CN109012667B - 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品 - Google Patents

一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品 Download PDF

Info

Publication number
CN109012667B
CN109012667B CN201810892401.0A CN201810892401A CN109012667B CN 109012667 B CN109012667 B CN 109012667B CN 201810892401 A CN201810892401 A CN 201810892401A CN 109012667 B CN109012667 B CN 109012667B
Authority
CN
China
Prior art keywords
cati
doped
compound
distilled water
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810892401.0A
Other languages
English (en)
Other versions
CN109012667A (zh
Inventor
董伟霞
包启富
顾幸勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingdezhen Ceramic Institute
Original Assignee
Jingdezhen Ceramic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingdezhen Ceramic Institute filed Critical Jingdezhen Ceramic Institute
Priority to CN201810892401.0A priority Critical patent/CN109012667B/zh
Publication of CN109012667A publication Critical patent/CN109012667A/zh
Application granted granted Critical
Publication of CN109012667B publication Critical patent/CN109012667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,以钛的化合物、钙的化合物、银的化合物为原料,采用溶剂热法,获得具有高光催化活性的Ag掺杂CaTi2O5纳米粉体材料。此外,还公开了利用上述制备方法制得的产品。本发明通过引入Ag实现了CaTi2O5化学结构的变化和表面修饰,从而有效提高了CaTi2O5在太阳光下的光催化活性。本发明工艺方法简单、成本低,对于亚稳相CaTi2O5光催化的研究、应用和发展具有重要的价值和意义。

