CN109023005B - A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ - Google Patents
A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ Download PDFInfo
- Publication number
- CN109023005B CN109023005B CN201811096940.XA CN201811096940A CN109023005B CN 109023005 B CN109023005 B CN 109023005B CN 201811096940 A CN201811096940 A CN 201811096940A CN 109023005 B CN109023005 B CN 109023005B
- Authority
- CN
- China
- Prior art keywords
- alloy
- soft magnetic
- entropy alloy
- bcc
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 93
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 91
- 230000005291 magnetic effect Effects 0.000 title claims description 45
- 239000002105 nanoparticle Substances 0.000 claims abstract description 18
- 230000005415 magnetization Effects 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 27
- 230000001427 coherent effect Effects 0.000 claims description 10
- 230000005294 ferromagnetic effect Effects 0.000 claims description 9
- 238000013461 design Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000005275 alloying Methods 0.000 abstract description 3
- 230000005307 ferromagnetism Effects 0.000 abstract description 2
- 230000005389 magnetism Effects 0.000 abstract 2
- 239000004615 ingredient Substances 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 7
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 230000003993 interaction Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 229910017060 Fe Cr Inorganic materials 0.000 description 3
- 229910002544 Fe-Cr Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001325 element alloy Inorganic materials 0.000 description 2
- 229910001004 magnetic alloy Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical group Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- 229910001035 Soft ferrite Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于新材料技术领域,涉及一种新型耐600℃高温的软磁高熵合金,尤其涉及一种具有BCC纳米粒子共格析出、耐600℃高温的新型多主元B2基软磁高熵合金。The invention belongs to the technical field of new materials, and relates to a novel soft magnetic high-entropy alloy resistant to 600°C high temperature, in particular to a novel multi-principal B2-based soft magnetic high-entropy alloy with coherent precipitation of BCC nanoparticles and resistant to 600°C high temperature alloy.
背景技术Background technique
软磁材料由于具有高的饱和磁化强度和低的矫顽力,能极大提高电磁场的转换效率,并减少电能在长途传送中的损失,是国民经济中重要的基础材料。软磁材料不仅满足了传统工业的发展需求,而且还在采用电驱动装置和电子控制装置的新兴科技、电子信息技术中发挥着重要作用。随着材料的发展,金属系软磁材料、软磁铁氧体材料、非晶及纳米晶软磁材料、以及软磁复合材料相继问世。传统的软磁合金设计方法是以一种或者两种元素为主要组元,通过添加其他微量合金化元素来调整合金的组织和结构,最后采用轧制和热处理技术进一步提升软磁性能,具有制备工艺复杂、成本高、且高温软磁性能差等缺点。Due to its high saturation magnetization and low coercive force, soft magnetic materials can greatly improve the conversion efficiency of electromagnetic fields and reduce the loss of electric energy in long-distance transmission. They are important basic materials in the national economy. Soft magnetic materials not only meet the development needs of traditional industries, but also play an important role in emerging technologies and electronic information technologies that use electric drive devices and electronic control devices. With the development of materials, metal-based soft magnetic materials, soft ferrite materials, amorphous and nanocrystalline soft magnetic materials, and soft magnetic composite materials have come out one after another. The traditional soft magnetic alloy design method is to use one or two elements as the main components, and adjust the microstructure and structure of the alloy by adding other trace alloying elements, and finally adopt rolling and heat treatment technology to further improve the soft magnetic properties, which has the advantages of preparation Disadvantages such as complex process, high cost, and poor high-temperature soft magnetic properties.
高熵合金,或称为多主元合金,特色在于可同时存在多个主要组成元素。高熵合金最初指合金由五种或者五种以上元素按照等摩尔或近等摩尔比例混合,且每种元素含量都在5%~35%之间。随着高熵合金的不断发展,主要组元数可缩少至四元,混合比例也可放宽至非等摩尔比。这种多主元混合带来的高熵效应使得合金更易于形成简单结构,如体心立方(BCC)、面心立方(FCC)、密排六方(HCP)固溶体及其有序超结构(B2-NiAl和L12-Ni3Al等),是一类新型的成分复杂合金,有望发展成为适用于极端环境中的新型高性能工程/功能合金材料,并为合金组织设计提供了新的成分平台。在常规高熵合金AlxNiCoFeCr系列中,随着Al含量x的增多,合金逐渐从单相FCC转变为双相(FCC+BCC/B2),最终为单相BCC/B2结构;其中,FCC相中富集Fe和Co元素,BCC相中富集Fe、Co和Cr元素,B2相中富Al、Ni和Co元素。按照元素磁性分类,Fe、Co和Ni是铁磁性元素,Cr是反铁磁性元素,Al是顺磁性元素。从相结构的磁性角度,FCC相本身磁性很弱;BCC相通常表现为铁磁性。根据FINEMET软磁合金(Fe73.5Si13.5B9Nb3Cu1,at.%)可知,只有当纳米级铁磁性BCC粒子均匀分布在基体上时,合金才表现出优异的软磁性能;并且BCC纳米粒子尺寸越小,合金的矫顽力就会越小。事实上,在大多数情况下,当BCC与有序B2相共存时,通常形成编织网状的调幅分解组织,这会降低合金软磁性能(低的饱和磁化强度和高的矫顽力)。调幅分解组织的形成是由于BCC和B2相的成分差异较大造成的,使得两相之间的点阵常数错配较大。在简单合金体系中,很难调整BCC和B2相的点阵错配,而在多组元高熵体系中,有望通过改变多个主元之间的摩尔比例,获得合适的BCC和B2相的点阵错配,从而编织网状的调幅分解组织转变为BCC纳米粒子在B2基体上析出的共格组织。目前为止,还未具有BCC纳米粒子共格析出的B2基软磁高熵合金被报道。High-entropy alloys, or multi-principal alloys, are characterized by the simultaneous presence of multiple principal constituent elements. A high-entropy alloy originally refers to an alloy composed of five or more elements mixed in an equimolar or nearly equimolar ratio, and the content of each element is between 5% and 35%. With the continuous development of high-entropy alloys, the number of main components can be reduced to quaternary, and the mixing ratio can also be relaxed to a non-equimolar ratio. The high entropy effect brought about by this multi-principal mixing makes alloys easier to form simple structures, such as body-centered cubic (BCC), face-centered cubic (FCC), hexagonal close-packed (HCP) solid solutions and their ordered superstructures (B2 -NiAl and L1 2 -Ni 3 Al, etc.), is a new type of alloy with complex composition, which is expected to develop into a new high-performance engineering/functional alloy material suitable for extreme environments, and provides a new composition platform for alloy structure design . In the conventional high-entropy alloy AlxNiCoFeCr series, with the increase of Al content x, the alloy gradually transforms from a single-phase FCC to a dual-phase (FCC+BCC/B2), and finally a single-phase BCC/B2 structure; among them, the FCC phase is rich in Fe and Co elements are collected, Fe, Co and Cr elements are enriched in the BCC phase, and Al, Ni and Co elements are enriched in the B2 phase. According to the magnetic classification of elements, Fe, Co and Ni are ferromagnetic elements, Cr is an antiferromagnetic element, and Al is a paramagnetic element. From the magnetic point of view of the phase structure, the FCC phase itself is very weakly magnetic; the BCC phase usually exhibits ferromagnetism. According to FINEMET soft magnetic alloy (Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 , at.%), only when the nano-scale ferromagnetic BCC particles are uniformly distributed on the substrate, the alloy exhibits excellent soft magnetic properties; and BCC The smaller the size of the nanoparticles, the lower the coercive force of the alloy. In fact, in most cases, when BCC coexists with the ordered B2 phase, a woven network-like AM decomposition structure is usually formed, which reduces the soft magnetic properties of the alloy (low saturation magnetization and high coercive force). The formation of the AM decomposition structure is caused by the large composition difference between the BCC and B2 phases, which makes the lattice constant mismatch between the two phases large. In a simple alloy system, it is difficult to adjust the lattice mismatch of BCC and B2 phase, but in a multi-component high-entropy system, it is expected to obtain a suitable BCC and B2 phase by changing the molar ratio between multiple principal components. Lattice mismatch, so that the woven network-like amplitude modulation decomposition structure is transformed into a coherent structure in which BCC nanoparticles are precipitated on the B2 matrix. So far, no B2-based soft magnetic high-entropy alloys with coherent precipitation of BCC nanoparticles have been reported.
发明内容Contents of the invention
本发明的目的是针对在B2基合金体系中难于获得具有体心立方铁磁性BCC纳米粒子共格析出的微观组织形貌,提供一种具有BCC纳米粒子共格析出、且耐600℃高温的新型多主元B2基软磁高熵合金。The purpose of the present invention is to provide a new type of BCC nanoparticle coherent precipitation and high temperature resistance of 600 ° C for the microstructure morphology that is difficult to obtain in the B2-based alloy system with coherent precipitation of body-centered cubic ferromagnetic BCC nanoparticles. Multi-principal component B2-based soft magnetic high-entropy alloys.
为了达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种新型耐600℃高温的软磁高熵合金,所述的新型耐600℃高温的软磁高熵合金包括Fe、Co、Ni、Cr、和Al元素,其合金成分的原子百分比表达为AlxNiyCozFemCrn,其中,x=10~25%,y+z=35~55%,m+n=25~45%,x+y+z+m+n=100%。A new type of soft magnetic high-entropy alloy resistant to 600°C high temperature, said new soft magnetic high-entropy alloy resistant to 600°C high temperature includes Fe, Co, Ni, Cr, and Al elements, and the atomic percentage of its alloy composition is expressed as Al x Ni y Co z Fe m Cr n , where x=10-25%, y+z=35-55%, m+n=25-45%, x+y+z+m+n=100%.
此外,还需满足下述(a)和(b)群,则对应含有的元素能够更易获得新型耐600℃高温的软磁高熵合金,本发明更为优选。In addition, the following groups (a) and (b) need to be satisfied, then the corresponding elements contained can more easily obtain a new type of soft magnetic high-entropy alloy resistant to high temperatures of 600°C, and the present invention is more preferred.
(a)Ni元素原子百分比为y=0~5%;(a) Ni element atomic percentage is y=0~5%;
(b)Fe元素与Cr元素的原子百分比的比例为0.5≤m/n≤5。(b) The atomic percent ratio of the Fe element to the Cr element is 0.5≤m/n≤5.
此外,所述的新型耐600℃高温的软磁高熵合金具有特殊的共格组织形貌:在有序B2相基体上共格析出铁磁性BCC纳米粒子,从而最大程度地提升合金软磁性能。In addition, the new 600°C high-temperature-resistant soft magnetic high-entropy alloy has a special coherent structure morphology: ferromagnetic BCC nanoparticles are coherently precipitated on the ordered B2 phase matrix, thereby maximizing the soft magnetic properties of the alloy .
实现上述技术方案的构思是:首先将过渡金属TMs(Ni,Co,Fe,Cr)分成两类:B2稳定元素(Ni,Co)和BCC稳定元素(Fe,Cr);然后利用申请人的“团簇+连接原子”结构模型设计Al-Ni-Co-Fe-Cr高熵合金成分。“团簇+连接原子”模型将固溶体结构分为“团簇”和“连接原子”两部分,其中“团簇”是以某个原子为中心形成的最近邻配位多面体,“连接原子”是置于团簇堆垛间隙位置的原子,通常位于团簇的下一近邻壳层。例如,在BCC结构中,团簇是配位数为14的菱形十二面体,由最近邻壳层8个原子和次近邻壳层6个原子构成。这样就可确定出一个简单团簇成分式[团簇](连接原子)X,即一个团簇与若干X个连接原子相匹配。在本申请中涉及到的Al-Ni-Co-Fe-Cr五元高熵合金体系中,由于Al与过渡金属元素TMs都具有较强的交互作用,且过渡金属元素TMs之间的交互作用较弱,故可将所有TMs元素平均化为一个虚拟元素M,即“平均原子M”。由此Al-Ni-Co-Fe-Cr多元合金体系可简化为Al-M伪二元体系,其中Al为溶质原子,M为溶剂基体原子。当采用团簇成分式方法设计合金时,与溶剂M具有强交互作用的溶质元素优先占据团簇中心位置,连接原子通常与溶质具有弱交互作用,即在BCC结构中会形成[Al-M14]团簇;需要指出,当Al含量过高时,Al也会占据连接原子位置,从而形成[Al-M14](Al,M)X团簇式,其中X为连接原子的个数。在以上成分式中,平均原子M为多个不同比例混合的过渡金属元素TMs的组合,因此可调整过渡金属元素TMs的含量来改变M,Al元素的含量由连接原子个数X的变化进行调整,从而形成最后的多组元合金成分的原子百分比(at.%)表达,为AlxNiyCozFemCrn。根据这种团簇结构单元给定的成分式揭示了工业合金的成分与结构及性能的关联,为实施合金成分设计与优化提供了一种全新思路。The idea of realizing the above-mentioned technical scheme is: firstly divide the transition metal TMs (Ni, Co, Fe, Cr) into two categories: B2 stable elements (Ni, Co) and BCC stable elements (Fe, Cr); then use the applicant's " Al-Ni-Co-Fe-Cr high-entropy alloy composition was designed using the "cluster + connected atom" structure model. The "cluster + connecting atom" model divides the solid solution structure into two parts: "cluster" and "connecting atom". The "cluster" is the nearest neighbor coordination polyhedron formed with an atom as the center, and the "connecting atom" is Atoms placed in the interstitial positions of the cluster stacking, usually in the next nearest neighbor shell of the cluster. For example, in the BCC structure, the cluster is a rhombic dodecahedron with a coordination number of 14, consisting of 8 atoms in the nearest neighbor shell and 6 atoms in the second nearest neighbor shell. In this way, a simple cluster composition formula [cluster] (connecting atoms) X can be determined, that is, a cluster matches several X connecting atoms. In the Al-Ni-Co-Fe-Cr five-element high-entropy alloy system involved in this application, since Al and the transition metal element TMs all have strong interaction, and the interaction between the transition metal element TMs is relatively low. Weak, so all TMs elements can be averaged into a virtual element M, that is, "average atom M". Thus the Al-Ni-Co-Fe-Cr multi-element alloy system can be simplified into an Al-M pseudo-binary system, where Al is the solute atom and M is the solvent matrix atom. When the alloy is designed by the cluster composition method, the solute elements that have a strong interaction with the solvent M preferentially occupy the central position of the cluster, and the connecting atoms usually have a weak interaction with the solute, that is, [Al-M 14 ] cluster; it should be pointed out that when the Al content is too high, Al will also occupy the position of the connecting atoms, thus forming a [Al-M 14 ](Al,M) X cluster formula, where X is the number of connecting atoms. In the above composition formula, the average atom M is a combination of multiple transition metal elements TMs mixed in different proportions, so the content of transition metal elements TMs can be adjusted to change M, and the content of Al elements is adjusted by the change in the number of connected atoms X , so as to form the final multi-element alloy composition atomic percentage (at.%) expression, Al x Ni y Co z Fe m Cr n . According to the given composition formula of this cluster structure unit, it reveals the relationship between the composition, structure and performance of industrial alloys, and provides a new way of thinking for the implementation of alloy composition design and optimization.
