CN109029386B - A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation - Google Patents
A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation Download PDFInfo
- Publication number
- CN109029386B CN109029386B CN201810906406.4A CN201810906406A CN109029386B CN 109029386 B CN109029386 B CN 109029386B CN 201810906406 A CN201810906406 A CN 201810906406A CN 109029386 B CN109029386 B CN 109029386B
- Authority
- CN
- China
- Prior art keywords
- wave
- sea
- ring
- sliding rod
- magnetic ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 35
- 238000010248 power generation Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000006073 displacement reaction Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 22
- 229920000728 polyester Polymers 0.000 claims description 22
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 20
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 20
- -1 polydimethylsiloxane Polymers 0.000 claims description 20
- 230000008054 signal transmission Effects 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 9
- 239000000696 magnetic material Substances 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000003068 static effect Effects 0.000 abstract 1
- 238000004078 waterproofing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明属于电子信息技术领域和新能源开发与利用技术领域,具体涉及一种动态监测海洋波高并同步实现摩擦发电的装置及方法。The invention belongs to the technical field of electronic information and the technical field of new energy development and utilization, and particularly relates to a device and method for dynamically monitoring ocean wave height and synchronously realizing frictional power generation.
背景技术Background technique
海浪是最为常见的海水波动现象,与海洋水文研究和波浪能开发利用有着紧密的联系。监测海浪的实时信息,如波高、波向和周期等,对于海岸保护和离岸海上活动也有着重要的意义。海浪的波高、周期是实际物理量信号,且数值不断变化。设计一种能够完成信号的采集,且能够将不断变化的实际物理量信号转化为电信号或时间信号,进而对信号做进一步处理的海浪实时监测仪器显得十分必要。Ocean waves are the most common phenomenon of sea water fluctuations, which are closely related to marine hydrology research and the development and utilization of wave energy. Monitoring real-time information on waves, such as wave height, direction and period, is also of great significance for coastal protection and offshore marine activities. The wave height and period of ocean waves are actual physical quantity signals, and the values are constantly changing. It is very necessary to design a real-time monitoring instrument for ocean waves that can complete the acquisition of signals and convert the constantly changing actual physical quantity signals into electrical signals or time signals, and then further process the signals.
然而,一般的接触式测量仪器避免不了摩擦,这不仅会对测量结果产生一定的误差,还会造成能量的浪费。摩擦电是自然界中最常见的现象之一,无论是梳头、穿衣还是走路、开车都会遇到,但摩擦电又很难被收集和利用,往往被忽视。However, general contact measuring instruments cannot avoid friction, which will not only cause certain errors in the measurement results, but also cause energy waste. Triboelectricity is one of the most common phenomena in nature, whether it is combing hair, dressing, walking or driving, but triboelectricity is difficult to collect and use, and is often ignored.
因此,监测海浪实时信息时如何保证测量结果的准确性和能量的最大化利用,是一个亟待解决的问题。Therefore, how to ensure the accuracy of the measurement results and maximize the utilization of energy when monitoring the real-time information of ocean waves is an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
本发明针对海浪实时监测过程中由于摩擦引起的测量误差以及如何最大化利用能量的问题,提出一种动态监测海洋波高并同步实现摩擦发电的装置及方法。Aiming at the measurement error caused by friction and the problem of how to maximize the utilization of energy in the process of real-time monitoring of ocean waves, the invention proposes a device and method for dynamically monitoring ocean wave height and synchronously realizing frictional power generation.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种动态监测海洋波高并同步实现摩擦发电的装置垂直于海平面放置,由浮子系统、底座系统和外壳构成。浮子系统包括一个浮球、四根连杆、一个内圆磁环、四根撑杆和一个外圆环。外圆环的上、下圆环面与海平面平行,外圆环的内、外侧面与海平面垂直,外圆环的圆环面沿周向均匀开有三个供滑杆穿过的通孔,通孔内壁敷设有聚酯纤维薄片层,聚酯纤维薄片层连接有导线;外圆环内侧面沿周向均匀连接有四根撑杆;内圆磁环与外圆环的圆心重合,且两者位于同一平面;内圆磁环外侧面与外圆环内侧面周向连接的四根撑杆的另一端相连;内圆磁环的圆环面沿周向开有四个供连杆穿过的通孔;内圆磁环内侧面敷设有N极磁性材料,外侧面敷设有S极磁性材料;浮球位于海面上,浮球下方连接四根垂直海平面布置的连杆,连杆的另一端插入内圆磁环的圆环表面通孔后使用焊接固定。A device for dynamically monitoring ocean wave height and synchronously realizing frictional power generation is placed perpendicular to the sea level, and is composed of a float system, a base system and a casing. The float system includes a floating ball, four connecting rods, an inner magnetic ring, four struts and an outer ring. The upper and lower torus surfaces of the outer ring are parallel to the sea level, the inner and outer sides of the outer ring are perpendicular to the sea level, and the torus surface of the outer ring has three through holes for the sliding rods to pass through uniformly along the circumferential direction. , the inner wall of the through hole is laid with a polyester fiber sheet layer, and the polyester fiber sheet layer is connected with wires; the inner side of the outer ring is evenly connected with four struts in the circumferential direction; the center of the inner magnetic ring and the outer ring coincide, and The two are located on the same plane; the outer side of the inner magnetic ring is connected to the other end of the four struts circumferentially connected to the inner side of the outer ring; the torus of the inner magnetic ring is circumferentially provided with four for the connecting rods to pass through. Through hole; N-pole magnetic material is laid on the inner side of the inner circular magnetic ring, and S-pole magnetic material is laid on the outer side; the floating ball is located on the sea surface, and four connecting rods arranged perpendicular to the sea level are connected below the floating ball, and the other end of the connecting rod After inserting the through hole on the surface of the inner magnetic ring, use welding to fix it.
底座系统包括一个配重盘、三根滑杆、电能接收模块和海浪监测模块。配重盘上、下表面与海平面平行,配重盘上表面开有三个供滑杆插入固定的盲孔,相邻盲孔间的圆心角为120°;配重盘上表面的盲孔、滑杆与外圆环上的通孔三者在垂直轴线上重合;滑杆一端插入配重盘上表面上的盲孔,另一端穿过外圆环上的通孔,滑杆顶端与滑杆中部安装有限位块,两个限位块之间的滑杆外表面敷设有聚二甲基硅氧烷薄片层,聚二甲基硅氧烷薄片层连接有导线;外圆环可以在两个限位块之间上下滑动。电能接收模块包括一个电流检测器、一个蓄电器、信号传输线和导线;电流检测器和蓄电器安置在配重盘上表面;三根滑杆外表面上的聚二甲基硅氧烷薄片层与外圆环通孔表面的聚酯纤维薄片层相互摩擦产生的电流经导线依次流入电流检测器、蓄电器;电流检测器外接一条信号传输线,蓄电器接收到的电能一部分用于海浪监测模块发射脉冲电流,剩余的电能外输。海浪监测模块包括一个脉冲电流发射器、一个应力波检测器、一个应力波信号分析器、一个消波器以及波导管组成的激励回路;脉冲电流发射器安置在配重盘上表面中心位置;应力波检测器位于脉冲电流发射器的上方、滑杆中部限位块的下方;应力波信号分析器位于脉冲电流发射器旁,安置在配重盘上表面;应力波检测器与应力波信号分析器用导线连接,应力波信号分析器外接一条信号传输线;消波器、应力波检测器和脉冲电流发射器三者由一根平直波导管串接在一起,消波器位于滑杆顶端限位块上部;波导管在消波器上端发生90°的转向,到达滑杆轴线处时再发生向下的90°转向,而后进入滑杆内部回接至脉冲电流发射器,由此形成一个波导管组成的激励回路。The base system includes a counterweight plate, three sliding bars, a power receiving module and an ocean wave monitoring module. The upper and lower surfaces of the counterweight plate are parallel to the sea level. There are three blind holes on the upper surface of the counterweight plate for the sliding rod to be inserted and fixed. The central angle between the adjacent blind holes is 120°; the blind holes on the upper surface of the counterweight plate, The sliding rod and the through hole on the outer ring coincide on the vertical axis; one end of the sliding rod is inserted into the blind hole on the upper surface of the counterweight plate, and the other end passes through the through hole on the outer ring, and the top of the sliding rod is connected to the sliding rod. A limit block is installed in the middle, the outer surface of the sliding rod between the two limit blocks is covered with a polydimethylsiloxane sheet layer, and the polydimethylsiloxane sheet layer is connected with a wire; the outer ring can be placed between two Slide up and down between the limit blocks. The power receiving module includes a current detector, an accumulator, a signal transmission line and a wire; the current detector and the accumulator are arranged on the upper surface of the counterweight plate; the polydimethylsiloxane sheet layer on the outer surface of the three sliding rods is connected with the outer surface. The current generated by the friction between the polyester fiber sheet layers on the surface of the ring through hole flows into the current detector and the accumulator in turn through the wires; the current detector is connected to a signal transmission line, and part of the electric energy received by the accumulator is used for the wave monitoring module to transmit pulse current. , the remaining power is exported. The wave monitoring module includes a pulse current transmitter, a stress wave detector, a stress wave signal analyzer, a wave suppressor and an excitation circuit composed of a waveguide; the pulse current transmitter is placed in the center of the upper surface of the counterweight plate; the stress The wave detector is located above the pulse current transmitter and below the limit block in the middle of the sliding rod; the stress wave signal analyzer is located next to the pulse current transmitter and is placed on the upper surface of the counterweight plate; the stress wave detector and the stress wave signal analyzer are used for The wire is connected, and the stress wave signal analyzer is connected to a signal transmission line; the wave suppressor, the stress wave detector and the pulse current transmitter are connected in series by a straight waveguide, and the wave suppressor is located at the limit block at the top of the sliding rod The upper part; the waveguide turns 90° at the upper end of the wave absorber, and then turns 90° downward when it reaches the axis of the slide bar, and then enters the slide bar and connects back to the pulse current transmitter, thus forming a waveguide consisting of incentive loop.
外壳由两个相同的中空塑料质半圆柱体组成,每个半圆柱体上表面开有两个供连杆穿过的通孔,且通孔内部安装有滑动轴承;半圆柱体的下部贴合于配重盘上表面,两个半圆柱体对接后通过螺栓连接固定。The shell is composed of two identical hollow plastic semi-cylinders, two through holes for connecting rods to pass through are opened on the upper surface of each semi-cylinder, and sliding bearings are installed inside the through holes; the lower part of the semi-cylinder is fitted On the upper surface of the counterweight plate, the two semi-cylindrical bodies are butted and fixed by bolts.
上述的外壳与连杆接触部分、外壳下部与配重盘上表面贴合部分、外壳的对接部分和螺栓连接部分均采取密封防水措施。The above-mentioned contact part between the casing and the connecting rod, the joint part between the lower part of the casing and the upper surface of the counterweight plate, the butt joint part of the casing and the bolt connection part are all sealed and waterproof.
本发明采用所述的动态监测海洋波高并同步实现摩擦发电的装置提供一种动态监测海洋波高并同步实现摩擦发电的方法。将整个装置置于海面上,海面无波动时,浮球位于海面之上,底座系统和外壳位于海面之下;当海浪发生时,浮球将跟随海浪上下同步运动,底座系统和外壳由于配重盘的作用,受到的重力与浮力大小相等方向相反,因而底座系统和外壳与浮子系统存在相对位移;浮球、连杆、内圆磁环、撑杆和外圆环属于刚性连接,浮球随海浪上下运动,外圆环和内圆磁环也随海浪同步运动。摩擦发电的方法:海面发生波动,外圆环相对于底座系统中的滑杆上下运动,外圆环上表面的通孔表面敷设的聚酯纤维薄片层与滑杆外表面敷设的聚二甲基硅氧烷薄片层发生相对运动,当摩擦发生时,聚酯纤维薄片层产生电子,聚二甲基硅氧烷薄片层接收电子,两种材料的表面分别带有极性相反的电荷,由此在两种材料之间产生电势差,驱动电子在外电路中往复流动,从而产生电流;产生的电流经由导线依次进入电流检测器和蓄电器,电流检测器外接一根信号外输线,用于分析实时电流状态,从电流的实时信息中反推出聚酯纤维薄片层与聚二甲基硅氧烷薄片层发生相对运动时产生的摩擦力大小,再将摩擦力大小换算成浮球的位移,用于补偿由于机械摩擦引起的海洋波高测量误差;蓄电器储存的电能一部分用于发射脉冲电流,一部分外输至其他设备。动态监测海洋波高的方法:内圆磁环与底座系统存在垂向的相对位移;内圆磁环表面产生了磁环永久磁场,方向由内圆磁环的内侧面指向外侧面;脉冲电流发射器发射脉冲电流,在波导管周围产生一个安培环形磁场,当安培环形磁场与磁环永久磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应力波脉冲信号,这个应力波脉冲信号以固定的声速传播,并很快被应力波检测器所接收,由于应力波脉冲信号在波导管内的传输时间与应力波检测器之间的距离成正比,通过应力波信号分析器计算出起始脉冲与返回脉冲之间的时间间隔,即可精确地确定某一时刻浮球的高度,也就确定了某一时刻的海面起伏实时状态;再将时间间隔信号外输,就可以在海浪实时状态显示器上得到海面上下位移随时间的变化曲线,从而得到实时波高。The present invention adopts the device for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation to provide a method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation. When the whole device is placed on the sea surface, when the sea surface is not fluctuating, the floating ball is above the sea surface, and the base system and the shell are under the sea surface; when the sea wave occurs, the floating ball will move up and down synchronously with the sea wave, and the base system and the shell are due to the counterweight. Due to the action of the disk, the gravity and buoyancy are equal in magnitude and opposite in direction, so there is a relative displacement between the base system and the shell and the float system; the floating ball, connecting rod, inner magnetic ring, strut and outer ring are rigid