Description

一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制 得的产品
技术领域
本发明涉及光催化技术领域,尤其涉及一种在太阳光下具有高光催化活性的Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品。
背景技术
随着人民生活水平的提高,污染问题尤其是水资源的污染问题越来越严重,如何解决此问题已引起了全世界的关注。目前,光催化技术为解决水污染问题提供了一条绿色途径,纳米光催化剂在光催化领域显示出了巨大潜力和长久的生命力。
现有技术通过水热法和固相法可制备CaTiO3相的光催化剂材料,而CaTi2O5则是在制备CaTiO3过程中作为一种中间相出现。研究表明,亚稳相CaTi2O5具有明显的光催化效果,CaTi2O5纳米结构在紫外灯光照射下降解罗丹明染料具有优越于P25的光催化性能。然而,尽管CaTi2O5具有良好的催化效果,但其在紫外光370nm有较强的吸收边,说明其对可见光利用率较低,从而影响和限制了其光催化性能。而现有技术为拓展光催化剂材料的光利用范围,通常是对材料尺寸、形貌结构等进行调控处理,以提高材料的光催化性能。因此,控制材料尺寸、形貌或表面结构,均匀性或单分散性的调控合成方法,一直是业内追求的目标。
然而,众所周知,单独地通过调控反应参数来实现形貌、尺寸和表面结构是很难做到的。纵观研究表明,目前几乎都要借助表面活性剂等添加剂,来改变不同晶面的生长速率,以调控产物的形貌、尺寸和表面结构。此外,目前现有技术的制备方法需要特殊的装置,并需要在表面活性剂或模板的条件下进行,从而极大地限制了光催化剂的研究、应用和发展。如何通过简单的工艺方法实现CaTi2O5的改性处理,以获得有利于提高光利用率等性能的形貌结构、特性,对于CaTi2O5光催化剂材料的研究具有重要意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高光催化活性Ag掺杂 CaTi2O5纳米材料的制备方法,通过引入Ag、采用工艺简单成本低的溶剂热法,实现CaTi2O5化学结构的变化和表面修饰,从而有效提高CaTi2O5在太阳光下的光催化活性。本发明的另一目的在于提供利用上述制备方法制得的产品。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,包括以下步骤:
(1)将钛的化合物溶解于有机溶剂中,按照摩尔比钛的化合物∶有机溶剂= 1∶5~10,搅拌至均匀,得到含有钛的黄色有机溶液A;
(2)将钙的化合物、银的化合物、pH值为1~3的蒸馏水、有机溶剂进行混合,搅拌至均匀得到B液;其中,按照摩尔比所述钙的化合物∶pH值为1~3的蒸馏水∶有机溶剂=1∶50~200∶5~15,所述银的化合物其掺杂量按照摩尔百分比为钙的化合物的0.01~0.07%;
(3)按照摩尔比所述钙的化合物∶钛的化合物=1∶1,搅拌下将所述溶液B加入溶液A中进行混合,然后加入3M NaOH溶液,调节混合溶液体系的pH值为6.5~ 7,过滤、洗涤后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4)将所述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比所述 Ag掺杂CaTi2O5前驱体∶蒸馏水∶乙醇=1∶50~400∶10~15;搅拌混合后放在水热釜中,在140~180℃下保温12~36h,反应产物用蒸馏水洗涤,即获得Ag掺杂 CaTi2O5纳米粉体材料。
进一步地,本发明所述钛的化合物为钛酸丁酯、氯化钛或钛酸异丙酯;所述钙的化合物为氯化钙、二水氯化钙或九水硝酸钙;所述银的化合物为硝酸银或氯化银。
上述方案中,本发明所述有机溶剂为乙醇、丙醇、丁醇、乙二醇、丙二醇、四氢呋喃中的一种或其组合;所述pH值为1~3的蒸馏水为添加浓硝酸所获得的蒸馏水。所述步骤(4)中搅拌混合时间为10~15min。
本发明利用上述高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法制得的产品,由尺寸为5~10nm的纳米颗粒组成,并具有介孔结构,其比表面积为120.23~ 126.28m2/g、平均孔尺寸为12.5~15.3nm。
本发明具有以下有益效果:
(1)本发明通过引入Ag对纳米CaTi2O5进行改性,使其晶体表面的化学结构发生变化,诱导产生大量的晶格缺陷,并且通过Ag的引入实现CaTi2O5纳米晶的表面修饰,从而加强了光催化材料的紫外可见光吸收,提高了光的利用率;此外,由于 Ag的掺杂对其CaTi2O5表面悬挂键的饱和作用,直接影响了表面能大小,同时水和乙醇作为微模板反应器诱导纳米颗粒结构单元沿着一定的方向规律排布,所制备得到的Ag掺杂CaTi2O5纳米介孔材料,能够有效提高CaTi2O5在太阳光下的高光催化活性。
(2)本发明利用溶剂热法,通过引入Ag并控制蒸馏水和乙醇的比例,即获得具有高光催化活性的Ag掺杂CaTi2O5纳米粉体材料,无需特殊装置,也无需在表面活性剂或模板的条件下进行,工艺方法简单、成本低,对于亚稳相CaTi2O5光催化的研究、应用和发展具有重要的价值和意义。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例制得的Ag掺杂CaTi2O5纳米材料的X射线衍射图谱;
图2是本发明实施例制得的Ag掺杂CaTi2O5纳米材料的扫描电镜照片;
图3是本发明实施例制得的Ag掺杂CaTi2O5纳米材料的紫外-可见光吸收光谱曲线图;
图4是本发明实施例制得的Ag掺杂CaTi2O5纳米材料的N2吸附-解吸附等温线图;
图5是本发明实施例制得的Ag掺杂CaTi2O5纳米材料的降解罗丹明B在550nm 紫外-可见光吸收光谱曲线图;
图6是本发明实施例制得的Ag掺杂CaTi2O5纳米材料在太阳光照射下分解罗丹明B溶液的光催化活性示意图(线条1、2、3、4分别对应实施例一、实施例二、
实施例三、实施例四)。
具体实施方式
实施例一:
本实施例一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其步骤如下:
(1)将钛酸丁酯溶解于乙醇中,按照摩尔比钛酸丁酯∶乙醇=1∶5,搅拌至均匀,得到含有钛的黄色有机溶液A;
(2)将氯化钙、硝酸银、pH值为1的蒸馏水(在蒸馏水中添加浓硝酸而获得)、乙醇进行混合,搅拌至均匀得到B液;其中,按照摩尔比氯化钙∶pH值为1的蒸馏水∶乙醇=1∶50∶10,硝酸银其掺杂量按照摩尔百分比为氯化钙的0.03%;
(3)按照摩尔比钛酸丁酯∶氯化钙=1∶1,搅拌下将上述溶液B加入溶液A中进行混合,然后加入3M NaOH溶液,调节混合溶液体系的pH值为6.5,过滤、蒸馏水洗涤6遍后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4)将上述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比Ag掺杂CaTi2O5前驱体∶蒸馏水∶乙醇=1∶400∶10;搅拌混合10min后放在水热釜中,在180℃下保温36h,反应产物用蒸馏水洗涤,即获得Ag掺杂CaTi2O5纳米粉体材料。
实施例二:
本实施例一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其步骤如下:
(1)将钛酸异丙酯溶解于丙醇中,按照摩尔比钛酸异丙酯∶丙醇=1∶10,搅拌至均匀,得到含有钛的黄色有机溶液A;
(2)将二水氯化钙、硝酸银、pH值为3的蒸馏水(在蒸馏水中添加浓硝酸而获得)、丙醇进行混合,搅拌至均匀得到B液;其中,按照摩尔比二水氯化钙∶pH 值为3的蒸馏水∶丙醇=1∶200∶5,硝酸银其掺杂量按照摩尔百分比为二水氯化钙的0.01%;
(3)按照摩尔比钛酸异丙酯∶二水氯化钙=1∶1,搅拌下将上述溶液B加入溶液A中进行混合,然后加入3M NaOH溶液,调节混合溶液体系的pH值为7,过滤、蒸馏水洗涤6遍后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4)将上述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比Ag掺杂CaTi2O5前驱体∶蒸馏水∶乙醇=1∶50∶15;搅拌混合10min后放在水热釜中,在140℃下保温36h,反应产物用蒸馏水洗涤,即获得Ag掺杂CaTi2O5纳米粉体材料。
实施例三:
本实施例一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其步骤如下:
(1)将氯化钛溶解于丁醇中,按照摩尔比氯化钛∶丁醇=1∶8,搅拌至均匀,得到含有钛的黄色有机溶液A;
(2)将二水氯化钙、氯化银、pH值为2的蒸馏水(在蒸馏水中添加浓硝酸而获得)、丁醇进行混合,搅拌至均匀得到B液;其中,按照摩尔比二水氯化钙∶pH 值为2的蒸馏水∶丁醇=1∶100∶15,氯化银其掺杂量按照摩尔百分比为二水氯化钙的0.07%;
(3)按照摩尔比氯化钛∶二水氯化钙=1∶1,搅拌下将上述溶液B加入溶液A 中进行混合,然后加入3M NaOH溶液,调节混合溶液体系的pH值为6.8,过滤、蒸馏水洗涤6遍后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4)将上述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比Ag掺杂CaTi2O5前驱体∶蒸馏水∶乙醇=1∶200∶15;搅拌混合12min后放在水热釜中,在160℃下保温24h,反应产物用蒸馏水洗涤,即获得Ag掺杂CaTi2O5纳米粉体材料。
实施例四:
本实施例一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其步骤如下:
(1)将钛酸丁酯溶解于丙二醇中,按照摩尔比钛酸丁酯∶丙二醇=1∶5,搅拌至均匀,得到含有钛的黄色有机溶液A;
(2)将二水氯化钙、硝酸银、pH值为1的蒸馏水(在蒸馏水中添加浓硝酸而获得)、丙二醇进行混合,搅拌至均匀得到B液;其中,按照摩尔比二水氯化钙∶pH 值为2的蒸馏水∶丙二醇=1∶200∶15,硝酸银其掺杂量按照摩尔百分比为二水氯化钙的0.05%;
(3)按照摩尔比钛酸丁酯∶二水氯化钙=1∶1,搅拌下将上述溶液B加入溶液 A中进行混合,然后加入3MNaOH溶液,调节混合溶液体系的pH值为6.5,过滤、蒸馏水洗涤6遍后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4)将上述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比Ag掺杂CaTi2O5前驱体∶蒸馏水∶乙醇=1∶300∶10;搅拌混合15min后放在水热釜中,在180℃下保温36h,反应产物用蒸馏水洗涤,即获得Ag掺杂CaTi2O5纳米粉体材料。
如图1所示,本发明实施例制备得到的Ag掺杂CaTi2O5纳米粉体材料,其衍射峰与CaTi2O5相和单质Ag的标准图谱一致,说明本发明实施例所得产品为CaTi2O5和Ag相,并且呈现纳米介孔结构(见图2)。
如图3所示,本发明实施例制备得到的光催化材料,通过Ag掺杂使CaTi2O5的紫外-可见吸收光谱增强,从而提高了其对可见光的吸收。
如图4所示,本发明实施例制备得到的Ag掺杂CaTi2O5纳米粉体材料的等温线在0.5-1.0P/P0范围内有明显的吸附滞后现象,属于典型的IV型等温线;在高压区 (P/Po>0.5)具有强的N2吸附能力,表明产品中存在介孔,其比表面积为123.05m2/g、平均孔尺寸为12.7nm。
如图5所示,随着光催化反应时间的增长,本发明实施例制得的Ag掺杂CaTi2O5纳米材料降解罗丹明B溶液的紫外-可见光吸收峰越来越小,在反应时间为60min,其曲线近似为一条直线,说明光催化反应已基本结束。
本发明实施例制备得到的Ag掺杂CaTi2O5纳米粉体材料,通过分解罗丹明B溶液进行如下光催化活性的测定:罗丹明B溶液的光催化脱色反应表现为准一级动力学关系,ln(C0/C)=kt,其中,C0和C分别为光照时间为0和t时的罗丹明B的浓度;k用来表观速率常数。又因为ln(A0/A)=ln(C0/C)=kt,A0和A分别为光照时间为0和t时在 550nm处的吸光度值,故测得的速率常数k,其值越大,说明光催化性能越好。
测试结果如图6所示,本发明实施例制备得到的Ag掺杂CaTi2O5纳米粉体材料在可见光下具有优异的光催化活性。从图6可以看出,本发明实施例制备得到的Ag 掺杂CaTi2O5纳米粉体材料的光催化活性在太阳光下60min即可基本降解,说明其具有优异的光催化性能。

