CN109012669A - 一种钨酸银光催化剂的常温离子交换制备方法 - Google Patents

一种钨酸银光催化剂的常温离子交换制备方法 Download PDF

Info

Publication number
CN109012669A
CN109012669A CN201810983963.6A CN201810983963A CN109012669A CN 109012669 A CN109012669 A CN 109012669A CN 201810983963 A CN201810983963 A CN 201810983963A CN 109012669 A CN109012669 A CN 109012669A
Authority
CN
China
Prior art keywords
agno
photochemical catalyst
awo
sample
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810983963.6A
Other languages
English (en)
Other versions
CN109012669B (zh
Inventor
张国英
王冰玉
邢春艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN201810983963.6A priority Critical patent/CN109012669B/zh
Publication of CN109012669A publication Critical patent/CN109012669A/zh
Application granted granted Critical
Publication of CN109012669B publication Critical patent/CN109012669B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag2WO4光催化剂的常温离子交换制备方法。它是以AgNO3作为盐源,巧妙利用Na2WO4既可以提供WO4 2‑离子,又因水解产生碱性OH的双重作用,通过调节AgNO3和Na2WO4的原料摩尔比,从而改变Ag2WO4样品的晶相纯度、形貌、微观结构以及光催化活性。结果表明:相比于原料配比为等化学计量比时所得样品,AgNO3和Na2WO4的摩尔配比在1:0.25‑1:5的范围内,产物光催化降解有机污染物的性能均明显提高。其中化学计量比为1:4时所得Ag2WO4的光催化性能最佳,与用等化学计量比原料所获得的样品相比,其准一级动力学速率常数k高达其21.8倍。机理分析表明该Ag2WO4纳米棒簇的吸光范围有所红移,意味着对太阳能的利用率得到增加;同时荧光强度有所降低,说明载流子的分离效率得到了提高。

Description

一种钨酸银光催化剂的常温离子交换制备方法
技术领域
本发明属于水体污染保护技术领域,涉及工业废水的处理技术,更具体地说是一种高性能Ag2WO4(钨酸银)光催化剂离子交换制备的方法。
背景技术
近年来,环境中存在的有毒有机污染物,如工业染料和酚类,对生态系统和人类健康构成了严重威胁。与传统的电化学降解、生物降解及吸附等方法相比,半导体光催化技术由于操作方便、利用太阳能、效率高、环境友好等优点受到科研工作者的广泛关注。该技术的关键和挑战因素是探索具有可见光响应和高降解效率的光催化剂。
在各种半导体中,含银复合氧化光催化剂Ag2CO3,Ag2CrO4, AgVO3和Ag3PO4等因可以引发有机物发生降解而备受关注。作为含Ag化合物之一,Ag2WO4(AWO)也表现出潜在的光催化性能。通常,AWO具有三种不同类型的晶体结构,即分别为αβγ构型。其中,α-Ag2WO4在热力学上是最稳定的晶相,因此作为光催化剂具有最为广阔的应用前景。
然而,α-Ag2WO4的光吸收范围相对较窄,并且电子和空穴的复合速率较快。为了提高AWO光催化剂的性能,人们在构建复合光催化剂方面付出了诸多努力,包括与氧化物如Fe3O4、WO3,硫化物Ag2S,卤化物Ag/AgCl,贵金属Ag以及碳材料g-C3N4等的复合。然而复合光催化剂的制备通常为多步骤,因过程繁琐、成本较高而不利于大规模生产。而且,另一种材料的引入会给AWO晶体引入缺陷,这可能会成为光生电子和空穴的复合中心。迄今为止,研究单一体系的α-Ag2WO4光催化剂,扩大其光捕获范围或抑制其载流子复合的报导较少。仅有研究者通过在液体激光照射下对AWO商用粉末进行重结晶,实现了AWO的电子结构重组,从而通过在电子结构中引入中间能级,对有机物表现出良好的可见光催化活性。然而,激光仪器价格昂贵、能源消耗高,因此并不适合广泛应用。
除电子结构外,光催化剂的活性还受形貌、尺寸、微观结构等特征影响,而这些结构特征则多可以通过调控制备参数来实现。本专利从化学角度出发,在室温下采用简单的离子交换法,通过调节AgNO3和Na2WO4的摩尔比例,而改变反应前驱液的pH值,制备了系列AWO光催化剂。其中二者摩尔配比为1:4时,所得样品为由纳米棒组装而成的簇状结构。相比于由等化学计量比原料所合成的样品,该结构表现出明显优异的光催化活性,其降解RhB的速率常数k提高了21.8倍。
发明内容
为实现上述目的,本发明公开了如下的技术内容:
一种Ag2WO4光催化剂的常温离子交换制备方法,其特征在于它是通过常温、短时的离子交换法制备而成,其方法如下:
称取不同剂量的Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将AgNO3溶液20.0 mL缓慢滴加到上述溶液中,将其搅拌0.5-3小时,最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到Ag2WO4光催化剂;其中AgNO3和Na2WO4原料的摩尔比例为1:0.25-1:5。
其中称取不同剂量的Na2WO4指的是称取0.25-5.0mmol的Na2WO4。优选AgNO3和Na2WO4原料的摩尔比例为1:4。
本发明进一步公开了采用Ag2WO4光催化剂的常温离子交换方法制备的Ag2WO4光催化剂在降解有机染料方面的应用。特别是在降解印染车间所排污水中含有的难降解性芳香类化合物中的应用。所述的难降解性芳香类化合物指的是:罗丹明B、亚甲基蓝、龙胆紫和甲基橙。实验结果显示:化学计量比为1:4时所得Ag2WO4的光催化性能最佳,与用等化学计量比原料所获得的样品相比,其准一级动力学速率常数k高达其21.8倍。机理分析表明该Ag2WO4纳米棒簇的吸光范围有所红移,意味着对太阳能的利用率得到增加,同时荧光强度有所降低,说明载流子的分离效率得到提高。
附图说明
图1为不同样品的XRD图谱:A图中为添加等化学计量比原料所得样品AWO-1:0.5的衍射图谱,该样品的大部分衍射峰与α-Ag2WO4标准卡片(JCPD No. 34-0061)的衍射峰吻合。然而衍射峰2θ为26.9°、35.6°、44.7°和53.0°处所对应的衍射峰归属于Ag2W2O7(JCPDS No.75-1506)。因此,原料添加量为Ag2WO4化学式的等计量数配比时,该样品并非纯相的α-Ag2WO4,其中还含有部分Ag2W2O7杂相;
但是,如B图所示,当原料摩尔配比大于或小于计量比,得到的所有样品,包括AWO-1:0.25,AWO-1:2,AWO-1:4,AWO-1:5的衍射峰均与AWO的标准卡片(JCPD No. 34-0061)吻合。除此之外,没有检测到任何其他晶相的杂质峰,表明这些产物都具有较高的纯度;
图2为AWO系列样品的SEM图谱;当原料摩尔配比为1:0.25时得到的样品AWO-1:0.25呈长的微米棒,平均长度为5 μm,宽度为270 nm(图2A);以等计量数配比合成的产物AWO-1:0.5由更粗和更长的微米棒和具有较小尺寸的纳米棒的共同组成(图2B)。当摩尔比高于等计量数配比由1:2增加至1:5的化学计量比,所得AWO样品均由小尺寸的纳米棒组成(图2C-E)。有趣的是,AWO-1:4样品为三维簇状结构,而该纳米簇是由长为200-400 nm、直径约45nm的纳米棒组装而成。 SEM结果表明,反应物的摩尔比不仅影响AWO的晶相纯度,而且还显著影响样品的形态和尺寸。与AWO-1:2和AWO-1:5样品中纳米棒的随机堆叠相比,AWO-1:4光催化剂因其纳米棒簇结构可能具有潜在应用价值;
图3为AWO-1:4及AWO-1:0.5的紫外-可见漫反射光谱。AWO-1:0.5陡峭的吸收光谱说明来自本征带隙跃迁,虽然在可见光区也表现出一定的吸收,但由于其带隙能约3.03 eV,因此吸收带边仅为约409.2 nm的太阳光,对可见光区的吸收相当有限。相比之下,AWO-1:4样品的吸收带边明显红移至438.2 nm,且在可见光区的吸收强度明显增加,因此AWO-1:4样品能够更加有效地利用太阳能;
图4为在330 nm紫外光激发下,AWO-1:4及AWO-1:0.5的荧光发射光谱。荧光光谱常用来考察光生光生电子和空穴对的分离和复合过程,较弱的荧光强度表明载流子的复合几率低,多对应较高的光催化活性。AWO在450-535 nm表现出较宽的荧光发射带,其中495 nm的最强荧光峰归属于激发电子从导带跃迁回价带,从而引起光生载流子复合而释放出的能量。AWO-1:4光催化剂的荧光峰形与AWO-1:0.5基本一致,但AWO-1:4表现出更低的发射峰强度,说明该样品中光生载流子的复合相对较弱,从而提高了光量子效率;
图5 为各光催化剂(5.0 mg)在500W Xe灯辐照下,光催化降解10 ml RhB(10-5 M)溶液的性能对比图;其中(A)为降解效率,(B)为光催化反应速率常数。空白实验表明在无催化剂存在的情况下,经60 min辐照后,仅有约3.7%的RhB发生了降解,说明光解的影响可以忽略不计;此外,AWO对染料分子的吸附较弱,也不影响系列光催化剂的性能对比。图5A表明,在Na2WO4用量较少时,所得样品AWO-1:0.25 和AWO-1:0.5的光催化活性均明显较低,光照射60min后仅分别有24.2%和28.0%的RhB分解。而随着Na2WO4用量的增加,所得AWO-1:2、AWO-1:4及AWO-1:5对RhB的降解效率都逐渐增高。其中AWO-1:4样品的光催化活性最高。根据准一级反应动力学(图5B), AWO-1:4样品的反应速率常数k为0.08480 min-1,是由化学计量比原料所获得样品AWO-1:0.5比的21.8倍,显示出优异的光催化活性。因此选定原料摩尔比为1:4为最佳合成比例。此时Na2WO4除了提供WO4 2-离子用于沉积Ag2WO4外,过量的Na2WO4可提供适宜的酸度条件,用以形成Ag2WO4纳米棒簇结构。
具体实施方式
为了进一步解释本发明,提供下述制备方法实施实例。以下实施例的表述不限制本发明,本领域的专业人员可按照本发明的精神对其进行改进和变化,所述的这些改进和变化都应视为在本发明新型的范围内。本发明所述的各种原料例如Na2WO4和AgNO3均有市售。
实施例1
称取0.25 mmol Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将20.0 mL AgNO3溶液(1mmol)缓慢滴加到上述溶液中,将其搅拌0.5小时。最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到AWO-1:0.25的光催化剂。
实施例2
称取0.5 mmol Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将20.0 mL AgNO3溶液(1mmol)缓慢滴加到上述溶液中,将其搅拌1.0小时。最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到AWO-1:0.5的光催化剂。
实施例3
称取4.0 mmol Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将20.0 mL AgNO3溶液(1mmol)缓慢滴加到上述溶液中,将其搅拌1.5小时。最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到AWO-1:4的光催化剂。
实施例4
称取5.0 mmol Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将20.0 mL AgNO3溶液(1mmol)缓慢滴加到上述溶液中,将其搅拌2.0小时。最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到AWO-1:5的光催化剂。
实施例5
印染车间所排污水中含有的难降解性芳香类化合物的降解实例:
罗丹明B是印染工业常用的难降解芳香类红色染料,从印染车间取含有RhB染料4.8mg/L的废水500 mL,加入AWO-1:4的光催化剂250 mg,在XPA-7型光化学反应仪暗箱中磁力搅拌达到吸-脱附平衡,经500W氙灯模拟日光辐照50 min后,立即过滤分离,测上清液的吸光度,并计算罗丹明B的降解率为99.0%,而同等条件下AWO-1:0.5的光催化降解效率仅为26.0 %。
实施例6
选定性能最佳的AWO-1:4样品,对除RhB外的其它染料,包括亚甲基蓝、甲基橙和龙胆紫也分别进行了相同条件下的光降解实验,并和AWO-1:0.5样品进行了对比,所得不同时间的降解率数据列表如下:
从上表数据可以看出,AWO-1:4光催化剂不但对RhB的降解效率明显高于AWO-1:0.5,对其它染料如亚甲基蓝、甲基橙和龙胆紫的也降解表现出同样的优势。说明该发明中的光催化剂在降解印染车间所排含芳香类化合物的污水中确实具有良好的应用前景。

Claims (6)

1.一种Ag2WO4光催化剂的常温离子交换制备方法,其特征在于:称取不同剂量的Na2WO4溶解在20.0 mL的去离子水中以形成溶液,然后在剧烈搅拌下将AgNO3溶液20.0 mL缓慢滴加到上述溶液中,将其搅拌0.5-3小时,最后,通过离心收集产物,用去离子水和无水乙醇洗涤数次,然后在60 ℃下干燥,得到Ag2WO4光催化剂;其中AgNO3和Na2WO4原料的摩尔比例为1:0.25-1:5。
2.权利要求1所述的制备方法,其中称取不同剂量的Na2WO4指的是称取0.25-5.0 mmol的Na2WO4,AgNO3溶液为1mmol。
3.权利要求1所述的制备方法,其中AgNO3和Na2WO4原料的摩尔比例为1:4。
4.采用权利要求1所述方法制备的Ag2WO4光催化剂在降解有机染料方面的应用。
5.采用权利要求1所述方法制备的Ag2WO4光催化剂在降解印染车间所排污水中含有的难降解性芳香类化合物中的应用。
6.权利要求5所述的应用,其中所述的难降解性芳香类化合物指的是:罗丹明B、亚甲基蓝、龙胆紫和甲基橙。
CN201810983963.6A 2018-08-28 2018-08-28 一种钨酸银光催化剂的常温离子交换制备方法 Expired - Fee Related CN109012669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810983963.6A CN109012669B (zh) 2018-08-28 2018-08-28 一种钨酸银光催化剂的常温离子交换制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810983963.6A CN109012669B (zh) 2018-08-28 2018-08-28 一种钨酸银光催化剂的常温离子交换制备方法

Publications (2)

Publication Number Publication Date
CN109012669A true CN109012669A (zh) 2018-12-18
CN109012669B CN109012669B (zh) 2021-03-19

Family

ID=64624732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810983963.6A Expired - Fee Related CN109012669B (zh) 2018-08-28 2018-08-28 一种钨酸银光催化剂的常温离子交换制备方法

Country Status (1)

Country Link
CN (1) CN109012669B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167451A (zh) * 2020-03-16 2020-05-19 上海纳米技术及应用国家工程研究中心有限公司 一种钨酸银微晶球簇光催化剂的制备方法及其产品和应用
CN111871409A (zh) * 2020-09-05 2020-11-03 兰州理工大学 具有晶界wo3/钨酸盐复合光催化材料的制备方法及用途
CN112076797A (zh) * 2020-09-18 2020-12-15 苏州讯罡智能设备有限公司 一种可见光驱动的复合光催化剂的制备方法
CN113828308A (zh) * 2021-11-08 2021-12-24 成都大学 一种Ag2WO4/WO3/g-C3N4异质结复合光催化材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062786A (zh) * 2007-05-08 2007-10-31 河北理工大学 微波加热法制Ag2WO4复合抗菌剂生产方法及在卫生瓷釉中应用
CN102583550A (zh) * 2012-03-02 2012-07-18 河北联合大学 一种纳米实心菱形钨酸银的高效制备方法
CN102631937A (zh) * 2012-03-28 2012-08-15 武汉理工大学 负载型碘化银纳米粒子可见光光催化剂的合成方法
WO2014004768A2 (en) * 2012-06-27 2014-01-03 University Of Kansas Alkylene epoxidation with mesoporous catalysts
CN106622271A (zh) * 2016-11-11 2017-05-10 暨南大学 一种镍掺杂纳米钨酸铋可见光催化剂及其制备和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062786A (zh) * 2007-05-08 2007-10-31 河北理工大学 微波加热法制Ag2WO4复合抗菌剂生产方法及在卫生瓷釉中应用
CN102583550A (zh) * 2012-03-02 2012-07-18 河北联合大学 一种纳米实心菱形钨酸银的高效制备方法
CN102631937A (zh) * 2012-03-28 2012-08-15 武汉理工大学 负载型碘化银纳米粒子可见光光催化剂的合成方法
WO2014004768A2 (en) * 2012-06-27 2014-01-03 University Of Kansas Alkylene epoxidation with mesoporous catalysts
CN106622271A (zh) * 2016-11-11 2017-05-10 暨南大学 一种镍掺杂纳米钨酸铋可见光催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, HAIHANG ET AL.,: ""Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions"", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167451A (zh) * 2020-03-16 2020-05-19 上海纳米技术及应用国家工程研究中心有限公司 一种钨酸银微晶球簇光催化剂的制备方法及其产品和应用
CN111871409A (zh) * 2020-09-05 2020-11-03 兰州理工大学 具有晶界wo3/钨酸盐复合光催化材料的制备方法及用途
CN112076797A (zh) * 2020-09-18 2020-12-15 苏州讯罡智能设备有限公司 一种可见光驱动的复合光催化剂的制备方法
CN113828308A (zh) * 2021-11-08 2021-12-24 成都大学 一种Ag2WO4/WO3/g-C3N4异质结复合光催化材料及其制备方法

Also Published As

Publication number Publication date
CN109012669B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Xiang et al. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of pn/nn dual heterojunction under simulated sunlight by persulfate
Wang et al. Degradation of benzophenone-4 by peroxymonosulfate activated with microwave synthesized well-distributed CuBi2O4 microspheres: Theoretical calculation of degradation mechanism
Yang et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation
He et al. Mechanistic insight into the charge carrier separation and molecular oxygen activation of manganese doping BiOBr hollow microspheres
Li et al. TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101 (Cr) for enhanced visible light-driven photodegradation of MB
He et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight
Hezam et al. Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures as efficient sunlight-driven photocatalysts
CN109012669A (zh) 一种钨酸银光催化剂的常温离子交换制备方法
Zhang et al. Non-additional carbon source one-step synthesis of Bi2O2CO3-based ternary composite for efficient Z-scheme photocatalysis
Wu et al. CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants
CN102824921B (zh) 一种Ag2S/Ag3PO4复合光催化剂的制备方法
CN101020143A (zh) 一种卤氧化铋材料的用途
Jiao et al. Rodlike AgI/Ag2Mo2O7 heterojunctions with enhanced visible-light-driven photocatalytic activity
Kanagaraj et al. Novel pure α-, β-, and mixed-phase α/β-Bi2O3 photocatalysts for enhanced organic dye degradation under both visible light and solar irradiation
Sun et al. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites
CN112517081B (zh) 金属锡卟啉轴向功能化二氧化钛的复合光催化剂及其制备方法
CN107282077A (zh) 一种光催化固氮催化剂的制备方法及其应用
Chen et al. A high-performance composite CDs@ Cu-HQCA/TiO2 flower photocatalyst: Synergy of complex-sensitization, TiO2-morphology control and carbon dot-surface modification
Sodeifian et al. Hydrothermal synthesis of N-doped GQD/CuO and N-doped GQD/ZnO nanophotocatalysts for MB dye removal under visible light irradiation: evaluation of a new procedure to produce N-doped GQD/ZnO
Deng et al. Facile microwave-assisted fabrication of CdS/BiOCl nanostructures with enhanced visible-light-driven photocatalytic activity
Wang et al. Green synthesis of MIL-100 (Fe) derivatives and revealing their structure-activity relationship for 2, 4-dichlorophenol photodegradation
Wang et al. Fe-complex modified cellulose acetate composite membrane with excellent photo-Fenton catalytic activity
Gong et al. Efficient photocatalytic removal of U (VI) over π-electron-incorporated g-C3N4 under visible light irradiation
Liu et al. Construction of rGO wrapping Cu 2 O/ZnO heterostructure photocatalyst for PNP and PAM degradation
Li et al. Fabrication of novel tetrahedral Ag3PO4/g-C3N4/BiVO4 ternary composite for efficient detoxification of sulfamethoxazole

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210319

Termination date: 20210828

CF01 Termination of patent right due to non-payment of annual fee