connections, and the floating ball follows The waves move up and down, and the outer and inner magnetic rings also move synchronously with the waves. The method of triboelectric power generation: the sea surface fluctuates, the outer ring moves up and down relative to the sliding rod in the base system, the polyester fiber sheet layer laid on the surface of the through hole on the upper surface of the outer ring and the polydimethyl methacrylate laid on the outer surface of the sliding rod The siloxane sheet layers move relative to each other. When friction occurs, the polyester fiber sheet layer generates electrons, and the polydimethylsiloxane sheet layer receives electrons. The surfaces of the two materials are charged with opposite polarities. A potential difference is generated between the two materials, and the electrons are driven to flow back and forth in the external circuit, thereby generating a current; the generated current enters the current detector and the accumulator in turn through the wire, and the current detector is connected to a signal transmission line for real-time analysis. Current state, the friction force generated when the polyester fiber sheet layer and the polydimethylsiloxane sheet layer move relative to each other is deduced from the real-time information of the current, and then the friction force is converted into the displacement of the floating ball, which is used for Compensate for the measurement error of ocean wave height caused by mechanical friction; part of the electrical energy stored in the accumulator is used to transmit pulse current, and part of it is exported to other equipment. The method of dynamic monitoring of ocean wave height: there is a vertical relative displacement between the inner magnetic ring and the base system; a permanent magnetic field of the magnetic ring is generated on the surface of the inner magnetic ring, and the direction is from the inner side of the inner magnetic ring to the outer side; the pulse current transmitter A pulse current is emitted to generate an ampere ring magnetic field around the waveguide. When the ampere ring magnetic field intersects with the permanent magnetic field of the magnetic ring, a stress wave pulse signal will be generated in the waveguide due to the effect of magnetostriction. The speed of sound propagates and is quickly received by the stress wave detector. Since the transmission time of the stress wave pulse signal in the waveguide is proportional to the distance between the stress wave detectors, the stress wave signal analyzer calculates the initial pulse and Returning the time interval between the pulses can accurately determine the height of the float at a certain moment, and also determine the real-time state of the sea surface fluctuation at a certain moment; and then output the time interval signal, it can be displayed on the ocean wave real-time state display. The curve of the displacement of the sea surface up and down with time is obtained, so as to obtain the real-time wave height.
所述的一种动态监测海洋波高并同步实现摩擦发电的装置,有机结合了海浪监测和摩擦发电,二者相辅相成,具有以下优点:The device for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation organically combines ocean wave monitoring and triboelectric power generation, which complement each other and have the following advantages:
1.将原本无效的、损失的、会引起测量误差的机械摩擦用于发电,提高了能量利用率;1. The mechanical friction, which was originally ineffective, lost, and would cause measurement errors, is used for power generation, which improves the energy utilization rate;
2.通过电信号转换,间接地测量了摩擦大小,进而对浮球的位移进行补偿,提高了测量准确度;2. Through electrical signal conversion, the friction size is indirectly measured, and then the displacement of the floating ball is compensated to improve the measurement accuracy;
3.海浪监测模块输出的时间间隔信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。3. The time interval signal output by the wave monitoring module is a real absolute value, not a proportional or amplified signal, so there is no signal drift or change in value, and there is no need for regular re-marking.