Claims (5)

1.一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其特征在于包括以下步骤:
(1) 将钛的化合物溶解于有机溶剂中,按照摩尔比钛的化合物∶有机溶剂=1∶5~10,搅拌至均匀,得到含有钛的黄色有机溶液A;所述钛的化合物为钛酸丁酯、氯化钛或钛酸异丙酯;
(2) 将钙的化合物、银的化合物、pH值为1~3的蒸馏水、有机溶剂进行混合,搅拌至均匀得到B液;其中,按照摩尔比所述钙的化合物∶pH值为1~3的蒸馏水∶有机溶剂=1∶50~200∶5~15,所述银的化合物其掺杂量按照摩尔百分比为钙的化合物的0.01~0.07%;所述钙的化合物为氯化钙、二水氯化钙或九水硝酸钙,所述银的化合物为硝酸银或氯化银,所述pH值为1~3的蒸馏水为添加浓硝酸所获得的蒸馏水;
(3) 按照摩尔比所述钙的化合物∶钛的化合物=1∶1,搅拌下将所述溶液B加入溶液A中进行混合,然后加入3M NaOH溶液,调节混合溶液体系的pH值为6.5~7,过滤、洗涤后,获得呈白色沉淀的Ag掺杂CaTi2O5前驱体;
(4) 将所述Ag掺杂CaTi2O5前驱体分散于蒸馏水和乙醇中,按照摩尔比所述蒸馏水∶乙醇=50~400∶10~15;搅拌混合后放在水热釜中,在140~180℃下保温12~36h,反应产物用蒸馏水洗涤,即获得由尺寸为5~10nm的纳米颗粒组成的Ag掺杂CaTi2O5纳米粉体材料,所述材料具有介孔结构,其比表面积为120.23~126.28m2/g,平均孔尺寸为12.5~15.3nm。
2.根据权利要求1所述的高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其特征在于:所述有机溶剂为乙醇、丙醇、丁醇、乙二醇、丙二醇、四氢呋喃中的一种或其组合。
3.根据权利要求1所述的高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法,其特征在于:所述步骤(4)中搅拌混合时间为10~15min。
4.利用权利要求1-3之一所述高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法制得的产品。
5.根据权利要求4所述的高光催化活性Ag掺杂CaTi2O5纳米材料制备方法制得的产品,其特征在于:所述产品由尺寸为5~10nm的纳米颗粒组成,并具有介孔结构,其比表面积为120.23~126.28m2/g、平均孔尺寸为12.5~15.3nm。
CN201810892401.0A 2018-08-07 2018-08-07 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品 Active CN109012667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810892401.0A CN109012667B (zh) 2018-08-07 2018-08-07 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810892401.0A CN109012667B (zh) 2018-08-07 2018-08-07 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品

Publications (2)

Publication Number Publication Date
CN109012667A CN109012667A (zh) 2018-12-18
CN109012667B true CN109012667B (zh) 2021-07-20

Family

ID=64649388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810892401.0A Active CN109012667B (zh) 2018-08-07 2018-08-07 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品

Country Status (1)

Country Link
CN (1) CN109012667B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110918080B (zh) * 2019-12-11 2022-10-18 景德镇陶瓷大学 一种碳掺杂CaTi2O5粉体高效光催化剂的制备方法及其制得的产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182205A (ja) * 1992-12-22 1994-07-05 Toyota Central Res & Dev Lab Inc 光触媒の製造方法、及びその光触媒
CN103736476A (zh) * 2014-01-23 2014-04-23 云南大学 一种钛酸钙/氧化钙复合光催化剂及其制法和用途
CN104028257A (zh) * 2014-06-20 2014-09-10 景德镇陶瓷学院 一种高光催化活性CaTi2O5纳米颗粒的制备方法及其制得的产品
CN104258850A (zh) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 一种Ag掺杂TiO2纳米薄膜及含有该薄膜的复合材料
CN104645969A (zh) * 2015-02-14 2015-05-27 景德镇陶瓷学院 一种具有光催化活性的V掺杂CaTiO3花瓣状微纳结构材料及其制备方法
CN106345509A (zh) * 2016-09-06 2017-01-25 景德镇陶瓷大学 一种采用溶剂热法制备C3N4/CaTi2O5复合材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182205A (ja) * 1992-12-22 1994-07-05 Toyota Central Res & Dev Lab Inc 光触媒の製造方法、及びその光触媒
CN103736476A (zh) * 2014-01-23 2014-04-23 云南大学 一种钛酸钙/氧化钙复合光催化剂及其制法和用途
CN104028257A (zh) * 2014-06-20 2014-09-10 景德镇陶瓷学院 一种高光催化活性CaTi2O5纳米颗粒的制备方法及其制得的产品
CN104258850A (zh) * 2014-09-26 2015-01-07 苏州纽艾之光净化设备有限公司 一种Ag掺杂TiO2纳米薄膜及含有该薄膜的复合材料
CN104645969A (zh) * 2015-02-14 2015-05-27 景德镇陶瓷学院 一种具有光催化活性的V掺杂CaTiO3花瓣状微纳结构材料及其制备方法
CN106345509A (zh) * 2016-09-06 2017-01-25 景德镇陶瓷大学 一种采用溶剂热法制备C3N4/CaTi2O5复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钛酸钙光催化剂掺杂改性及电子结构的研究;张红杰;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20110615(第06期);摘要、第90-91页4.5本章小结、第103-104页结论 *

Also Published As

Publication number Publication date
CN109012667A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
Shang et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
Abdel-Messih et al. Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method
Li et al. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis
Xu et al. Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity
Xu et al. Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO3/Ta2O5 heterostructured nanofibers for enhanced photocatalytic hydrogen production
Zhan et al. Photocatalytic activity of sulfated Mo-doped TiO2@ fumed SiO2 composite: a mesoporous structure for methyl orange degradation
Lu et al. Synthesis of mesoporous anatase TiO2 sphere with high surface area and enhanced photocatalytic activity
Wei et al. Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties
Ilkhechi et al. Optical and structural properties of TiO 2 nanopowders with Co/Ce doping at various temperature
CN114873637A (zh) 一种纳米十八面体SrTiO3及其制备方法和应用
Zhang et al. Synthesis and characterization of Bi2Ti2O7/TiO2 heterojunction by glycerol-assisted alcoholthermal method
Zhao et al. Synthesis of carbon-doped nanosheets m-BiVO 4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property
Nguyen-Le et al. Effective photodegradation of dyes using in-situ N-Ti3+ co-doped porous titanate-TiO2 rod-like heterojunctions
Husin et al. Visible light driven photocatalytic hydrogen evolution by lanthanum and carbon-co-doped NaTaO3 photocatalyst
Zhao et al. Preparation, characterization and photocatalytic performance of Nd3+-doped titania nanoparticles with mesostructure
Gu et al. Large-mesopore hierarchical tungsten trioxide hydrate with exposed high energy facets: Facile synthesis and enhanced photocatalysis
Wang et al. Effects of surfactants on the morphology and properties of TiO2
CN109012667B (zh) 一种高光催化活性Ag掺杂CaTi2O5纳米材料的制备方法及其制得的产品
Li et al. Synthesizing ZnWO4 with enhanced performance in photoelectrocatalytic inactivating marine microorganisms
Vaja et al. Synthesis of CeO2 nanoparticles on the mesoporous silica support via nanocasting
Wu et al. Biotemplate synthesis and photocatalysis performance of multilayer porous ZnWO4 nano-photocatalyst with rose petals as template
Xu et al. Erbium and nitrogen co-doped SrTiO3 with highly visible light photocatalytic activity and stability by solvothermal synthesis
Yanchao et al. La-doped titania nanocrystals with superior photocatalytic activity prepared by hydrothermal method
Lee et al. Preparation of dumbbell-like Er/ZnO microrods with efficient energy upconversion for the catalytic degradation of tartaric acid in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant