CN109030425A - 用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备 - Google Patents

用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备 Download PDF

Info

Publication number
CN109030425A
CN109030425A CN201810586121.7A CN201810586121A CN109030425A CN 109030425 A CN109030425 A CN 109030425A CN 201810586121 A CN201810586121 A CN 201810586121A CN 109030425 A CN109030425 A CN 109030425A
Authority
CN
China
Prior art keywords
laboratory sample
sample container
property
light
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810586121.7A
Other languages
English (en)
Inventor
M.赖因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN109030425A publication Critical patent/CN109030425A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0092Monitoring flocculation or agglomeration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • G01N2021/1787Tomographic, i.e. computerised reconstruction from projective measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0662Comparing measurements on two or more paths in one sample

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Ecology (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备。具体公开了一种用于确定容纳在实验室样品容器(2)中的实验室样品(1)的性质的方法,其中,所述方法包括如下步骤:通过使光以不同投影角度照射到所述实验室样品容器(2)来测量包括所述实验室样品(1)的所述实验室样品容器(2)的投影,并且通过基于所述投影的层析重建来确定所述性质。

Description

用于确定容纳在实验室样品容器中的实验室样品的性质的方 法和设备
技术领域
本发明涉及用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备。
背景技术
在实验室自动化的技术领域中,包括离心血液样品的实验室样品容器会必须要被处理。血液样品可被分离介质分离成血清和凝血(血液细胞)。如果必须产生例如血清试样(aliquot),则血清的一部分必须例如借助于移液装置被转移到另一样品容器。如果血清中存在例如外来物质形式的杂质,则移液装置会不能适当地起作用,这是因为杂质会阻挡或闭塞移液装置的开口。
EP 2 770 318 A1公开了一种用于检测在血清中的凝块(clot)的方法,血清被包括在实验室样品容器中。
通常,包括与样品有关的信息的标签被放置在实验室样品容器上。这些标签使得光学检测实验室样品的性质的过程复杂化。
发明内容
本发明的目标是提供用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备,从而即使标签被放置在实验室样品容器上,仍在确定性质时提供可靠结果。
这个目标是通过根据权利要求1的方法和根据权利要求12的设备来实现的。
用于确定容纳在实验室样品容器中的实验室样品的性质的方法是基于包括层析重建的层析测量过程。关于包括层析重建的层析测量过程的基本原理,可参考相关技术文献,例如https://en.wikipedia.org/wiki/Tomographic_reconstruction。
所述方法包括如下步骤:通过使光以不同投影角度照射到实验室样品容器来测量包括实验室样品的实验室样品容器的投影。物品(在此是包括实验室样品的实验室样品容器形式的物品)的投影(projection)由处于给定投影角度时的层析测量过程而得到。投影通常由一组线积分(line integral)构成。投影可以由向量表示,其中,向量的元素由线积分形成,例如以二进制表示法。
照射到实验室样品容器的光的强度被选择成使得:即使标签被放置在实验室样品容器上,仍有足够量的光穿过实验室样品容器。光的波长可例如被选择成处于可见或者红外线波长范围。
所述方法还包括如下步骤:通过基于投影的层析重建来确定性质。所述性质可例如被具体实现为实验室样品容器的和实验室样品的截面图像。所述图像可例如通过离散像素形成。
由于本发明的创造性的方法,即使标签被放置在实验室样品容器上,也可以可靠地确定样品的性质。另外,可获得实验室样品的截面图像,从而使得可以检测在实验室样品中的杂质。
上述方法步骤可针对若干不同的竖直位置而重复,以便获得在所述不同竖直位置处的实验室样品容器的和实验室样品的若干截面图像。
根据实施例,测量投影的步骤包括如下步骤:将光照射到实验室样品容器,使得光穿过实验室样品容器和实验室样品,以及测量离开实验室样品容器的光的强度,其中,离开实验室样品容器的光是基于照射的光。
根据实施例,光以处于相应投影角度的平行光射线或光束的形式照射到实验室样品容器。平行光射线或光束可位于与实验室样品容器的轴线垂直的水平投影平面中。因此,可在该投影平面中测量离开实验室样品容器的光。
根据实施例,在不同投影角度下作出的投影形成正弦图。也可参考目前相关的技术文献。
根据实施例,层析重建是基于拉东变换、和/或傅里叶-域重建算法(Fourier-Domain Reconstruction Algorithm)、和/或滤波反投影算法(Filtered Back ProjectionAlgorithm)、和/或扇束重建(Fan-Beam Reconstruction)、和/或螺旋计算机断层扫描(spital computed tomography)。可参考目前相关的技术文献。
根据实施例,实验室样品的性质是实验室样品的根据在实验室样品容器内的位置或方位的光衰减系数。
根据实施例,实验室样品是离心血液样品,所述血液样品被分离成血清和至少一种其他组分。所述至少一种其他组分可例如被具体实现为凝血(血液细胞)、分离介质(凝胶(gel))或者空气。
根据实施例,可基于所确定的性质来检测血清中的外来物质。外来物质可例如被实现为通常由无纤维原血纤维(afibrinogenaemia fiber)、凝结物、脂肪/蛋白质凝集等构成的凝块。
根据实施例,可基于所确定的性质来确定附接到实验室样品容器的标签的性质。如果标签被放置在实验室样品容器上,标签的性质可以例如是被放置在实验室样品容器上的标签的范围、标签的厚度和/或标签的层数。
根据实施例,基于所确定的性质来分类实验室样品。可以被指定到例如血浆样品形式的实验室样品的典型分类例如是脂血类、溶血类、黄疸类和良好类(good class)。“良好”类包含不被指定到脂血、溶血或黄疸类的那些样品。当样品将被指定到脂血类时,其是具有升高的水平的脂质的脂血样品。这可例如指示脂肪代谢紊乱。当样品将被指定到溶血类时,其是具有升高水平的血红蛋白的溶血样品。这可例如指示具体的贫血、输血反应或疟疾。当血浆样品要被指定到黄疸类时,其是具有升高水平的胆红素的黄疸样品。这可例如指示肝脏疾病。
用于确定容纳在实验室样品容器中的实验室样品的性质的设备适于执行上述方法。
根据实施例,基于所确定的性质来确定包括在实验室样品容器中的实验室样品的液面。
根据实施例,基于所确定的性质来执行粗略细胞分析。
例如形成实验室诊断装置的设备包括光源,所述光源用于将光照射到实验室样品容器,使得光穿过实验室样品容器和实验室样品。光源可例如被具体实现为一定数量的(例如10至100个)线性布置的激光二极管,其照射出处于相应投影角度的平行射线形式的光。激光二极管可被线性布置在与实验室样品容器的轴线垂直的水平投影平面中。
所述设备还包括光检测器以用于测量基于照射的光且离开实验室样品容器的光的强度。光检测器可例如被具体实现为一定数量的(例如10至100个)线性布置的光电检测器。光电检测器可被线性布置在与激光二极管水平间隔的水平投影平面中,使得样品容器可以被放置在激光二极管和光电检测器之间。
所述设备还包括旋转驱动器以用于使光源与光检测器一起相对于样品容器旋转以便导致不同的投影角度。
所述设备还包括数字处理器以用于通过基于投影的层析重建来确定性质。
附图说明
现在将关于附图具体地描述本发明,在附图中:
图1以透视图示意性示出用于确定容纳在实验室样品容器中的实验室样品的性质的设备,并且
图2以两种不同的投影角度以俯视图示意性示出图1的设备。
具体实施方式
图1示意性示出用于确定容纳在实验室样品容器2中的实验室样品1的性质的设备10。实验室样品1的性质是在投影平面中的实验室样品1的光衰减系数。
实验室样品1是离心血液样品。血液样品1被分离成凝血4、血清3和空气5。血液样品1包含在血清3中的凝块形式的外来物质6。进一步地,包括与样品有关的信息的标签7被附接到实验室样品容器2。
设备10包括数量为n个的激光二极管11a构成的线性阵列形式的光源11,其用于使光照射到实验室样品容器2,使得光以平行射线R1至Rn的形式穿过实验室样品容器2和实验室样品1。
设备10还包括光检测器12以用于通过测量离开实验室样品容器2且基于照射的光的光的强度来确定投影从而形成正弦图。光检测器12由n个例如光电二极管形式的光电检测器12a构成的线性阵列形成。
激光二极管11a的数量n和光电检测器12a的数量n可例如分别位于在4和100之间的范围内。
激光二极管11a和光电检测器12a在共同的投影平面中彼此相对放置。样品容器2放置在激光二极管11a和光电检测器12a之间。投影平面垂直于样品容器2的轴线。
设备10还包括旋转驱动器13以用于使光源11和光检测器12相对于样品容器2旋转以便实现不同的投影角度α1和α2,见图2。
设备10还包括处理器14以用于通过基于投影(projection)P1和P2的层析重建来确定性质。
现在也参考图2,设备10如下操作。
借助于激光二极管11a,平行光束或射线R1至Rn形式的光以第一投影角度α1照射到实验室样品容器2,使得光穿过实验室样品容器2和实验室样品1。借助于光电检测器12a,测量基于照射的光且离开实验室样品容器2的光的强度。投影P1通过光电检测器12a的不同测量值来形成。
如果产生投影P1,则旋转驱动器13使光源11和光检测器12相对于样品容器2旋转以便实现投影角度α2并且上述步骤重复以产生投影P2。
不言而喻地,通常使用比处于相应投影角度α1和α2的两个示例性示出的投影P1和P2更多的投影来确定性质。例如,可使用覆盖180度角的角度范围的数量为15至180个的投影来确定性质。
如果投影被确定,则处理器14通过基于投影P1和P2的层析重建来确定性质。层析重建可以是基于拉东变换和/或傅里叶-域重建算法、和/或滤波反投影算法、和/或迭代重建算法、和/或扇束重建、和/或螺旋计算机断层扫描。
然后上述步骤针对不同竖直水平位(level)被重复,例如覆盖血清3的完整竖直范围。
借助于本发明创造性的设备和方法,评估了实验室样品1在投影平面中的性质,所述性质是实验室样品1的光衰减系数的形式。所述性质可以以数字图像的形式被呈现,数字图像由代表投影平面中的对应光衰减系数的像素组成。因此,即使标签7放置在实验室样品容器2上,也可针对所有测量竖直水平位确定凝块6在投影平面中的程度。
像素分辨率通常取决于激光二极管11a和光电检测器12a的数量n。
另外,实验室样品1可基于光衰减系数被分类,因为例如针对脂血(lipemic)、溶血类(hemolytic class)、黄疸样品,光衰减系数是特定的。

Claims (12)

1.一种用于确定容纳在实验室样品容器(2)中的实验室样品(1)的性质的方法,其中,所述方法包括如下步骤:
- 通过使光以不同投影角度(α1,α2)照射到所述实验室样品容器(2)来测量包括所述实验室样品(1)的所述实验室样品容器(2)的投影(P1,P2),并且
- 通过基于所述投影(P1,P2)的层析重建来确定所述性质。
2.根据权利要求1所述的方法,其特征在于
- 测量所述投影(P1,P2)的步骤包括如下步骤:
-使光照射到所述实验室样品容器(2),使得所述光穿过所述实验室样品容器(2)和所述实验室样品(1),以及
- 测量基于照射的光且离开所述实验室样品容器(2)的光的强度。
3.根据权利要求1或2所述的方法,其特征在于
- 光以处于相应投影角度(α1,α2)的平行射线(R1至Rn)的形式照射到所述实验室样品容器(2)。
4.根据前述权利要求中的任一项所述的方法,其特征在于
- 所述投影(P1,P2)形成正弦图。
5.根据前述权利要求中的任一项所述的方法,其特征在于
- 所述层析重建是基于拉东变换、和/或傅里叶-域重建算法、和/或滤波反投影算法、和/或迭代重建算法、和/或扇束重建、和/或螺旋计算机断层扫描。
6.根据前述权利要求中的任一项所述的方法,其特征在于
- 所述实验室样品(1)的性质是所述实验室样品(1)的根据在所述实验室样品容器(2)内的位置的光衰减系数。
7.根据前述权利要求中的任一项所述的方法,其特征在于
- 所述实验室样品(1)是离心血液样品,所述血液样品被分离成血清(3)和至少一种其他组分(4,5)。
8.根据权利要求7所述的方法,其特征在于如下步骤
- 基于所确定的性质来检测所述血清(3)中的外来物质(6)。
9.根据前述权利要求中的任一项所述的方法,其特征在于如下步骤
- 基于所确定的性质来确定附接到所述实验室样品容器(2)的标签(7)的性质。
10.根据前述权利要求中的任一项所述的方法,其特征在于
- 所述实验室样品(1)基于所确定的性质被分类。
11.根据前述权利要求中的任一项所述的方法,其特征在于
- 基于所确定的性质来确定包括在所述实验室样品容器(2)中的所述实验室样品(1)的液面。
12.一种用于确定容纳在实验室样品容器(2)中的实验室样品(1)的性质的设备(10),其中,所述设备(10)适于执行前述权利要求中的任一项所述的方法,所述设备(10)包括:
- 光源(11),所述光源(11)用于使光照射到所述实验室样品容器(2),使得所述光穿过所述实验室样品容器(2)和所述实验室样品(1),
- 光检测器(12),所述光检测器(12)用于通过测量基于照射的光且离开所述实验室样品容器(2)的光的强度来确定投影(P1,P2),
- 旋转驱动器(13),所述旋转驱动器(13)用于使所述光源(11)和所述光检测器(12)相对于所述样品容器(2)旋转以便实现不同的投影角度(α1,α2),以及
- 处理器(14),所述处理器(14)用于通过基于所述投影(P1,P2)的层析重建来确定所述性质。
CN201810586121.7A 2017-06-09 2018-06-08 用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备 Pending CN109030425A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17175373.4 2017-06-09
EP17175373.4A EP3413033B1 (en) 2017-06-09 2017-06-09 Method and apparatus for determining properties of a laboratory sample contained in a laboratory sample container

Publications (1)

Publication Number Publication Date
CN109030425A true CN109030425A (zh) 2018-12-18

Family

ID=59054001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810586121.7A Pending CN109030425A (zh) 2017-06-09 2018-06-08 用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备

Country Status (4)

Country Link
US (2) US11009499B2 (zh)
EP (1) EP3413033B1 (zh)
JP (1) JP6749964B2 (zh)
CN (1) CN109030425A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3748414A1 (en) * 2019-06-07 2020-12-09 Koninklijke Philips N.V. A simple and efficient biopsy scanner with improved z-axis resolution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076319A1 (en) * 2002-04-19 2004-04-22 Fauver Mark E. Method and apparatus of shadowgram formation for optical tomography
US20050189494A1 (en) * 2004-02-25 2005-09-01 Conwell Richard L. Small field-of-view detector head ("SPECT") attenuation correction system
CN101726460A (zh) * 2009-12-17 2010-06-09 浙江大学 检测流体中各物质分布图像的装置及方法
WO2016020684A1 (en) * 2014-08-05 2016-02-11 Imperial Innovations Limited Multiplexed optical tomography
CN106618489A (zh) * 2015-11-02 2017-05-10 佳能株式会社 用于获取被检体信息的装置和处理方法
CN107076669A (zh) * 2014-09-17 2017-08-18 卡尔蔡司显微镜有限责任公司 用于产生物体的三维图像的装置及方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580219A (en) * 1983-05-02 1986-04-01 General Electric Company Method for reducing image artifacts due to projection measurement inconsistencies
US5447159A (en) * 1993-02-03 1995-09-05 Massachusetts Institute Of Technology Optical imaging for specimens having dispersive properties
US6636623B2 (en) 2001-08-10 2003-10-21 Visiongate, Inc. Optical projection imaging system and method for automatically detecting cells with molecular marker compartmentalization associated with malignancy and disease
US7197355B2 (en) * 2002-04-19 2007-03-27 Visiongate, Inc. Variable-motion optical tomography of small objects
US7978887B2 (en) * 2003-06-17 2011-07-12 Brown University Methods and apparatus for identifying subject matter in view data
JP4472442B2 (ja) * 2004-06-24 2010-06-02 アロカ株式会社 界面検出装置、体積計測装置及び界面検出方法
CN101312685A (zh) * 2005-11-23 2008-11-26 皇家飞利浦电子股份有限公司 用于对混浊介质的内部成像的设备
KR20120138256A (ko) * 2008-06-27 2012-12-26 울프램 알. 자리쉬 고효율 컴퓨터 단층 촬영
US8284892B2 (en) * 2008-12-22 2012-10-09 General Electric Company System and method for image reconstruction
US8155420B2 (en) 2009-05-21 2012-04-10 Visiongate, Inc System and method for detecting poor quality in 3D reconstructions
WO2011084625A1 (en) * 2009-12-16 2011-07-14 Georgia Tech Research Corporation Systems and methods for x-ray flourescence computed tomography imaging with nanoparticles
JP5220060B2 (ja) * 2010-06-02 2013-06-26 株式会社アドバンテスト 電磁波測定装置、測定方法、プログラム、記録媒体
US8215046B2 (en) * 2010-07-20 2012-07-10 Advanced Technology International USA, LLC Forend with multiple locator rails
DE102010063412B4 (de) * 2010-12-17 2013-06-06 Laser Zentrum Hannover E.V. Technik zur tomographischen Bilderfassung
US9521982B2 (en) * 2011-06-17 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography system with dynamic bowtie filter
US9451926B2 (en) * 2012-05-09 2016-09-27 University Of Washington Through Its Center For Commercialization Respiratory motion correction with internal-external motion correlation, and associated systems and methods
US10670510B2 (en) * 2013-02-05 2020-06-02 Massachusetts Institute Of Technology 3-D holographic imaging continuous flow cytometry
EP2770318B1 (en) 2013-02-21 2018-03-21 Roche Diagniostics GmbH Method and apparatus for detecting clots in a liquid and laboratory automation system
US10019113B2 (en) * 2013-04-11 2018-07-10 Flatfrog Laboratories Ab Tomographic processing for touch detection
JP6143584B2 (ja) 2013-07-04 2017-06-07 株式会社日立ハイテクノロジーズ 検出装置および生体試料分析装置
US10285659B2 (en) * 2013-12-06 2019-05-14 Rensselaer Polytechnic Institute Stored luminescence computed tomography
WO2016131498A1 (en) * 2015-02-20 2016-08-25 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Device and method for creating an optical tomogram of a microscopic sample
WO2016197127A1 (en) * 2015-06-04 2016-12-08 Rensselaer Polytechnic Institute Attenuation map reconstruction from tof pet data
WO2018094250A1 (en) * 2016-11-18 2018-05-24 Jarisch Wolfram R Extended high efficiency computed tomography with optimized recursions and applications
US11315292B2 (en) * 2017-03-02 2022-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Live-cell computed tomography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076319A1 (en) * 2002-04-19 2004-04-22 Fauver Mark E. Method and apparatus of shadowgram formation for optical tomography
US20050189494A1 (en) * 2004-02-25 2005-09-01 Conwell Richard L. Small field-of-view detector head ("SPECT") attenuation correction system
CN101726460A (zh) * 2009-12-17 2010-06-09 浙江大学 检测流体中各物质分布图像的装置及方法
WO2016020684A1 (en) * 2014-08-05 2016-02-11 Imperial Innovations Limited Multiplexed optical tomography
CN107076669A (zh) * 2014-09-17 2017-08-18 卡尔蔡司显微镜有限责任公司 用于产生物体的三维图像的装置及方法
US20170301101A1 (en) * 2014-09-17 2017-10-19 Carl Zeiss Microscopy Gmbh Device and method for producing a three-dimensional image of an object
CN106618489A (zh) * 2015-11-02 2017-05-10 佳能株式会社 用于获取被检体信息的装置和处理方法

Also Published As

Publication number Publication date
JP2019002915A (ja) 2019-01-10
US20210231641A1 (en) 2021-07-29
EP3413033A1 (en) 2018-12-12
US11009499B2 (en) 2021-05-18
JP6749964B2 (ja) 2020-09-02
EP3413033B1 (en) 2020-09-23
US20180356392A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
EP3271717B1 (en) Automated quality control and selection
US10068322B2 (en) Inspection system
JP3080994B2 (ja) 多重エネルギコンピュータ断層撮影法を用いた隠された対象物の自動認識のための装置および方法
US9750413B2 (en) Massively parallel diffuse optical tomography
US7894568B2 (en) Energy distribution reconstruction in CT
CN106691487A (zh) 成像方法和成像系统
JP2015520846A (ja) Ct密度画像とスパースマルチエネルギーデータを用いてボクセルセットのz−有効値を決定する方法およびシステム{determinationofz−effectivevalueforsetofvoxelsusingctdensityimageandsparsemulti−energydata}
KR20180020143A (ko) 멀티 모달 검출 시스템 및 방법
JP6021347B2 (ja) 医用画像撮像装置及び医用画像撮像方法
CN109030425A (zh) 用于确定容纳在实验室样品容器中的实验室样品的性质的方法和设备
US9513217B2 (en) Non-invasive method and apparatus for screening high-quality seeds
US20080095304A1 (en) Energy-Resolved Computer Tomography
CN109561868B (zh) 用于采集暗场图像的体模设备、暗场成像系统和方法
Crookston et al. Verification of a method to detect glass microspheres via micro‐CT
US20090074132A1 (en) Computer tomography apparatus and method of examining an object of interest with a computer tomography apparatus
Ogilvy et al. Simulated design optimization of a prototype solid tank optical CT scanner for 3D radiation dosimetry
KR101700287B1 (ko) 단층촬영에서의 양자검출효율 측정용 팬텀 및 이를 이용한 양자검출효율 측정방법
US9618462B2 (en) Systems and methods for imaging and determining a signature of an object
CN115004231A (zh) 一种产生射线断层照片的设备和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218