附图说明Description of drawings
图1为本发明整体结构示意图Fig. 1 is the overall structure schematic diagram of the present invention
图2为本发明底座系统结构示意图Figure 2 is a schematic diagram of the structure of the base system of the present invention
图3为本发明内、外圆环结构示意图Figure 3 is a schematic diagram of the structure of the inner and outer rings of the present invention
图4为本发明动态监测海洋波高原理图Fig. 4 is the principle diagram of dynamic monitoring ocean wave height of the present invention
图5为本发明摩擦发电原理图Fig. 5 is the principle diagram of friction power generation of the present invention
图6为本发明电流信号传输示意图FIG. 6 is a schematic diagram of current signal transmission in the present invention
其中:1、浮球;2、连杆;3、内圆磁环;4、撑杆;5、外圆环;6、聚酯纤维薄片层;7、外壳;8、配重盘;9、滑杆;10、限位块;11、聚二甲基硅氧烷薄片层;12、电流检测器;13、蓄电器;14、脉冲电流发射器;15、波导管;16、应力波检测器;17、应力波信号分析器;18、消波器。Among them: 1, floating ball; 2, connecting rod; 3, inner magnetic ring; 4, strut; 5, outer ring; 6, polyester fiber sheet layer; 7, shell; 8, counterweight plate; 9, Slide bar; 10. Limiting block; 11. Polydimethylsiloxane sheet layer; 12. Current detector; 13. Electric accumulator; 14. Pulse current transmitter; 15. Waveguide; 16. Stress wave detector ; 17, stress wave signal analyzer; 18, wave suppressor.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式做进一步描述。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.
如图1所示,一种动态监测海洋波高并同步实现摩擦发电的装置垂直于海平面放置,由浮子系统、底座系统和外壳7构成。浮子系统包括一个浮球1、四根连杆2、一个内圆磁环3、四根撑杆4和一个外圆环5。如图3所示,外圆环5的上、下圆环面与海平面平行,外圆环5的内、外侧面与海平面垂直,外圆环5的圆环面沿周向均匀开有三个供滑杆9穿过的通孔,通孔内壁敷设有聚酯纤维薄片层6,聚酯纤维薄片层6连接有导线;外圆环5内侧面沿周向均匀连接有四根撑杆4;内圆磁环3与外圆环5的圆心重合,且两者位于同一平面;内圆磁环3外侧面与外圆环5内侧面周向连接的四根撑杆4的另一端相连;内圆磁环3的圆环面沿周向开有四个供连杆2穿过的通孔;内圆磁环3内侧面敷设有N极磁性材料,外侧面敷设有S极磁性材料;浮球1位于海面上,浮球1下方连接四根垂直海平面布置的连杆2,连杆2的另一端插入内圆磁环3的圆环表面通孔后使用焊接固定。As shown in Figure 1, a device for dynamically monitoring ocean wave heights and synchronously realizing triboelectric power generation is placed perpendicular to the sea level, and consists of a float system, a base system and a
如图2所示,底座系统包括一个配重盘8、三根滑杆9、电能接收模块和海浪监测模块。配重盘8上、下表面与海平面平行,配重盘8上表面开有三个供滑杆9插入固定的盲孔,相邻盲孔间的圆心角为120°;配重盘8上表面的盲孔、滑杆9与外圆环5上的通孔三者在垂直轴线上重合;滑杆9一端插入配重盘8上表面上的盲孔,另一端穿过外圆环5上的通孔,滑杆9顶端与滑杆9中部安装有限位块10,两个限位块10之间的滑杆9外表面敷设有聚二甲基硅氧烷薄片层11,聚二甲基硅氧烷薄片层11连接有导线;外圆环5可以在两个限位块10之间上下滑动。电能接收模块包括一个电流检测器12、一个蓄电器13、信号传输线和导线;电流检测器12和蓄电器13安置在配重盘8上表面;三根滑杆9外表面上的聚二甲基硅氧烷薄片层11与外圆环5通孔表面的聚酯纤维薄片层6相互摩擦产生的电流经导线依次流入电流检测器12、蓄电器13;电流检测器12外接一条信号传输线,蓄电器13接收到的电能一部分用于海浪监测模块发射脉冲电流,剩余的电能外输。海浪监测模块包括一个脉冲电流发射器14、一个应力波检测器16、一个应力波信号分析器17、一个消波器18以及波导管15组成的激励回路;脉冲电流发射器14安置在配重盘8上表面中心位置;应力波检测器16位于脉冲电流发射器14的上方、滑杆9中部限位块10的下方;应力波信号分析器17位于脉冲电流发射器14旁,安置在配重盘8上表面;应力波检测器16与应力波信号分析器17用导线连接,应力波信号分析器17外接一条信号传输线;消波器18、应力波检测器16和脉冲电流发射器14三者由一根平直波导管15串接在一起,消波器18位于滑杆9顶端限位块10上部;波导管15在消波器18上端发生90°的转向,到达滑杆9轴线处时再发生向下的90°转向,而后进入滑杆9内部回接至脉冲电流发射器14,由此形成一个波导管15组成的激励回路。As shown in Figure 2, the base system includes a
外壳7由两个相同的中空塑料质半圆柱体组成,每个半圆柱体上表面开有两个供连杆2穿过的通孔,且通孔内部安装有滑动轴承;半圆柱体的下部贴合于配重盘8上表面,两个半圆柱体对接后通过螺栓连接固定。The
上述的外壳7与连杆2接触部分、外壳7下部与配重盘8上表面贴合部分、外壳7的对接部分和螺栓连接部分均采取密封防水措施。The above-mentioned contact part between the
本发明采用所述的动态监测海洋波高并同步实现摩擦发电的装置提供一种动态监测海洋波高并同步实现摩擦发电的方法。将整个装置置于海面上,海面无波动时,浮球1位于海面之上,底座系统和外壳7位于海面之下;当海浪发生时,浮球1将跟随海浪上下同步运动,底座系统和外壳7由于配重盘8的作用,受到的重力与浮力大小相等方向相反,因而底座系统和外壳7与浮子系统存在相对位移;浮球1、连杆2、内圆磁环3、撑杆4和外圆环5属于刚性连接,浮球1随海浪上下运动,外圆环5和内圆磁环3也随海浪同步运动。如图5所示,摩擦发电的方法:海面发生波动,外圆环5相对于底座系统中的滑杆9上下运动,外圆环5上表面的通孔表面敷设的聚酯纤维薄片层6与滑杆9外表面敷设的聚二甲基硅氧烷薄片层11发生相对运动,当摩擦发生时,聚酯纤维薄片层6产生电子,聚二甲基硅氧烷薄片层11接收电子,两种材料的表面分别带有极性相反的电荷,由此在两种材料之间产生电势差,驱动电子在外电路中往复流动,从而产生电流;如图6所示,产生的电流经由导线依次进入电流检测器12和蓄电器13,电流检测器12外接一根信号外输线,用于分析实时电流状态,从电流的实时信息中反推出聚酯纤维薄片层6与聚二甲基硅氧烷薄片层11发生相对运动时产生的摩擦力大小,再将摩擦力大小换算成浮球1的位移,用于补偿由于机械摩擦引起的海洋波高测量误差;蓄电器13储存的电能一部分用于发射脉冲电流,一部分外输至其他设备。如图4所示,动态监测海洋波高的方法:内圆磁环3与底座系统存在垂向的相对位移;内圆磁环3表面产生了磁环永久磁场,方向由内圆磁环3的内侧面指向外侧面;脉冲电流发射器14发射脉冲电流,在波导管15周围产生一个安培环形磁场,当安培环形磁场与磁环永久磁场相交时,由于磁致伸缩的作用,波导管15内会产生一个应力波脉冲信号,这个应力波脉冲信号以固定的声速传播,并很快被应力波检测器16所接收,由于应力波脉冲信号在波导管15内的传输时间与应力波检测器16之间的距离成正比,通过应力波信号分析器17计算出起始脉冲与返回脉冲之间的时间间隔,即可精确地确定某一时刻浮球1的高度,也就确定了某一时刻的海面起伏实时状态;再将时间间隔信号外输,就可以在海浪实时状态显示器上得到海面上下位移随时间的变化曲线,从而得到实时波高。The present invention adopts the device for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation to provide a method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation. The whole device is placed on the sea surface. When the sea surface has no fluctuations, the floating
实施例:Example:
如图1所示,本装置以底座系统为基础完成安装;首先安装滑杆9中部限位块10;其次安装连杆2、内圆磁环3、撑杆4和外圆环5,滑杆9穿过外圆环5的圆环面上的通孔,内圆磁环3与外圆环5之间通过撑杆4连接,在外圆环5的外侧面使用螺栓固定,连杆2插入内圆磁环3的圆环面通孔使用焊接固定;第三步安装滑杆9顶端限位块10;第四步安装外壳7,连杆2穿过外壳7上表面通孔,外壳7下部与配重盘8上表面贴合,外壳7两部分对接后使用螺栓固定;第五步将浮球1与连杆2使用焊接固定;最后对外壳7与连杆2接触部分、外壳7下部与配重盘8上表面贴合部分、外壳7的对接部分和螺栓连接部分采取密封防水措施。As shown in Figure 1, the device is installed on the basis of the base system; first, install the
安装完毕后,将整个装置置于海面上,海面无波动时,浮球1位于海面之上,底座系统和外壳7位于海面之下;当海浪发生时,浮球1将跟随海浪上下同步运动,底座系统和外壳7由于配重盘8的作用,受到的重力与浮力大小相等方向相反,因而底座系统和外壳7与浮子系统存在相对位移;浮球1、连杆2、内圆磁环3、撑杆4和外圆环5属于刚性连接,浮球1随海浪上下运动,外圆环5和内圆磁环3也随海浪同步运动。摩擦发电的方法:海面发生波动,外圆环5相对于底座系统中的滑杆9上下运动,外圆环5上表面的通孔表面敷设的聚酯纤维薄片层6与滑杆9外表面敷设的聚二甲基硅氧烷薄片层11发生相对运动,当摩擦发生时,聚酯纤维薄片层6产生电子,聚二甲基硅氧烷薄片层11接收电子,两种材料的表面分别带有极性相反的电荷,由此在两种材料之间产生电势差,驱动电子在外电路中往复流动,从而产生电流;产生的电流经由导线依次进入电流检测器12和蓄电器13,电流检测器12外接一根信号外输线,用于分析实时电流状态,从电流的实时信息中反推出聚酯纤维薄片层6与聚二甲基硅氧烷薄片层11发生相对运动时产生的摩擦力大小,再将摩擦力大小换算成浮球1的位移,用于补偿由于机械摩擦引起的海洋波高测量误差;蓄电器13储存的电能一部分用于发射脉冲电流,一部分外输至其他设备。动态监测海洋波高的方法:内圆磁环3与底座系统存在垂向的相对位移;内圆磁环3表面产生了磁环永久磁场,方向由内圆磁环3的内侧面指向外侧面;脉冲电流发射器14发射脉冲电流,在波导管15周围产生一个安培环形磁场,当安培环形磁场与磁环永久磁场相交时,由于磁致伸缩的作用,波导管15内会产生一个应力波脉冲信号,这个应力波脉冲信号以固定的声速传播,并很快被应力波检测器16所接收,由于应力波脉冲信号在波导管15内的传输时间与应力波检测器16之间的距离成正比,通过应力波信号分析器17计算出起始脉冲与返回脉冲之间的时间间隔,即可精确地确定某一时刻浮球1的高度,也就确定了某一时刻的海面起伏实时状态;再将时间间隔信号外输,就可以在海浪实时状态显示器上得到海面上下位移随时间的变化曲线,从而得到实时波高。After installation, place the whole device on the sea surface. When there is no fluctuation in the sea surface, the floating
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810906406.4A CN109029386B (en) | 2018-08-10 | 2018-08-10 | A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810906406.4A CN109029386B (en) | 2018-08-10 | 2018-08-10 | A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109029386A CN109029386A (en) | 2018-12-18 |
CN109029386B true CN109029386B (en) | 2020-07-03 |
Family
ID=64632621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810906406.4A Expired - Fee Related CN109029386B (en) | 2018-08-10 | 2018-08-10 | A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109029386B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111307120B (en) * | 2019-07-22 | 2022-10-21 | 北京纳米能源与系统研究所 | A kind of sensor, measurement system of ocean wave spectrum and measurement method thereof |
CN112144682B (en) * | 2020-09-02 | 2021-08-06 | 大连理工大学 | A self-sensing friction damper |
CN113153612B (en) * | 2021-03-22 | 2022-03-29 | 西南石油大学 | A self-anchored wave energy power generation device |
CN113252235B (en) * | 2021-05-20 | 2022-06-14 | 深圳大学 | A water energy monitoring system and method based on OFDR additive manufacturing |
CN114046220B (en) * | 2021-11-23 | 2024-02-02 | 北京纳米能源与系统研究所 | Power generation system and power generation method |
CN114485578A (en) * | 2022-01-17 | 2022-05-13 | 青岛黄海学院 | Marine ecology monitoring device and working method thereof |
CN115649356A (en) * | 2022-11-07 | 2023-01-31 | 大连海事大学 | A buoy with wave sensors based on triboelectric nanogenerators |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025351B1 (en) * | 1967-04-13 | 1975-08-22 | ||
WO2003098159A1 (en) * | 2002-04-30 | 2003-11-27 | The Johns Hopkins University | Wave measuring buoy and method of calibrating same |
CN108344402A (en) * | 2017-12-14 | 2018-07-31 | 中国航空工业集团公司上海航空测控技术研究所 | A kind of ocean wave high measurement equipment |
CN208291429U (en) * | 2018-05-08 | 2018-12-28 | 西安交通大学 | A kind of ocean monitoring buoy system |
-
2018
- 2018-08-10 CN CN201810906406.4A patent/CN109029386B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5025351B1 (en) * | 1967-04-13 | 1975-08-22 | ||
WO2003098159A1 (en) * | 2002-04-30 | 2003-11-27 | The Johns Hopkins University | Wave measuring buoy and method of calibrating same |
CN108344402A (en) * | 2017-12-14 | 2018-07-31 | 中国航空工业集团公司上海航空测控技术研究所 | A kind of ocean wave high measurement equipment |
CN208291429U (en) * | 2018-05-08 | 2018-12-28 | 西安交通大学 | A kind of ocean monitoring buoy system |
Also Published As
Publication number | Publication date |
---|---|
CN109029386A (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109029386B (en) | A device and method for dynamically monitoring ocean wave height and synchronously realizing triboelectric power generation | |
US9568489B2 (en) | Three-dimensional flow velocity vector, energy and mass gauge | |
CN106768043B (en) | Ocean Multiparameter Profiler | |
CN108444445B (en) | A self-powered inclination sensor based on underwater bubble movement | |
CN111307120B (en) | A kind of sensor, measurement system of ocean wave spectrum and measurement method thereof | |
CN103808406B (en) | Oil-gas pipeline vibration monitoring method and device based on vibrating wire type sensor | |
CN106092271A (en) | A kind of laser liquid-level measurement apparatus and method | |
CN208000117U (en) | A kind of mangneto electrical measurement sedimentometer | |
Pei et al. | Development of a novel Hall element inclinometer for slope displacement monitoring | |
CN107478196A (en) | Geotechnical stratified settlement measurement method and measuring system | |
TW201231938A (en) | Monitoring system and method for riverbed scouring depth and stream speed silt concentration | |
CN206396814U (en) | A kind of novel bridge pile foundation is under water by flushing monitoring device | |
CN210166018U (en) | Subway station foundation pit underground water level real-time supervision device | |
CN103983397A (en) | Three-dimensional sensing measurement system and method based on vector decomposition and synthesis mechanism | |
Zhang et al. | Omnidirectional water wave-driven triboelectric net-zero power smart ocean network: an advanced hardware solution to long-distance target detection | |
Chen et al. | A self-powered wide-range ocean-wave sensor enabled by triboelectric nanogenerators embedded with overrunning clutches | |
An et al. | Detecting local scour using contact image sensors | |
CN108828262A (en) | A kind of wide-range groundwater velocity and direction test device and method | |
CN209765877U (en) | Multi-parameter marine environment simulation device | |
CN202903326U (en) | Oil gas pipeline vibration monitoring device based on vibrating wire type sensor | |
CN208012712U (en) | A kind of mangneto water-level gauge | |
CN113566782A (en) | Automatic monitoring device for layered settlement (lifting) of soil | |
CN205981377U (en) | Laser liquid -level measuring device | |
CN211955543U (en) | Device suitable for flow velocity measurement | |
CN205620560U (en) | Super shallow sea territory seabed high accuracy gravity measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200703 Termination date: 20210810 |