利用团簇成分式方法设计多主元高熵合金大大提高了研发高性能合金的效率,但是在B2基体上共格析出BCC纳米粒子还需要另外两个约束条件。对于B2相而言,本申请中所涉及的Ni和Co元素都易与Al元素形成B2相,元素Fe、Co和Cr为BCC相的主要形成元素。其中Ni和Al的交互作用更强,当Ni的含量过多时,Ni和Al会优先形成B2相,导致Co元素扩散到BCC相中使得BCC成为基体。所以本申请中为了保证B2为基体相,需严格控制Ni元素的含量,从而使得Co和Al优先形成B2相。同时为了保证本申请合金具有更加优异的软磁性能,需要确保BCC纳米析出粒子中铁磁性元素的含量,即要保证Fe元素的含量。因此,本申请进一步限定了Ni、Fe和Cr元素的原子百分比含量y、m和n,形成以下两个条件,为,(a)Ni元素原子百分比y=0~5%;(b)Fe元素与Cr元素的原子百分比的比例0.5≤m/n≤5。Using the cluster composition method to design multi-principal high-entropy alloys has greatly improved the efficiency of developing high-performance alloys, but the coherent precipitation of BCC nanoparticles on the B2 matrix requires two other constraints. For the B2 phase, the Ni and Co elements involved in this application are easy to form the B2 phase with the Al element, and the elements Fe, Co and Cr are the main forming elements of the BCC phase. Among them, the interaction between Ni and Al is stronger. When the content of Ni is too much, Ni and Al will preferentially form the B2 phase, which will cause the Co element to diffuse into the BCC phase and make BCC a matrix. Therefore, in order to ensure that B2 is the matrix phase in this application, the content of Ni element needs to be strictly controlled, so that Co and Al preferentially form the B2 phase. At the same time, in order to ensure that the alloy of the present application has more excellent soft magnetic properties, it is necessary to ensure the content of ferromagnetic elements in the BCC nano-precipitated particles, that is, to ensure the content of Fe element. Therefore, the application further defines the atomic percentage content y, m and n of Ni, Fe and Cr elements, forming the following two conditions, as, (a) Ni element atomic percentage y=0~5%; (b) Fe element The ratio to the atomic percentage of the Cr element is 0.5≤m/n≤5.
本发明的制备方法如下述:采用高纯度组元原料根据质量百分比进行配料;在电弧熔炼炉的水冷铜坩埚内放入配制好的15g混合料,然后在氩气保护氛围下采用非自耗电弧熔炼法进行熔炼,注意至少5次反复熔炼以保证得到成分均匀的合金锭;再将熔炼均匀的合金锭熔化,并利用铜模吸铸工艺将熔体吸入圆柱形铜模型腔中,得到直径为6mm的棒状试样。The preparation method of the present invention is as follows: high-purity component raw materials are used for batching according to mass percentage; 15g of the prepared mixture is placed in the water-cooled copper crucible of the electric arc melting furnace, and then the non-consumable electric The arc melting method is used for smelting, and attention should be paid to repeated smelting at least 5 times to ensure that the alloy ingot with uniform composition is obtained; then the evenly smelted alloy ingot is melted, and the melt is sucked into the cylindrical copper mold cavity by the copper mold suction casting process, and the diameter is obtained. It is a rod-shaped sample of 6mm.
利用金相显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD,Cu Kα辐射,λ=0.15406nm)检测合金组织和结构;利用震动样品磁强计(VSM)测试室温和高温磁滞回线。由此确定出本发明为上述的一种新型耐600℃高温的软磁高熵合金。合金成分的原子百分比表达为AlxNiyCozFemCrn,其中,x=10~25%,y+z=35~55%,m+n=25~45%,x+y+z+m+n=100%。涉及到的上述一种耐高温软磁高熵合金材料的性能指标为:室温饱和磁化强度MS=90~150emu/g,矫顽力HC=1~15Oe;600℃时饱和磁化强度MS=70~130emu/g,矫顽力HC=2~25Oe。Use metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD, Cu K α radiation, λ=0.15406nm) to detect alloy structure and structure; The room temperature and high temperature hysteresis loops are tested by VSM. Therefore, it is determined that the present invention is the above-mentioned novel soft magnetic high-entropy alloy resistant to high temperatures of 600°C. The atomic percentage of the alloy composition is expressed as Al x Ni y Co z Fe m Cr n , where x=10~25%, y+z=35~55%, m+n=25~45%, x+y+z +m+n=100%. The performance index of the above-mentioned high-temperature-resistant soft magnetic high-entropy alloy material involved is: room temperature saturation magnetization M S =90-150emu/g, coercive force H C =1-15Oe; saturation magnetization M S at 600°C =70~130emu/g, coercive force H C =2~25Oe.
与现有技术相比,本发明的优点在于:本发明是根据申请人自行研发的团簇成分式方法设计并发展出的一种新型耐600℃高温的软磁高熵合金,通过改变Al含量和过渡金属TMs比例来调整BCC/B2相的点阵错配,从而实现了对B2基体上析出BCC纳米粒子组织的调控,并建立了成分调控准则,屏蔽了目前“炒菜式”的繁琐的经验化合金设计方法;有效改善B2基高熵合金的软磁性能,由于BCC和B2相在室温和高温下都保持了良好的共格关系,且具有合适的点阵错配,致使富Fe/Co铁磁性元素的BCC纳米粒子在B2基体上析出,使得合金在室温和高温下均具有优异的软磁性能,最大程度地提升合金饱和磁化强度,并降低矫顽力,从而以多主元合金化模式发展出B2基软磁高熵合金;由于铁磁性BCC纳米粒子在B2基体上共格析出,使得BCC纳米粒子不易长大,故这种共格组织具有优异的高温组织稳定性,从而使得合金在600℃高温环境中仍能够保持良好的软磁性能,从而得到一种新型耐600℃高温的软磁高熵合金。其材料典型性能指标为:系列合金室温饱和磁化强度MS=90~150emu/g,矫顽力HC=1~15Oe;600℃时饱和磁化强度MS=70~130emu/g,矫顽力HC=2~25Oe。Compared with the prior art, the present invention has the advantages that: the present invention is a new type of soft magnetic high-entropy alloy designed and developed based on the cluster composition formula method developed by the applicant itself. By changing the Al content Adjust the lattice mismatch of the BCC/B2 phase with the ratio of transition metal TMs, so as to realize the regulation of the structure of BCC nanoparticles precipitated on the B2 matrix, and establish a composition control criterion, which shields the current "fried dishes" cumbersome experience Compound alloy design method; effectively improve the soft magnetic properties of B2-based high-entropy alloys, because BCC and B2 phases maintain a good coherent relationship at room temperature and high temperature, and have suitable lattice mismatches, resulting in Fe/Co-rich The BCC nanoparticles of ferromagnetic elements are precipitated on the B2 matrix, which makes the alloy have excellent soft magnetic properties at room temperature and high temperature, maximizes the saturation magnetization of the alloy, and reduces the coercive force, thereby alloying with multi-principal elements The B2-based soft magnetic high-entropy alloy was developed in the model; since the ferromagnetic BCC nanoparticles are coherently precipitated on the B2 matrix, the BCC nanoparticles are not easy to grow, so this coherent structure has excellent high-temperature structural stability, so that the alloy It can still maintain good soft magnetic properties in a high-temperature environment of 600 ° C, thereby obtaining a new type of soft magnetic high-entropy alloy resistant to 600 ° C high temperature. The typical performance indicators of its materials are: series alloys at room temperature saturation magnetization M S =90~150emu/g, coercivity H C =1~15Oe; saturation magnetization M S =70~130emu/g at 600°C, coercivity Hc = 2 to 25Oe .
本发明的效果和益处是:①通过合金设计,使得合金的组元元素添加含量配比合理,从而实现了一种新型耐600℃高温的软磁高熵合金;②合金的制备工艺简单,采用真空电弧熔炼即可;③具有铁磁性BCC纳米粒子在B2基体上共格析出的组织使得高熵合金表现出优异的软磁性能。The effects and benefits of the present invention are: ①Through the design of the alloy, the addition content ratio of the constituent elements of the alloy is reasonable, thereby realizing a new type of soft magnetic high-entropy alloy resistant to 600°C high temperature; ②The preparation process of the alloy is simple, using Vacuum arc melting is enough; ③The microstructure with ferromagnetic BCC nanoparticles coherently precipitated on the B2 matrix makes the high-entropy alloy exhibit excellent soft magnetic properties.
附图说明Description of drawings
图1为实施例1制备的Al17.65Co47.06Fe17.65Cr17.65(at.%)合金的TEM组织形貌图,深色BCC纳米粒子(直径d~10nm)共格析出在亮色B2基体上;Fig. 1 is the TEM micrograph of the Al 17.65 Co 47.06 Fe 17.65 Cr 17.65 (at.%) alloy prepared in Example 1, dark BCC nanoparticles (diameter d ~ 10nm) coherently precipitated on the bright color B2 substrate;
图2为实施例1制备的Al17.65Co47.06Fe17.65Cr17.65(at.%)合金的磁滞回线图,图中横坐标为施加磁场,纵坐标为磁化强度;Fig. 2 is the hysteresis loop diagram of the Al 17.65 Co 47.06 Fe 17.65 Cr 17.65 (at.%) alloy prepared in Example 1, in which the abscissa is the applied magnetic field, and the ordinate is the magnetization;
图3为实施例1制备的Al17.65Co47.06Fe17.65Cr17.65(at.%)合金的矫顽力图,图中横坐标为施加磁场,纵坐标为磁化强度。Fig. 3 is a coercivity diagram of the Al 17.65 Co 47.06 Fe 17.65 Cr 17.65 (at.%) alloy prepared in Example 1, in which the abscissa in the figure is the applied magnetic field, and the ordinate is the magnetization.
具体实施方式Detailed ways
以下结合技术方案详细说明本发明的具体实施方式。The specific implementation manners of the present invention will be described in detail below in conjunction with the technical solutions.
实施例1:Al17.65Co47.06Fe17.65Cr17.65(at.%)合金Example 1: Al 17.65 Co 47.06 Fe 17.65 Cr 17.65 (at.%) alloy
步骤一:合金制备Step 1: Alloy Preparation
一种新型耐600℃高温的软磁高熵合金Al17.65Co47.06Fe17.65Cr17.65(at.%)。采用高纯度组元原料,元素按质量百分比进行配料,为Al9.24Co53.82Fe20.18Cr17.81(wt.%)。在电弧熔炼炉的水冷铜坩埚内放入配制好的15g混合料,然后在氩气保护氛围下采用非自耗电弧熔炼法进行熔炼,注意至少5次反复熔炼以保证得到成分均匀的合金锭;再将熔炼均匀的合金锭熔化,并利用铜模吸铸工艺将熔体吸入圆柱形铜模型腔中,得到直径为6mm的棒状试样。A new type of soft magnetic high-entropy alloy Al 17.65 Co 47.06 Fe 17.65 Cr 17.65 (at.%) resistant to high temperature of 600°C. High-purity component raw materials are used, and the elements are dosed according to mass percentage, which is Al 9.24 Co 53.82 Fe 20.18 Cr 17.81 (wt.%). Put 15g of the prepared mixture into the water-cooled copper crucible of the arc melting furnace, and then use the non-consumable arc melting method to melt in the argon protective atmosphere, pay attention to repeated melting at least 5 times to ensure that the alloy ingot with uniform composition is obtained ; Melt the evenly smelted alloy ingot, and use the copper mold suction casting process to suck the melt into the cylindrical copper mold cavity to obtain a rod-shaped sample with a diameter of 6mm.
步骤二:合金组织结构和磁性能测试Step 2: Alloy structure and magnetic properties test
利用OM、SEM、TEM和XRD检测稳定化处理后合金组织和结构,结果显示本发明的合金具有特定的纳米析出组织:BCC纳米粒子共格析出在有序相B2基体中,见附图1;利用震动样品磁强计(VSM)测试磁滞回线,室温饱和磁化强度MS=110emu/g,矫顽力HC=4Oe;600℃饱和磁化强度MS=102emu/g,矫顽力HC=7Oe。Utilize OM, SEM, TEM and XRD to detect the alloy microstructure and structure after the stabilization treatment, the results show that the alloy of the present invention has a specific nano-precipitation structure: BCC nanoparticles are coherently precipitated in the ordered phase B2 matrix, see accompanying drawing 1; Using a vibrating sample magnetometer (VSM) to test the hysteresis loop, the room temperature saturation magnetization M S =110emu/g, the coercive force H C =4Oe; the 600°C saturation magnetization M S =102emu/g, the coercive force H C = 7Oe.
同时,下述表1中所示的一种新型耐600℃高温的软磁高熵合金No.1~21的化学成分均与此成分来源相同。At the same time, the chemical composition of a new 600°C high-temperature-resistant soft magnetic high-entropy alloy No. 1-21 shown in Table 1 below is the same as the source of this composition.
实施例2:Al18.75Ni1.75Co43.50Fe24.00Cr12.00(at.%)合金Example 2: Al 18.75 Ni 1.75 Co 43.50 Fe 24.00 Cr 12.00 (at.%) alloy
步骤一:合金制备Step 1: Alloy Preparation
本发明的一种新型耐600℃高温的软磁高熵合金Al18.75Ni1.75Co43.50Fe24.00Cr12.00(at.%)合金。该高熵合金采用高纯度组元原料,元素按质量百分比进行配料,Al9.96Ni2.02Co50.50Fe26.40Cr12.29(wt.%)。在电弧熔炼炉的水冷铜坩埚内放入配制好的15g混合料,然后在氩气保护氛围下采用非自耗电弧熔炼法进行熔炼,注意至少5次反复熔炼以保证得到成分均匀的合金锭;再将熔炼均匀的合金锭熔化,并利用铜模吸铸工艺将熔体吸入圆柱形铜模型腔中,得到直径为6mm的棒状试样。The invention relates to a novel soft magnetic high-entropy alloy Al 18.75 Ni 1.75 Co 43.50 Fe 24.00 Cr 12.00 (at.%) alloy resistant to a high temperature of 600°C. The high-entropy alloy uses high-purity component raw materials, and the elements are dosed according to mass percentage, Al 9.96 Ni 2.02 Co 50.50 Fe 26.40 Cr 12.29 (wt.%). Put 15g of the prepared mixture into the water-cooled copper crucible of the arc melting furnace, and then use the non-consumable arc melting method to melt in the argon protective atmosphere, pay attention to repeated melting at least 5 times to ensure that the alloy ingot with uniform composition is obtained ; Melt the evenly smelted alloy ingot, and use the copper mold suction casting process to suck the melt into the cylindrical copper mold cavity to obtain a rod-shaped sample with a diameter of 6mm.
步骤二:合金组织结构和磁性能测试Step 2: Alloy structure and magnetic properties test
利用OM、SEM、TEM和XRD检测稳定化处理后合金组织和结构,结果显示本发明的合金具有特定的纳米析出组织:BCC纳米粒子共格析出在有序相B2基体中;利用震动样品磁强计(VSM)测试磁滞回线,室温饱和磁化强度MS=118emu/g,矫顽力HC=3Oe;600℃饱和磁化强度MS=112emu/g,矫顽力HC=6Oe。Utilize OM, SEM, TEM and XRD to detect the alloy microstructure and structure after the stabilization treatment, and the results show that the alloy of the present invention has a specific nano-precipitation structure: BCC nanoparticles are coherently precipitated in the ordered phase B2 matrix; The hysteresis loop was tested by VSM, the saturation magnetization M S =118emu/g at room temperature, the coercive force H C =3Oe; the saturation magnetization M S =112emu/g at 600°C, and the coercive force H C =6Oe.
同时,下述表1中所示的新型耐600℃高温的软磁高熵合金No.1~21的化学成分均与此成分来源相同。如上所述,可较好地实现发明。At the same time, the chemical components of the new 600°C high-temperature-resistant soft magnetic high-entropy alloys No. 1-21 shown in Table 1 below are all from the same source. As described above, the invention can be preferably carried out.
还有,下述表1中的化学成分组成均属于一种新型耐600℃高温的软磁高熵合金。但由本专利设计的一种新型耐600℃高温的软磁高熵合金成分并不限于此表。其中“-”表示没有添加该元素。In addition, the chemical composition in the following Table 1 belongs to a new type of soft magnetic high-entropy alloy resistant to high temperature of 600°C. However, the composition of a new soft magnetic high-entropy alloy designed by this patent is not limited to this list. Among them, "-" indicates that the element is not added.
表1Table 1
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。The above-mentioned embodiment only expresses the implementation mode of the present invention, but can not therefore be interpreted as the limitation of the scope of the patent of the present invention, it should be pointed out that, for those skilled in the art, under the premise of not departing from the concept of the present invention, Several modifications and improvements can also be made, all of which belong to the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811096940.XA CN109023005B (en) | 2018-09-20 | 2018-09-20 | A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811096940.XA CN109023005B (en) | 2018-09-20 | 2018-09-20 | A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109023005A CN109023005A (en) | 2018-12-18 |
CN109023005B true CN109023005B (en) | 2019-08-09 |
Family
ID=64616988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811096940.XA Active CN109023005B (en) | 2018-09-20 | 2018-09-20 | A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109023005B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110172628A (en) * | 2019-04-18 | 2019-08-27 | 中北大学 | A kind of preparation method of the good aluminium ferro-cobalt nickel chromium triangle high-entropy alloy of corrosion resistance |
CN110093547A (en) * | 2019-05-08 | 2019-08-06 | 中北大学 | A kind of preparation method of large volume alnico siderochrome high-entropy alloy |
CN111607749B (en) * | 2020-06-17 | 2021-06-04 | 大连理工大学 | Iron-based superalloy precipitated by cubic B2 nanoparticles in coherent manner and used at high temperature of 700 DEG C |
CN114457273B (en) * | 2022-02-15 | 2022-09-02 | 大连理工大学 | Corrosion-resistant soft magnetic high-entropy alloy and preparation method thereof |
CN114807720B (en) * | 2022-04-18 | 2024-01-30 | 贵州大学 | High-entropy alloy coating for repairing phosphoric acid reaction tank stirring paddle blade resistant to strong acid erosion and preparation method thereof |
CN115505812B (en) * | 2022-09-16 | 2023-07-28 | 华东理工大学 | A kind of soft magnetic medium entropy alloy and its preparation method and application |
CN115747607B (en) * | 2023-01-10 | 2023-04-14 | 西安稀有金属材料研究院有限公司 | High-entropy alloy sheet for fiber metal laminate and preparation method thereof |
CN116445790B (en) * | 2023-03-17 | 2024-07-16 | 中国科学院宁波材料技术与工程研究所 | Soft magnetic high-entropy alloy, soft magnetic composite material prepared from soft magnetic high-entropy alloy and preparation method of soft magnetic composite material |
CN117626091A (en) * | 2023-12-01 | 2024-03-01 | 大连理工大学 | A kind of soft magnetic high entropy alloy with high thermal stability and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104372230A (en) * | 2014-10-15 | 2015-02-25 | 华南理工大学 | High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof |
CN104550901A (en) * | 2014-11-25 | 2015-04-29 | 沈阳工业大学 | Powder for used in nickel single-element-based alloy surface laser high-entropy alloying and preparation process |
CN106041031A (en) * | 2016-07-29 | 2016-10-26 | 河海大学常州校区 | Preparation method of high-entropy alloy coating layer on surface of casting |
CN107557645A (en) * | 2017-10-17 | 2018-01-09 | 大连理工大学 | A kind of high-strength high entropy high temperature alloy of BCC bases separated out with cubic morphology nano-particle coherence |
CN108326427A (en) * | 2018-03-09 | 2018-07-27 | 石家庄铁道大学 | A kind of method of high-entropy alloy twin arc fuse collaboration increasing material manufacturing |
CN108380892A (en) * | 2018-04-03 | 2018-08-10 | 武汉理工大学 | A kind of ceramics/high-entropy alloy laminated material and preparation method thereof |
CN108950343A (en) * | 2018-08-01 | 2018-12-07 | 四川理工学院 | A kind of WC based hard alloy material and preparation method thereof based on high-entropy alloy |
CN109252081A (en) * | 2018-10-31 | 2019-01-22 | 华南理工大学 | A kind of high-entropy alloy Binder Phase ultrafine tungsten carbide hard alloy and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH073369A (en) * | 1993-04-21 | 1995-01-06 | Sumitomo Metal Ind Ltd | Hydrogen-embrittlement-resistant high Ni-based alloy and method for producing the same |
-
2018
- 2018-09-20 CN CN201811096940.XA patent/CN109023005B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104372230A (en) * | 2014-10-15 | 2015-02-25 | 华南理工大学 | High-strength high-toughness ultrafine-grained high-entropy alloy and preparation method thereof |
CN104550901A (en) * | 2014-11-25 | 2015-04-29 | 沈阳工业大学 | Powder for used in nickel single-element-based alloy surface laser high-entropy alloying and preparation process |
CN106041031A (en) * | 2016-07-29 | 2016-10-26 | 河海大学常州校区 | Preparation method of high-entropy alloy coating layer on surface of casting |
CN107557645A (en) * | 2017-10-17 | 2018-01-09 | 大连理工大学 | A kind of high-strength high entropy high temperature alloy of BCC bases separated out with cubic morphology nano-particle coherence |
CN108326427A (en) * | 2018-03-09 | 2018-07-27 | 石家庄铁道大学 | A kind of method of high-entropy alloy twin arc fuse collaboration increasing material manufacturing |
CN108380892A (en) * | 2018-04-03 | 2018-08-10 | 武汉理工大学 | A kind of ceramics/high-entropy alloy laminated material and preparation method thereof |
CN108950343A (en) * | 2018-08-01 | 2018-12-07 | 四川理工学院 | A kind of WC based hard alloy material and preparation method thereof based on high-entropy alloy |
CN109252081A (en) * | 2018-10-31 | 2019-01-22 | 华南理工大学 | A kind of high-entropy alloy Binder Phase ultrafine tungsten carbide hard alloy and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109023005A (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109023005B (en) | A new type of soft magnetic high-entropy alloy resistant to high temperature of 600℃ | |
Zhang et al. | Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy | |
CN110670000B (en) | A kind of nanocrystalline soft magnetic alloy, amorphous soft magnetic alloy and preparation method thereof | |
Inoue | Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys | |
CN107557645A (en) | A kind of high-strength high entropy high temperature alloy of BCC bases separated out with cubic morphology nano-particle coherence | |
Wang et al. | Characterization of Fe–Co alloyed nanoparticles synthesized by chemical vapor condensation | |
CN116083772B (en) | Soft magnetic high-entropy alloy with 900K high-temperature resistance | |
TW200533767A (en) | Ternary and multi-nary iron-based bulk glassy alloys and nanocrystalline alloys | |
CN101215679A (en) | A kind of non-magnetic iron-based bulk amorphous alloy and preparation method thereof | |
CN111850431A (en) | A kind of iron-based amorphous alloy containing sub-nanoscale ordered clusters, preparation method and nanocrystalline alloy derivative thereof | |
CN102403117B (en) | The preparation method of Sm-Co based amorphous nano thin strip magnet | |
Lei et al. | Cu induced low temperature ordering of fct-FePtCu nanoparticles prepared by solution phase synthesis | |
JP2014231624A (en) | METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET | |
Yang et al. | Controlled chemical synthesis and enhanced performance of micron-sized FeCo particles | |
Datta et al. | Investigation of crystal structure and magnetic properties in magnetic composite of soft magnetic alloy and hard magnetic ferrite | |
CN113388766B (en) | A kind of manganese-based nanocrystalline/amorphous composite structure alloy and preparation method thereof | |
CN108831659B (en) | A method for preparing nanometer NdFeN permanent magnet powder and nanometer permanent magnet powder | |
CN103774218B (en) | A kind of controllable method for preparing of cobalt nanodendrites | |
Oraon et al. | Combined experimental and DFT studies of Co82Zr12V6-xBx melt-spun ribbons to investigate structure and magnetic properties | |
JP5500184B2 (en) | Method for producing magnetic alloy powder | |
Liu et al. | Oxidation behaviour of Fe3Alnanoparticles prepared by hydrogen plasma–metal reaction | |
CN102254665A (en) | Iron-cobalt-based nano-crystalline soft magnetic alloy and preparation method thereof | |
Provino et al. | Self-assembled nano-to micron-size fibers from molten R11Ni4In9 intermetallics | |
CN107045911B (en) | Nd-Fe-B thin strip magnet and preparation method thereof | |
Li et al. | Glass formation and soft magnetic properties in Dy-containing Fe–Si–B alloys by adjusting B/Si mole ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |