近地面,同时使该替代天线的至少10m以内的周边范围内具有平整的反射面;将所述载波信号馈送至所述替代天线,以使该载波信号辐射至空间,以所述各个测试点为替代点,在所述各个替代点测试空间场强数据,并将各个替代点对应的空间场强数据减去增益量,以获得所述替代天线的归一化数据;
步骤S16,计算所述各个测试点对应的空间场强数据相对于所述步骤S15中替代天线的归一化数据的天线增益量,并以该天线增益量为纵坐标,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,绘制得到所述目标天线的真实垂直辐射场型图。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S1包括:通过使用GPS设备和气压式高度计确定所述目标天线的经度、纬度和高度。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S4包括:当所述目标天线为单元天线时,所述临界距离Dc=所述目标天线的工作波长λ;当所述目标天线为阵列天线时,所述临界距离Dc=8h2/λ-λ2/256,其中,h表示所述目标天线的高度,λ表示所述目标天线的工作波长。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S5包括:通过信号发生器将所述载波信号馈送至所述目标天线,所述载波信号的预设强度的范围为0至30dBm,并以所述无人机上的机载接收装置检测到该载波信号恒大于噪声6dB为准。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S6还包括:设定所述无人机的飞行轨迹上的测试点的位置和数量。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S7包括:使所述无人机从地面上距离所述目标天线在地面上的位置点所述飞行水平距离处先定点垂直向上飞行至所述飞行垂直高度,再沿水平方向等高飞行2倍的所述飞行水平距离,再定点垂直向下飞行。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S8包括:通过所述无人机上的机载接收装置测试所述空间场强数据,通过所述无人机上的机载GPS设备获取所述各个测试点的经度、纬度和高度。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S9包括:根据以下公式分别计算所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角θ:
式中,R表示地球半径(6.37*106m),Aj表示目标天线的经度,Aw表示目标天线的纬度,Bj表示测试点的经度,Bw表示测试点的纬度,H表示测试点的高度。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S11包括:根据以下公式分别计算所述各个转换点对应的空间场强数据RF’:
式中,RF表示各个测试点对应的空间场强数据,l表示各个测试点至目标天线在地面上的位置点的距离,r为半圆形轨迹的半径。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S12和步骤S15均包括:根据以下公式计算所述增益量Gain:
式中,h′表示替代天线的高度,λ′表示替代天线的工作波长,θ表示测试点与替代天线在地面上的位置点的连线与地面构成的仰角。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S13包括:将所述各个转换点对应的空间场强数据相对于所述替代天线的归一化数据的天线增益量的最大值作为所述目标天线在空间的最大垂直辐射增益量。
在上述的目标天线垂直辐射场型的测试方法中,所述步骤S16包括:将所述各个测试点对应的空间场强数据相对于所述替代天线的归一化数据的天线增益量的最大值作为所述目标天线在空间的最大垂直辐射增益量。
由于采用了上述的技术解决方案,本发明利用无人机可以在空管在用设备不拆除天线的前提下,实现不停机对设备的天线辐射场型测试,从而解决了拆卸天线可能引起的天线端损坏,测试空间不够而引起测量误差等问题,进而能够及时发现设备天线的运行隐患,提高在用空管设备保障的力度和工作效率。而且,无人机高空作业解决了高海拔信号的动态捕获问题,相比于外场信号测试车,切实提高测试效率。另外,在无人机近场飞行的情况下,可以方便选取所需位置,根据天线特征和近场测试需要,测试近场情况下天线辐射场型的垂直分布特征;在远场情况下的测试结果即是忽略了目标天线尺寸的理想情况,使其测试结果更为准确真实(一般情况下,天线参数给出的场型分布都是指远场情况下分布)。
附图说明
图1是本发明一种目标天线垂直辐射场型的测试方法中临界距离与目标天线的关系示意图;
图2a、2b分别是本发明一种目标天线垂直辐射场型的测试方法中无人机的飞行姿态俯视图和正视图;
图3是本发明一种目标天线垂直辐射场型的测试方法中无人机的半个正方形轨迹及对应的半圆形轨迹的示意图;
图4是远场目标天线在半个正方形轨迹上的测试值及对应的在半圆形轨迹上的转换值的示意图;
图5是远场替代天线经过地面反射后的测试值及归一化值的示意图;
图6是远场目标天线相对于替代天线的天线增益量的示意图;
图7是近场目标天线与替代天线的测试值以及替代天线归一化值的示意图;
图8是近场目标天线相对于替代天线的天线增益量的示意图。
具体实施方式
下面结合附图给出本发明的较佳实施例,并予以详细描述。
本发明,即一种目标天线垂直辐射场型的测试方法,其包括以下步骤:
步骤S1,通过使用GPS设备确定目标天线的位置,包括:目标天线的经度和纬度;同时根据目标天线的结构,通过使用气压式高度计确定目标天线的高度:当目标天线为单元天线时,其高度为其几何中心点至其在地面上的位置点的垂直距离;当目标天线为垂直布置的阵列天线,即,目标天线包含多个垂直布置的阵列单元时,其高度为其位置最高的阵列单元的几何中心点A至其在地面上的位置点O的垂直距离AO(如图1所示);
步骤S2,设定目标天线所需检测的频段;此处所需检测的频段可以是目标天线所在台站对应的工作频段,也可以根据实际需要,通过频谱仪自定义频段;
步骤S3,根据步骤S2中设定的目标天线的工作频段,计算目标天线的工作波长λ(公知的计算公式为波长(m)=光速(300000000m/s)/频率(Hz));
步骤S4,根据目标天线的结构以及步骤S3中确定的目标天线的工作波长λ,计算临界距离Dc(即,目标天线在地面上的位置点O到与位置点O同一高度的起飞点B之间的距离OB的临界值):当目标天线为单元天线时,临界距离Dc=λ;当目标天线为阵列天线时,临界距离Dc=8h2/λ-λ2/256,其中,h表示步骤S1中确定的目标天线的高度(如图1所示,该计算公式的理论依据为:测试点B(起飞点作为一个测试点)按球面波前到达目标天线的几何中心点A的波程L,与测试点B按球面波前到达目标天线在地面上的位置点O的波程D(即,距离OB),两者的差值Δ要小于λ/16;
步骤S5,通过信号发生器将具有预设强度的载波信号馈送至目标天线,以使该载波信号辐射至空间,其中,载波信号的预设强度的范围为0至30dBm,以无人机上的机载接收装置检测到该载波信号恒大于噪声6dB为准;
步骤S6,根据实际测试需要,确定测试距离D(即,目标天线在地面上的位置点O到与位置点O同一高度的起飞点B之间的距离OB的测试值);同时,设定无人机的飞行参数,包括:根据目标天线的垂直仰角,设定无人机的距离目标天线的飞行水平距离、距离地面的飞行垂直高度、飞行方式以及飞行轨迹上测试点的位置和数量,具体来说,将无人机的飞行水平距离与飞行垂直高度均设定为等于测试距离D,并将无人机的飞行方式设定为在垂直面内绕目标天线飞行;
步骤S7,根据步骤S6中设定的无人机的飞行参数,使无人机以目标天线在地面上的位置点O为正方形中心、飞行水平距离为正方形半边长,以正方形的地面上的边为飞行轨迹(即,半个正方形)进行绕飞(即,无人机从地面上距离目标天线在地面上的位置点O飞行水平距离处定点先垂直向上飞行至设定的飞行垂直高度,再沿水平方向等高飞行2倍的飞行水平距离,再定点垂直向下飞行)(如图2a、2b所示);
步骤S8,在无人机飞行轨迹上的每个测试点通过无人机上的机载接收装置测试空间场强数据(即,相对于位置的信号辐射强度),同时通过无人机上的机载GPS设备获取每个测试点的经度、纬度和高度;
步骤S9,根据目标天线的经度和纬度以及各个测试点的经度、纬度和高度,计算得到各个测试点与目标天线在地面上的位置点O的连线与地面构成的仰角θ(即,各个测试点相对于目标天线在地面上的位置点O的仰角)(如图3所示):
式中,R表示地球半径(6.37*106m),Aj表示目标天线的经度,Aw表示目标天线的纬度,Bj表示测试点的经度,Bw表示测试点的纬度,H表示测试点的(离地)高度(与目标天线的高度无关);
步骤S10,判断步骤S6中的测试距离D是否大于步骤S4中确定的临界距离Dc,若是,则执行步骤S11-步骤S13,否则,执行步骤S14-步骤S16;具体来说,当测试距离D大于等于临界距离Dc时,测试类型为远场情况测试,当测试距离D小于临界距离Dc时,测试类型为近场情况测试;需要注意的是,在远场情况下,目标天线的垂直辐射场型分布不会随着测试距离D的变化而发生变化;在近场情况下,目标天线的垂直辐射场型分布会随着测试距离D的变化而发生变化,即在垂直方向上空间信号分布特征会随着测试距离D发生改变,且测试距离D越小,变化越明显,另外,对于某些天线信号分布,需要知道近场的分布规则,从而根据特殊近场位置下的特点来判断远场分布,如仪表着陆系统中的下滑信标近场天线;
步骤S11,在以目标天线在地面上的位置点O为圆心、飞行水平距离为半径的半圆形轨迹上确定与各个测试点位置对应的转换点的位置,并计算各个转换点对应的空间场强数据RF’(单位为dB):
式中,RF表示各个测试点对应的空间场强数据,l表示各个测试点至目标天线在地面上的位置点O的距离,r为半圆形轨迹的半径(即,飞行水平距离)(如图3所示);具体来说,上式可根据以下自由空间损耗公式获得:
Loss=32.44+20logS+20logf
式中,Loss表示自由空间损耗(单位为dB),S表示测试点或转换点至目标天线在地面上的位置点O的距离(单位为Km),f表示载波信号的频率(单位为MHz);
然后,以各个测试点与目标天线在地面上的位置点O的连线与地面构成的仰角为横坐标,以各个转换点对应的空间场强数据(即,射频(dB))为纵坐标,绘制得到的曲线即为目标天线的相对于测试距离的辐射场型图(如图4所示);
步骤S12,通过天线替代法,进行场型图归一化处理,包括:
首先,将与地面垂直极化的全向无增益天线作为替代天线放置于目标天线的同一位置(位置点O),即,该替代天线的经度和纬度均与目标天线完全一致;同时要求该替代天线贴近地面,以使其高度尽可能小(理想情况下,其高度为0),从而使得与地面反射信号合成新的全向辐射;另外还要确保替代天线的周边方圆至少10m以内有平整的反射面(优选为金属反射面);
然而,通过信号发生器将具有预设强度的载波信号馈送至该替代天线,以使该载波信号辐射至空间,以无人机围绕目标天线飞行时的起飞点或降落点为基准点,在该基准点通过无人机上的机载接收装置测试空间场强数据(即,相对于位置的信号辐射强度);
最后,计算增益量Gain(单位为dB):
式中,h'表示替代天线的高度,λ'表示替代天线的工作波长,θ表示测试点与替代天线在地面上的位置点O的连线与地面构成的仰角(0-180°);由于替代天线的高度h'≈0,因此,增益量Gain几乎均为6dB;
并将基准点对应的空间场强数据减去增益量Gain,以获得替代天线的归一化数据(即,无增益射频值)(如图5所示);
步骤S13,计算各个转换点对应的空间场强数据相对于步骤S12中替代天线的归一化数据的天线增益量,以各个测试点与目标天线在地面上的位置点O的连线与地面构成的仰角θ为横坐标,以各个转换点对应的空间场强数据相对于替代天线的归一化数据的天线增益量(即,射频(dB))为纵坐标,绘制得到的曲线即为目标天线的真实垂直辐射场型图,其中各个转换点对应的空间场强数据相对于替代天线的归一化数据的天线增益量的最大值即为目标天线在空间的最大垂直辐射增益量(如图6所示);
步骤S14,以各个测试点与目标天线在地面上的位置点O的连线与地面构成的仰角为横坐标,以各个测试点对应的空间场强数据为纵坐标,绘制得到的曲线即为目标天线的相对于测试距离的辐射场型图;
步骤S15,通过天线替代法,进行场型图归一化处理,包括:
首先,将与地面垂直极化的全向无增益天线作为替代天线放置于目标天线的同一位置(位置点O),即,该替代天线的经度和纬度均与目标天线完全一致;同时要求该替代天线贴近地面,以使其高度尽可能小(理想情况下,其高度为0),从而使得与地面反射信号合成新的全向辐射;另外还要确保替代天线的周边方圆至少10m以内有平整的反射面(优选为金属反射面);
然而,通过信号发生器将具有预设强度的载波信号馈送至该替代天线,以使该载波信号辐射至空间,以无人机围绕目标天线飞行时的各个测试点为替代点,在各个替代点上通过无人机上的机载接收装置测试空间场强数据(即,相对于位置的信号辐射强度);
最后,计算增益量Gain(单位为dB):
式中,h′表示替代天线的高度,λ′表示替代天线的工作波长,θ表示测试点与替代天线在地面上的位置点O的连线与地面构成的仰角(0-180°);由于替代天线的高度h′≈0,因此,增益量Gain几乎均为6dB;
并将各个替代点对应的空间场强数据减去增益量Gain,以获得替代天线的归一化数据(即,无增益射频值)(如图7所示);
步骤S16,计算各个测试点对应的空间场强数据相对于步骤S15中替代天线的归一化数据的天线增益量,以各个测试点与目标天线在地面上的位置点O的连线与地面构成的仰角θ为横坐标,以各个测试点对应的空间场强数据相对于替代天线的归一化数据的天线增益量(即,增益(dB))为纵坐标,绘制得到的曲线即为目标天线的真实垂直辐射场型图,其中各个测试点对应的空间场强数据相对于替代天线的归一化数据的天线增益量的最大值即为目标天线在空间的最大垂直辐射增益量(如图8所示)。
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。

Claims (12)

1.一种目标天线垂直辐射场型的测试方法,其特征在于,所述方法包括以下步骤:
步骤S1,确定目标天线的经度和纬度,并根据所述目标天线的结构,确定其高度;
步骤S2,设定所述目标天线的工作频段;
步骤S3,根据所述目标天线的工作频段,计算该目标天线的工作波长;
步骤S4,根据所述目标天线的工作波长和所述目标天线的结构,计算临界距离;
步骤S5,将具有预设强度的载波信号馈送至所述目标天线,以使该载波信号辐射至空间;
步骤S6,确定测试距离,并设定无人机的飞行参数,包括;将所述无人机的距离所述目标天线的飞行水平距离、距离地面的飞行垂直高度均设定为等于所述测试距离;
步骤S7,根据所述无人机的飞行参数,使该无人机以所述目标天线在地面上的位置点为正方形中心、所述飞行水平距离为该正方形半边长,以该正方形的地面上的边为飞行轨迹,在垂直面内绕所述目标天线飞行;
步骤S8,在所述无人机的飞行轨迹上的各个测试点测试空间场强数据,并获取所述各个测试点的经度、纬度和高度;
步骤S9,根据所述目标天线的经度、纬度以及各个测试点的经度、纬度和高度,计算得到所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角;
步骤S10,判断所述测试距离是否大于所述临界距离,若是,则执行步骤S11-步骤S13,否则,执行步骤S14-步骤S16;
步骤S11,在以所述目标天线在地面上的位置点为圆心、所述飞行水平距离为半径的半圆形轨迹上确定与所述各个测试点位置对应的转换点的位置,并计算所述各个转换点对应的空间场强数据,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,以所述各个转换点对应的空间场强数据为纵坐标,绘制得到所述目标天线的相对于测试距离的辐射场型图;
步骤S12,将与地面垂直极化的全向无增益天线作为替代天线放置于所述目标天线的同一位置并贴近地面,同时使该替代天线的至少10m以内的周边范围内具有平整的反射面;将所述载波信号馈送至所述替代天线,以使该载波信号辐射至空间,以所述无人机围绕目标天线飞行时的起飞点或降落点为基准点,在该基准点测试空间场强数据,并将该基准点对应的空间场强数据减去一增益量,以获得所述替代天线的归一化数据;
步骤S13,计算所述各个转换点对应的空间场强数据相对于所述步骤S12中替代天线的归一化数据的天线增益量,并以该天线增益量为纵坐标,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,绘制得到所述目标天线的真实垂直辐射场型图;
步骤S14,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,以所述各个测试点对应的空间场强数据为纵坐标,绘制得到所述目标天线的相对于测试距离的辐射场型图;
步骤S15,将与地面垂直极化的全向无增益天线作为替代天线放置于所述目标天线的同一位置并贴近地面,同时使该替代天线的至少10m以内的周边范围内具有平整的反射面;将所述载波信号馈送至所述替代天线,以使该载波信号辐射至空间,以所述各个测试点为替代点,在所述各个替代点测试空间场强数据,并将各个替代点对应的空间场强数据减去一增益量,以获得所述替代天线的归一化数据;
步骤S16,计算所述各个测试点对应的空间场强数据相对于所述步骤S15中替代天线的归一化数据的天线增益量,并以该天线增益量为纵坐标,以所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角为横坐标,绘制得到所述目标天线的真实垂直辐射场型图。
2.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S1包括:通过使用GPS设备和气压式高度计确定所述目标天线的经度、纬度和高度。
3.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S4包括:当所述目标天线为单元天线时,所述临界距离Dc=所述目标天线的工作波长λ;当所述目标天线为阵列天线时,所述临界距离Dc=8h2/λ-λ2/256,其中,h表示所述目标天线的高度,λ表示所述目标天线的工作波长。
4.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S5包括:通过信号发生器将所述载波信号馈送至所述目标天线,所述载波信号的预设强度的范围为0至30dBm,并以所述无人机上的机载接收装置检测到该载波信号恒大于噪声6dB为准。
5.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S6还包括:设定所述无人机的飞行轨迹上的测试点的位置和数量。
6.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S7包括:使所述无人机从地面上距离所述目标天线在地面上的位置点所述飞行水平距离处先定点垂直向上飞行至所述飞行垂直高度,再沿水平方向等高飞行2倍的所述飞行水平距离,再定点垂直向下飞行。
7.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S8包括:通过所述无人机上的机载接收装置测试所述空间场强数据,通过所述无人机上的机载GPS设备获取所述各个测试点的经度、纬度和高度。
8.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S9包括:根据以下公式分别计算所述各个测试点与目标天线在地面上的位置点的连线与地面构成的仰角θ:
式中,R表示地球半径(6.37*106m),Aj表示目标天线的经度,Aw表示目标天线的纬度,Bj表示测试点的经度,Bw表示测试点的纬度,H表示测试点的高度。
9.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S11包括:根据以下公式分别计算所述各个转换点对应的空间场强数据RF’:
式中,RF表示各个测试点对应的空间场强数据,l表示各个测试点至目标天线在地面上的位置点的距离,r为半圆形轨迹的半径。
10.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S12和步骤S15均包括:根据以下公式计算所述增益量Gain:
式中,h′表示替代天线的高度,λ′表示替代天线的工作波长,θ表示测试点与替代天线在地面上的位置点的连线与地面构成的仰角。
11.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S13包括:将所述各个转换点对应的空间场强数据相对于所述替代天线的归一化数据的天线增益量的最大值作为所述目标天线在空间的最大垂直辐射增益量。
12.根据权利要求1所述的目标天线垂直辐射场型的测试方法,其特征在于,所述步骤S16包括:将所述各个测试点对应的空间场强数据相对于所述替代天线的归一化数据的天线增益量的最大值作为所述目标天线在空间的最大垂直辐射增益量。
CN201810797583.3A 2018-07-19 2018-07-19 一种目标天线垂直辐射场型的测试方法 Active CN109030961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810797583.3A CN109030961B (zh) 2018-07-19 2018-07-19 一种目标天线垂直辐射场型的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810797583.3A CN109030961B (zh) 2018-07-19 2018-07-19 一种目标天线垂直辐射场型的测试方法

Publications (2)

Publication Number Publication Date
CN109030961A true CN109030961A (zh) 2018-12-18
CN109030961B CN109030961B (zh) 2021-01-29

Family

ID=64642211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810797583.3A Active CN109030961B (zh) 2018-07-19 2018-07-19 一种目标天线垂直辐射场型的测试方法

Country Status (1)

Country Link
CN (1) CN109030961B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798918A (zh) * 2019-01-17 2019-05-24 上海民航华东空管工程技术有限公司 一种下滑天线下滑角的测试方法
CN109798919A (zh) * 2019-01-17 2019-05-24 上海民航华东空管工程技术有限公司 一种下滑天线入口高度的测试方法
CN110600854A (zh) * 2019-06-11 2019-12-20 上海民航华东空管工程技术有限公司 一种下滑天线组件
CN111025032A (zh) * 2019-12-28 2020-04-17 北京无线电计量测试研究所 一种基于升空平台的天线波束测量系统及方法
CN111883929A (zh) * 2020-05-28 2020-11-03 上海民航华东空管工程技术有限公司 一种降低m型下滑天线下滑角的调试方法
CN113960378A (zh) * 2020-07-20 2022-01-21 川升股份有限公司 准远场量测系统、准远场量测方法
CN115993584A (zh) * 2023-03-23 2023-04-21 北京理工大学 一种大俯仰角度雷达散射截面数据测量系统及其测量方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630759A (zh) * 2012-08-28 2014-03-12 国家广播电影电视总局无线电台管理局 一种场强测量方法
CN104133121A (zh) * 2014-07-09 2014-11-05 中国电子科技集团公司第二十二研究所 一种短波规模天线阵方向图的自动测试方法
CN105319449A (zh) * 2015-10-23 2016-02-10 上海交通大学 基于无人机的天线近场测量方法
US20160088498A1 (en) * 2014-09-18 2016-03-24 King Fahd University Of Petroleum And Minerals Unmanned aerial vehicle for antenna radiation characterization
CN106526551A (zh) * 2016-10-31 2017-03-22 西安坤蓝电子技术有限公司 一种雷达天线动态性能测试系统及方法
RU2626561C1 (ru) * 2016-04-13 2017-07-28 Общество с ограниченной ответственностью "ЧКТБ" Способ измерения параметров направленности антенны с помощью бпла методом облета
CN107085150A (zh) * 2017-04-20 2017-08-22 中国人民解放军海军工程大学 一种短波发射天线三维立体方向图空中移动测量系统及方法
CN107290598A (zh) * 2016-03-30 2017-10-24 中国人民解放军空军预警学院 一种用于空中方向图测量的场强测量数据误差消除与分析方法
CN107632208A (zh) * 2017-08-09 2018-01-26 西安电子科技大学 一种球面近场天线测量方法及系统
CN108254630A (zh) * 2018-02-07 2018-07-06 西安星网天线技术有限公司 一种短波天线方向图和增益的测量系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630759A (zh) * 2012-08-28 2014-03-12 国家广播电影电视总局无线电台管理局 一种场强测量方法
CN104133121A (zh) * 2014-07-09 2014-11-05 中国电子科技集团公司第二十二研究所 一种短波规模天线阵方向图的自动测试方法
US20160088498A1 (en) * 2014-09-18 2016-03-24 King Fahd University Of Petroleum And Minerals Unmanned aerial vehicle for antenna radiation characterization
CN105319449A (zh) * 2015-10-23 2016-02-10 上海交通大学 基于无人机的天线近场测量方法
CN107290598A (zh) * 2016-03-30 2017-10-24 中国人民解放军空军预警学院 一种用于空中方向图测量的场强测量数据误差消除与分析方法
RU2626561C1 (ru) * 2016-04-13 2017-07-28 Общество с ограниченной ответственностью "ЧКТБ" Способ измерения параметров направленности антенны с помощью бпла методом облета
CN106526551A (zh) * 2016-10-31 2017-03-22 西安坤蓝电子技术有限公司 一种雷达天线动态性能测试系统及方法
CN107085150A (zh) * 2017-04-20 2017-08-22 中国人民解放军海军工程大学 一种短波发射天线三维立体方向图空中移动测量系统及方法
CN107632208A (zh) * 2017-08-09 2018-01-26 西安电子科技大学 一种球面近场天线测量方法及系统
CN108254630A (zh) * 2018-02-07 2018-07-06 西安星网天线技术有限公司 一种短波天线方向图和增益的测量系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
索炜 等: "天线阵方向图无人机测试系统研究", 《宇航计测技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109798918A (zh) * 2019-01-17 2019-05-24 上海民航华东空管工程技术有限公司 一种下滑天线下滑角的测试方法
CN109798919A (zh) * 2019-01-17 2019-05-24 上海民航华东空管工程技术有限公司 一种下滑天线入口高度的测试方法
CN110600854A (zh) * 2019-06-11 2019-12-20 上海民航华东空管工程技术有限公司 一种下滑天线组件
CN111025032A (zh) * 2019-12-28 2020-04-17 北京无线电计量测试研究所 一种基于升空平台的天线波束测量系统及方法
CN111025032B (zh) * 2019-12-28 2022-03-04 北京无线电计量测试研究所 一种基于升空平台的天线波束测量系统及方法
CN111883929A (zh) * 2020-05-28 2020-11-03 上海民航华东空管工程技术有限公司 一种降低m型下滑天线下滑角的调试方法
CN113960378A (zh) * 2020-07-20 2022-01-21 川升股份有限公司 准远场量测系统、准远场量测方法
CN115993584A (zh) * 2023-03-23 2023-04-21 北京理工大学 一种大俯仰角度雷达散射截面数据测量系统及其测量方法

Also Published As

Publication number Publication date
CN109030961B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109030961A (zh) 一种目标天线垂直辐射场型的测试方法
CN108414844A (zh) 一种目标天线辐射场型的测试方法
EP3591412B1 (en) Airborne system and method for the characterisation and measurement of radiating systems or antennas
CN106405484B (zh) 基于载人飞行器的多功能无线电监测测向系统
CN106093855B (zh) 无人机的导航控制方法及控制系统
CN107632208B (zh) 一种球面近场天线测量方法及系统
CN107219193B (zh) 大气折射率剖面的反演方法
CN105548982B (zh) 一种基于全球卫星导航系统载波相位差分技术的雷达标校方法
CN103631250A (zh) 一种对天线俯仰轴跟踪精度进行地面测试的方法
CN107968686A (zh) 300MHz-800MHz模拟电视台站发射功率辐射测试方法
CN110231594A (zh) 一种无人机干扰反制系统
CN105388449A (zh) 一种衡量天线罩对天线阵列测向性能影响的方法
CN209542714U (zh) 基于实时动态定位的便携式车载天线测试系统
CN115113133A (zh) 基于无人机自旋的双通道电磁频谱测向定位系统
CN100368822C (zh) 无线电发射源定位方法与系统
CN111537807A (zh) 无人机辅助测试大机动飞行状态天线方向图的方法
CN109669198A (zh) 基于rtk技术的无人机地质滑坡监测预警方法及其系统
Zelený et al. Initial results from a measurement campaign for low elevation angle links in different environments
CN207741764U (zh) 一种陆基导航设备的地面测试装置
CN111624414A (zh) 无人机辅助测试大机动飞行状态天线方向图的方法
CN116773026A (zh) 一种森林积雪微波辐射特性塔基测量装置及观测方法
Zhang et al. Beam measurements of the Tianlai dish radio telescope using an unmanned aerial vehicle [antenna applications corner]
CN114184852A (zh) 一种基于空中平台的天线方向图主被动复合式测量系统
Barker Measurement of the radiation patterns of full-scale HF and VHF antennas
RU2282869C1 (ru) Система для определения пространственного положения объекта

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant