CN109002454B - 一种确定目标单词的拼读分区的方法和电子设备 - Google Patents
一种确定目标单词的拼读分区的方法和电子设备 Download PDFInfo
- Publication number
- CN109002454B CN109002454B CN201810402172.XA CN201810402172A CN109002454B CN 109002454 B CN109002454 B CN 109002454B CN 201810402172 A CN201810402172 A CN 201810402172A CN 109002454 B CN109002454 B CN 109002454B
- Authority
- CN
- China
- Prior art keywords
- partition
- word
- combination
- words
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005192 partition Methods 0.000 title claims abstract description 586
- 238000000034 method Methods 0.000 title claims abstract description 75
- 238000012216 screening Methods 0.000 claims description 31
- 238000004590 computer program Methods 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/06—Foreign languages
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Electrically Operated Instructional Devices (AREA)
Abstract
本发明实施例涉及电子辅助教学技术领域,具体公开了一种确定目标单词的拼读分区的方法和电子设备。其中,所述方法包括:基于预设的拼读总库,确定接收到的目标单词对应的最佳分区组合;根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区;其中,所述拼读总库包括单词最佳分区组合数据库,所述单词最佳分区组合数据库中记载有备选单词以及每一个所述备选单词对应的最佳分区组合,所述目标单词为所述备选单词中的一个。通过上述技术方案,本发明实施例能够从拼读结构的源头上提升所述目标单词内各拼读分区的正确发音概率。
Description
技术领域
本发明实施例涉及电子辅助教学技术领域,尤其涉及一种确定目标单词的拼读分区的方法和电子设备。
背景技术
一般地,以英语、德语等“字母拼写文字”类语言为母语的人士都能依靠直观方式观察单词本身的字母串写序列,懂得首先把所述序列按音节方式分割成分区字母串,然后懂得在没有音标提示的协助下,仅凭语言字母拼音规则逐一观察分割后各组音节的字母串直接进行发音,或进行音节内的音素分割拼读。
这种分割成分区字母串的方式是为了把词汇中包含相同分区字母串的单词关联起来成为关联单词,以方便把其中的关联分区字母串统一按语言字母拼音规则进行发音分类,并按对应的发音类型进行拼读。理论上,这种拼读方式能有效地把关联单词各式各样的整体读音简化成有限音节类型的分区读音,属于解决“字母拼写文字”类外语的读音问题的上佳途径。但实际上在关联单词之间的关联分区字母串除了包含关联同类发音,也常会出现超过一种或多种关联异类发音的对应关系,而这些不同的对应关系的出现规律有不少是包含一些非规律性的特例或存在复杂难以记忆的应用规律,这使得外语学习者、甚至老师在面对这些疑似关联单词时,要么因当前分区字母串本身包含一种或者多种异音关联字母串而把其中一种关联异类发音,在不确定的情况下误读出来;要么误认定另一关联单词中的关联异类发音为目标单词关联分区字母串的关联同类发音,而产生过份自信的误读;这两种误读问题均是由于拼读分区出现的关联异类发音造成的,而这些关联异类发音是目标语言拼读分区的结构性产物,所以所述两种误读问题都是属于分区结构性的误读问题,容易成为外语学习者、甚至老师不由自主地误读的诱因。
因此,如何改善单词的拼读分区的结构以从结构源头上提升单词的正确发音概率是当前亟待解决的问题。
发明内容
本发明实施例提供了一种确定目标单词的拼读分区的方法和电子设备,能够针对该目标单词提供有助提升结构性正确发音概率的拼读分区。
为解决上述技术问题,本发明实施例提供了如下技术方案:
第一方面,本发明实施例提供一种确定目标单词的拼读分区的方法,包括:
基于预设的拼读总库,确定接收到的目标单词对应的最佳分区组合,其中,所述拼读总库包括单词最佳分区组合数据库,所述单词最佳分区组合数据库中记载有备选单词以及每一个所述备选单词对应的最佳分区组合,所述目标单词为所述备选单词中的一个;
根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区。
可选地,所述拼读总库还包括:单词可能性分区组合数据库,所述单词可能性分区组合数据库中记载有所述备选单词,每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率;其中,每一个所述分区单元代表一种字母串和一种发音代码的对应关系;
所述单词最佳分区组合数据库中的每一个所述备选单词所对应的最佳分区组合可从所述单词可能性分区组合数据库中筛选得到。
可选地,所述方法还包括:
基于所述单词可能性分区组合数据库,确定每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率;
分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合;
将所述备选单词及其对应的最佳分区组合记录于所述单词最佳分区组合数据库。
可选地,所述分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合,包括:
分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,确定所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率;
基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合。
可选地,所述基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合,包括:
筛选出综合结构性正确发音概率满足第一预设条件的可能性分区组合,构成所述备选单词对应的优选可能性分区组合群;
根据第二预设条件从所述优选可能性分区组合群中筛选出所述备选单词对应的最佳分区组合。
可选地,所述拼读总库还包括:分区单元数据库,所述分区单元数据库中记载有目标词汇库中每一个单词对应的全部分区单元,每一个所述分区单元对应的字母串和发音代码以及包括所述分区单元的单词,其中,所述目标词汇库中包括所述备选单词;
所述单词可能性分区组合数据库中的每一个所述分区单元的结构性正确发音概率可基于所述分区单元数据库计算得到。
可选地,所述方法还包括:
分别获取每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元;
分别针对每一个所述备选单词对应的每种可能性分区组合中的每个分区单元,从所述分区单元数据库中提取出包括所述分区单元的第一类单词和包括所述分区单元对应的字母串的第二类单词,并基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率;
将每一个所述分区单元对应的结构性正确发音概率对应记录于所述单词可能性分区组合数据库。
可选地,所述第一类单词、所述第二类单词与所述备选单词属于同一词汇类别。
可选地,所述基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率,包括:
获取所述第一类单词在与所述词汇类别对应的统计场景中出现的次数,记为第一出现次数;
获取所述第二类单词在所述统计场景中出现的次数,记为第二出现次数;
根据所述第一出现次数和所述第二出现次数确定所述分区单元对应的结构性正确发音概率。
可选地,所述拼读总库还包括:基础字母串与基础发音代码对应关系库,所述基础字母串与基础发音代码对应关系库中记载有所有基础字母串及其对应的基础发音代码;
所述分区单元数据库可基于所述目标词汇库和所述基础字母串与基础发音代码对应关系库计算得到。
第二方面,本发明实施例提供一种电子设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的确定目标单词的拼读分区的方法。
第三方面,本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使电子设备执行如上所述的确定目标单词的拼读分区的方法。
本发明实施例的有益效果是:区别于现有技术的情况,本发明实施例提供的确定目标单词的拼读分区的方法和电子设备,通过基于预设的拼读总库中的单词最佳分区组合数据库,确定接收到的目标单词对应的最佳分区组合,进而根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区,其中,所确定的最佳分区组合中的分区单元具有较高的结构性正确发音概率,从而能够从拼读结构本质上提升目标单词的正确发音概率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种确定目标单词的拼读分区的方法的流程示意图;
图2是本发明实施例提供的一种基于单词可能性分区组合数据库创建单词最佳分区组合数据库的方法的流程示意图;
图3是本发明实施例提供的一种创建单词可能性分区组合数据库的方法的流程示意图;
图4是本发明实施例提供的一种确定目标单词的拼读分区的装置的结构示意图;
图5是本发明实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
需要说明的是,如果不冲突,本发明实施例中的各个特征可以相互结合,均在本发明的保护范围之内。另外,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
当前,为了辅助“字母拼写文字”类语言的自然拼读教学,在一些词典(比如,英语词典)或者外语辅助教学设备中,除了记载有单词的完整字母串写序列、完整发音代码(比如,英语的完整音标串序列)以及其含义解析之外,还根据该外语语言学的音节分类方法在其完整字母串写序列中插入音节标记以显示该单词的拼读分区。以英语为例:根据英语语言学的“6音节”分类方法,在单词“different”中插入音节标记“-”后变成“dif-fe-rent”,以便于学习者根据“dif”、“fe”和“rent”三个拼读分区对该单词“different”进行自然拼读。
然而,基于所述传统的音节分类方法所确定的拼读分区中有不少会存在“同样的字母串,当在其前/后加载了不同的字母串组合时,其发音常会产生不同变异”的问题(即,相同字母串在不同的单词中所对应的发音有可能不同的问题),使音节性拼读分区在结构上容易出现一些在关联字母串与正确发音的对应关系上难以察觉的变化规律,从而使得单词在音节分区拼读上出现结构性正确发音概率较低的现象,也在音节分区的结构上更增加外语学习者拼读错误的可能性。以英语为例,在“dif-fe-rent”中,字母串“rent”原本属于一个完整独立的单词,其发音为/rent/,但字母串“rent”在“dif-fe-rent”中的发音为若学习者直接将以前学过的单词“rent”的发音/rent/套用在“dif-fe-rent”中,就会导致拼读错误。而分区“fe”在英语中更包含超过5种不同发音的可能性。
基于此,本发明实施例提供了一种确定目标单词的拼读分区的方法、一种确定目标单词的拼读分区的装置、一种电子设备、一种非暂态计算机可读存储介质以及一种计算机程序产品。
其中,本发明实施例提供的确定目标单词的拼读分区的方法是一种寻找目标单词对应的最佳分区组合以综合提升目标单词各拼读分区的结构性正确发音概率的方法,具体为:基于预设拼读总库,确定接收到的目标单词的最佳分区组合,然后根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区;其中,所述拼读总库包括单词最佳分区组合数据库,所述单词最佳分区组合数据库中记载有备选单词以及每一个所述备选单词对应的最佳分区组合,所述目标单词为所述备选单词中的一个,并且,基于该拼读总库所确定的最佳分区组合中的分区单元具有相对较高的结构性正确发音概率,有助于降低外语学习者在拼读分区的结构性漏洞上,产生过份自信地误认另一已知关联单词(即,词汇中包含相同分区字母串的单词)包含的同字母异音类关联拼读分区发音为目标单词关联拼读分区的正确发音之可能性。
其中,本发明实施例提供的确定目标单词的拼读分区的装置是由软件程序构成的能够实现本发明实施例提供的确定目标单词的拼读分区的方法的虚拟装置,其与本发明实施例提供的确定目标单词的拼读分区的方法基于相同的发明构思,具有相同的技术特征以及有益效果。
其中,本发明实施例提供的电子设备可以是任意类型的电子设备,比如:学习机、智能手机、个人电脑、平板电脑、机器人、云端服务器等等。该电子设备能够执行本发明实施例提供的确定目标单词的拼读分区的方法,或者,运行本发明实施例提供的确定目标单词的拼读分区的装置。
此外,应当理解的是,本发明实施例提供的确定目标单词的拼读分区的方法、装置、电子设备、非暂态计算机可读存储介质以及计算机程序产品能够适用于任意能够实现自然拼读方法的“字母拼写文字”类语言,比如:英语、德语、法语、希腊语、意大利语、葡萄牙语等等。从而,在本发明实施例中,所述“目标单词”可以是上述任意一种语言的单词。其中,为了方便解释说明本发明的发明构思,在本发明实施例中,主要以所述目标单词为英语单词为例进行详细说明。
下面结合附图,对本发明实施例作进一步阐述。
实施例一
图1是本发明实施例提供的一种确定目标单词的拼读分区的方法的流程示意图,该方法可以由任意类型的电子设备执行。
具体地,请参阅图1,该方法可以包括但不限于如下步骤:
步骤100:基于预设的拼读总库,确定接收到的目标单词对应的最佳分区组合。
在本实施例中,所述“拼读总库”用于确定接收到的目标单词对应的最佳分区组合,其可以是预先全部设置好的数据总库,也可以是逐步更新完善的数据总库。具体地,所述拼读总库内可以包括一个或者多个记载有多种对应关系的数据库。特别地,在本实施例中,该拼读总库中包括“单词最佳分区组合数据库”。如表1所示,所述“单词最佳分区组合数据库”中至少记载有备选单词以及每一个所述备选单词对应的最佳分区组合。
表1
其中,所述“备选单词”可以是任意一种“字母拼写文字”类语言的单词,比如,英语单词、德语单词、法语单词、希腊语单词等等,在本实施例中,以所述备选单词为英语单词为例进行说明,但其并不用于限定本发明。具体地,所述“备选单词”可以是任意已经确定好其对应的最佳分区组合的单词,其中,每一单词的“最佳分区组合”由若干个分区单元组成,每一个分区单元代表一种字母串和一种发音代码的对应关系(其中,所述“发音代码”是指能够表征某种发音的代码,具体地,其可以为音标串,或者,与相关发音对应的特定代码),并且,最佳分区组合中的分区单元的结构性正确发音概率相对较高(即,最佳分区组合中的分区单元所代表的字母串在各关联单词中根据与其对应的发音代码进行发音的概率相对较高)。举例来说,如表1所示,单词“different”的最佳分区组合为“dif-ferent:/dIf/-”,其由两个分区单元(即,“dif-/dIf/”和“ferent-”)组成,其中,分区单元“dif-/dIf/”和“ferent-”均具有相对较高的结构性正确发音概率,即,字母串“dif”在各包含“dif”的关联单词中都发/dIf/音,而字母串“ferent”在绝大多数包含“ferent”的关联单词中都发音,从而,基于该最佳分区组合“dif-ferent:/dIf/-”确定单词“different”的拼读分区以进行自然拼读,可以从拼读结构的源头上提升单词“different”各分区的正确发音概率,有助于从拼读结构的源头上提升学员正确拼读“different”的概率。
在本实施例中,所述“目标单词”为电子设备接收到的待确定其拼读分区的单词,其为上述备选单词中的一个。从而,当电子设备接收到某一目标单词时,可以通过查询拼读总库中的单词最佳分区组合数据库,即可匹配得到该目标单词对应的最佳分区组合。
其中,在一些实施例中,所述“拼读总库”中还可以包括“单词可能性分区组合数据库”,所述“单词最佳分区组合数据库”中的每一个所述备选单词所对应的最佳分区组合均可从该“单词可能性分区组合数据库”中筛选得到。
具体地,该“单词可能性分区组合数据库”中至少记载有上述“单词最佳分区组合数据库”中所记载的所有备选单词,每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率(也就是说,在该“单词可能性分区组合数据库”中记载有:备选单词、可能性分区组合、分区单元及其结构性正确发音概率的层级对应关系)。其中,每一种可能性分区组合代表一种分割拼读分区的方式,备选单词对应的“最佳分区组合”为其对应的若干种“可能性分区组合”中的一种。再者,每种可能性分区组合中的每一个分区单元代表一种字母串和一种发音代码的对应关系,该分区单元的“结构性正确发音概率”即该分区单元所代表的字母串在各关联单词中根据与其对应的发音代码进行发音的概率(亦即,仅凭任何一个关联单词中该分区单元字母串的对应发音,借用到目标单词中该分区单元对应的字母串里进行发音,其刚好对上正确发音的概率),其可以基于目标词汇库中包括该分区单元的第一类单词和包括该分区单元对应的字母串的第二类单词来确定,也可以基于该分区单元的关联分区单元的数量来确定(具体地,可参见下述实施例二所提供的创建单词可能性分区组合数据库的方法)。
举例来说,表2列举了“单词可能性分区组合数据库”中的单词“different”所对应的“部分”可能性分区组合,每一种可能性分区组合内包括的分区单元,以及,每一个分区单元对应的结构性正确发音概率。其中,由表2可见,分区单元“dif-/dIf/”的结构性正确发音概率为100%,则说明字母串在任意一个包含字母串“dif”的关联单词中的发音均为/dIf/;分区单元“ferent-”的结构性正确发音概率为99.88%,则说明字母串“ferent”在各包含字母串“ferent”的关联单词中发音的概率为99.88%。
表2
在实际应用中,该“单词可能性分区组合数据库”可以是预先设置好的,其内所记载的单词还可以包括所述备选单词之外的单词(比如,“单词最佳分区组合数据库”中记载的备选单词包括:A、B和C,而“单词可能性分区组合数据库”中记载的单词可以包括A、B、C、D和E);或者,该“单词可能性分区组合数据库”也可以是与“单词最佳分区组合数据库”同时逐步形成的(比如,在“单词可能性分区组合数据库”中确定单词A对应的可能性分区组合、分区单元及其结构性正确发音概率后,筛选出该单词A对应的最佳分区组合,并将其更新于“单词最佳分区组合数据库”中,从而“单词可能性分区组合数据库”中仅包括所述备选单词),本发明实施例对此不作具体限定。
具体地,请参阅图2,为本发明实施例提供的一种基于单词可能性分区组合数据库创建单词最佳分区组合数据库的方法,该方法可以包括但不限于如下步骤:
步骤110:基于所述单词可能性分区组合数据库,确定每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率。
在本实施例中,可以认为“单词可能性分区组合数据库”是已经设置好的,因此,通过查询该“单词可能性分区组合数据库”即可获取到每一个备选单词对应的若干种可能性分区组合,每一种可能性分区组合包括的若干个分区单元,以及,每一个分区单元对应的结构性正确发音概率。
步骤120:分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合。
由上可知,分区单元的结构性正确发音概率用于表征其所代表的字母串在各包含该字母串的关联单词中根据与其对应的发音代码进行发音的概率;结构性正确发音概率越高,说明其所代表的字母串在各所述关联单词中根据该发音代码进行发音的概率越高。从而,在本实施例中,可以根据备选单词所对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出一个最优的可能性分区组合作为其最佳分区组合。
其中,“根据备选单词所对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出其最佳分区组合”的具体实施方式可以结合实际应用场景或者语言特性来确定。
比如,在一些实施例中,可以分别针对每一个所述备选单词,在其对应的若干种可能性分区组合中,筛选出包括最多结构性正确发音概率满足预设要求的分区单元的可能性分区组合,作为该备选单词的最佳分区组合。
其中,所述“预设要求”可以是:结构性正确发音概率为100%;也可以是:结构性正确发音概率超过某一预设阈值(比如,98%);只要所确定的最佳分区组合中具有多个结构性正确发音概率高的分区单元即可,本发明实施例对此不作具体限定。
在该实施例中,以结构性正确发音概率满足预设要求的分区单元的数量作为筛选标准,能够使得所筛选出的最佳分区组合中的大多数分区单元都具有相对较高的结构性正确发音概率,从而,能够从分区结构的源头上辅助提升外语学习者自然拼读该备选单词时的正确率,同时,便于外语学习者将这些分区单元所代表的字母串-发音代码的对应关系更充分有效并且自然而然地应用到其它包含相同字母串的陌生单词中,达到尽量高的牢记效益和可应用效益(即,将该对应关系应用到更多包含该字母串的关联单词中)。
又如,在另一些实施例中,也可以首先分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,确定所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率;然后,基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合。
其中,在该实施例中,所述“综合结构性正确发音概率”用于表征某一可能性分区组合中各分区单元的结构性正确发音概率的综合表现,其可以根据该可能性分区组合中的各个分区单元的结构性正确发音概率计算得到。其中,为了能够较大程度地反映出可能性分区组合中各个分区单元的结构性正确发音概率,在实际应用中,可以采用数学平均算法对每种可能性分区组合中每个分区单元的结构性正确发音概率进行计算,从而得到每种可能性分区组合的综合结构性正确发音概率。其中,所述数学平均算法可以包括但不限于:总数学平均算法、中间平均算法、众数平均算法、RMS平均算法等等。
进一步地,在确定了备选单词对应的每种可能性分区组合的综合结构性正确发音概率之后,可以直接选择综合结构性正确发音概率最高的可能性分区组合作为该备选单词的最佳分区组合。
或者,在一些实施例中,在确定了备选单词对应的每种可能性分区组合的综合结构性正确发音概率之后,也可以首先筛选出综合结构性正确发音概率满足第一预设条件的可能性分区组合,构成所述备选单词对应的优选可能性分区组合群;然后再根据第二预设条件从所述优选可能性分区组合群中筛选出所述备选单词对应的最佳分区组合。
其中,所述“第一预设条件”用于从若干种可能性分区组合中筛选出一个或者多个综合结构性正确发音概率高,并且综合结构性正确发音概率十分相近的优质组合,构成优选可能性分区组合群。举例来说,该第一预设条件可以设置为“综合结构性正确发音概率大于某一门限值”、“综合结构性正确发音概率落入根据最高综合结构性正确发音概率以及允许的可接受范围所形成的数值区间内(比如,假设最高综合结构性正确发音概率为99.94%,允许的可接受范围为5,则,该第一预设条件可以设为:综合结构性正确发音概率落入[(99.94-5)%,99.94%]的数值区间内)”等。
所述“第二预设条件”用于对综合结构性正确发音概率十分相近或相等的优质组合(即,所述的“优选可能性分区组合群”中的可能性分区组合)进行进一步的辅助筛选,使得所筛选出的最佳分区组合更加便于外语学习者记忆以及举一反三地应用到其它关联单词的拼读上。举例来说,所述第二预设条件可以设置为如下所述的任意一项或者多项:
(1)、在所述“优选可能性分区组合群”中,筛选出结构性正确发音概率满足预设要求的分区单元总数量最多的可能性分区组合作为最佳分区组合。从而,可以便于外语学习者累积更多的具有较高结构性正确发音概率的分区单元。
(2)、在所述“优选可能性分区组合群”中,筛选出分区单元包括“通用前缀(general prefix)”或/和“通用后缀(general suffix)”的可能性分区单元作为最佳分区组合。从而,可以便于外语学习者将“通用前缀(general prefix)”或/和“通用后缀(general suffix)”应用到更多的单词拼读中。
(3)、在所述“优选可能性分区组合群”中,筛选出存在一个或者多个分区单元所代表的字母串为一完整单词,并且,该完整单词的发音代码与该分区单元所代表的发音代码相同的可能性分区组合作为最佳分区组合。从而,外语学习者学会了该分区单元,即学会了该完整单词的发音,便于联想和记忆。
其中,应当理解的是,上述所列举的“第一预设条件”和“第二预设条件”的具体形式仅为了解释本发明,而不用于限定本发明。在实际应用中,还可以结合备选单词的语言特征设置其它的“第一预设条件”或“第二预设条件”。
在该实施例中,通过首先以第一预设条件构建出所述备选单词对应的优选可能性分区组合群,再根据第二预设条件从所述优选可能性分区组合群中筛选出该备选单词的最佳分区组合,能够保障筛选出的最佳分区组合具有较高的正确发音概率,同时,便于外语学习者更加有效地进行联想记忆。
步骤130:将所述备选单词及其对应的最佳分区组合记录于所述单词最佳分区组合数据库。
在本实施例中,在确定了某一备选单词的最佳分区组合后,可以将该备选单词及其对应的最佳分区组合记录于单词最佳分区组合数据库。
其中,可以理解的是,在本实施例中,所述“单词可能性分区组合数据库”与所述“单词最佳分区组合数据库”可以是两个相互独立的数据库,也可以是同一数据库中的不同部分(即,在同一数据库中,同时记载有备选单词、可能性分区组合、分区单元、结构性正确发音概率以及最佳分区组合的对应关系),本发明实施例对这两个数据库的表现形式不作具体限定。而当所述“单词可能性分区组合数据库”与所述“单词最佳分区组合数据库”为同一数据库中的不同部分时,可以在基于“单词可能性分区组合数据库”中所记载的对应关系确定了某一备选单词对应的最佳分区组合后,对该最佳分区组合进行标记,从而得到备选单词-最佳分区组合的对应关系。
步骤200:根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区。
在本实施例中,所述“拼读分区”是指对目标单词的完整字母串写序列和/或完整发音代码进行分割后形成的一个或者多个区域。其中,在本实施例中,该区域可以为一个分区单元,即,同时包括字母串和发音代码,那么,所述根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区的具体实施方式为:以步骤100所确定的最佳分区组合中的各个分区单元作为该目标单词的拼读分区。
或者,在一些实施例中,该区域也可以为一个分区单元所代表的字母串(即,仅对目标单词的完整字母串写序列进行分割所形成的区域),在该情况下,所述根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区的具体实施方式可以是:根据所述最佳分区组合,在目标单词的完整字母串写序列中插入音节标记,从而得到该目标单词的各个拼读分区。
通过上述技术方案可知,与传统的通过音节拆分确定单词的拼读分区的方式相比,本发明实施例能够提升该目标单词的拼读分区的结构性正确发音概率,从而在拼读结构的本质上提升目标单词的正确发音概率。比如,在一般的英语词典中,目标单词“different”的拼读分区为:“dif/dIf/”、“fe/f/”和这三个分区单元的结构性正确发音概率分别为100%、2.41%和98.66%,从而,“dif-fe-rent:/dIf/-/f/-”的综合结构性正确发音概率只有67.02%;而在本实施例中,目标单词“different”的拼读分区为:“dif/dIf/”和这两个分区单元的结构性正确发音概率分别为100%和99.88%,从而,“dif-ferent:/dIf/-”的综合结构性正确发音概率却能达到99.94%;由此可见,基于本发明实施例提供的方法所确定的拼读结构“dif-ferent:/dIf/-”的正确发音概率远远高于基于传统音节拆分方法所确定的拼读结构“dif-fe-rent:/dIf/-/f/-”
进一步地,由于在本实施例中,所确定的各个拼读分区一般都具有较高的结构性正确发音概率,在拼读分区结构的源头上降低了外语学习者因拼读分区结构而产生误读的概率。从而,外语学习者在牢记所学过的目标单词的拼读分区后,即可确定该目标单词中每个拼读分区所代表的字母串在各包含相同字母串的关联单词中的最有可能的发音(比如,通过本实施例提供的方法确定英语单词“different”的拼读分区为:“dif/dIf/”和即可确定“dif”在各包含字母串“dif”的关联单词中最有可能的发音为/dIf/,“ferent”在各包含字母串“ferent”的关联单词中最有可能的发音为),进而可将该拼读分区以更大的可借用占比应用到其它包含相同字母串的关联单词中,从而达到最高牢记效益和可应用效益。
再者,外语学习者透过认识本发明提供相关拼读分区,在面对其它陌生单词的情况下,也能够自然而然地懂得如何识别出该陌生单词的拼读分区,并只需借用之前学习过的关联单词中的关联分区的发音,就能以较高的正确机率拼读该陌生单词。
实施例二
在实际应用中,上述的“单词可能性分区组合数据库”可以通过任意合适的方式获得。其中,为了提升所述“单词可能性分区组合数据库”的创建效率,以及,提升该“单词可能性分区组合数据库”中的分区单元的结构性正确发音概率的可靠性,本发明第二个实施例还提供了一种创建所述单词可能性分区组合数据库的方法。
具体地,请参阅图3,该方法可以包括但不限于如下步骤:
步骤310:创建目标词汇库的分区单元数据库。
在本实施例中,所述“目标词汇库”可以是任意类型的词汇库,比如,其可以为某词典、某学术级别的词汇库、科技文献词汇库等等。特别地,该目标词汇库中包括“单词可能性分区组合数据库”中所记载的所有备选单词。
在本实施例中,所创建的“分区单元数据库”可以作为实施例一所述的“拼读总库”中的其中一个数据库,其内至少记载有目标词汇库中每一个单词对应的全部分区单元(其中,如表3所示,在一些实施例中,为了方便记录和查询分区单元,可以为每一个分区单元配置唯一的拼读代号),每一个所述分区单元对应的字母串和发音代码,以及,包括所述分区单元的单词。从而,根据所述“分区单元数据库”,可以得到分区单元(拼读代号)、字母串、发音代码和包含相同拼读代号的各单词之间的对应关系。
表3
其中,由于该目标词汇库中包括所述备选单词,因此,这些备选单词对应的所有分区单元都能够在所创建的“分区单元数据库”中查询到相关的对应关系。所述“单词可能性分区组合数据库”中的每一个分区单元的结构性正确发音概率可基于该“分区单元数据库”计算得到。
在本实施例中,可以首先分别针对目标词汇库中的每一个单词(包括备选单词),确定其对应的若干种可能性分区组合、每种所述可能性分区组合中包括的若干个分区单元以及每个分区单元对应的字母串和发音代码,进而根据这些对应关系创建出该目标词汇库的“分区单元数据库”。其中,在本实施例中,创建目标词汇库的“分区单元数据库”能够便于统计包含相同分区单元或字母串的单词,方便确定每一个分区单元的结构性正确发音概率。
其中,所述“确定单词对应的若干种可能性分区组合、每种所述可能性分区组合中包括的若干个分区单元以及每个分区单元对应的字母串和发音代码”的具体实施方式可以是:
由语言专家根据其经验分别对目标词汇库中的每一个单词进行分割,获得该单词对应的若干种可能性分区组合,同时,提取出每种可能性分区组合中包括的若干个分区单元,并将其记录于如表4所示的对应关系表中。
表4
或者,在另一些实施例中,为了提升获取这些对应关系的效率,所述“确定单词对应的若干种可能性分区组合、每种所述可能性分区组合中包括的若干个分区单元以及每个分区单元对应的字母串和发音代码”的具体实施方式也可以是:
基于预设好的“基础字母串与基础发音代码对应关系库”,分别针对目标词汇库中的每一个单词,确定其基础分区单元;进而根据其基础分区单元确定其对应的若干种可能性分区组合,每种所述可能性分区组合中包括的若干个分区单元,以及,每个分区单元对应的字母串和发音代码。
其中,该预设好的“基础字母串与基础发音代码对应关系库”可以是实施例一所述的“拼读总库”中的其中一个数据库,其内记载有所有基础字母串与基础发音代码的对应关系(其中,表5示出了部分“基础字母串-基础发音代码”的对应关系)。从而,在针对每一单词进行“基础字母串-基础发音代码”的匹配时,能够快速得到匹配结果,提升建库效率。
表5
具体地,在分别针对每一单词,确定如上所述的各种对应关系时,可以首先从目标词汇库中提取出该单词的音节标记(比如,单词“dif-fe-rent”中的“-”即其音节标记),并确定该单词为单音节型单词(不含有音节标记的单词)或者多音节型单词(含有至少一个音节标记的单词)。
如果该单词为多音节型单词,则需要首先根据单词的音节标记,对该单词的完整字母串写序列进行拆分,得到若干个字母串(比如,对“mon-i-tor”进行拆分,得到字母串“mon”、“i”和“tor”)。然后,基于该单词的完整发音代码以及“基础字母串与基础发音代码对应关系库”,从左到右依次对这些字母串中的字母进行“基础字母串-基础发音代码”的匹配,得到每个字母串对应的发音代码(比如,匹配后得到:“i/I/”和)。接着按目标外语的语言学规则和特例情况,检测该单词中是否存在共享音素(以英语为例,在两个相邻的分区单元中,如果前一个分区单元的最后一个字母为辅音字母,而后一个分区单元的首字母为元音字母,则,该辅音字母可以是共享音素),如果存在,则把共享音素复制到其后一个分区单元的首位,以使该分区单元成为一个在听觉上完整的音区,从而得到该单词的基础分区单元以及由这些基础分区单元组成的基础分区组合。(比如,对于“monitor”,“n”即和“i/I/”的共享音素,将共享音素“n/n/”复制到“i/I/”的首位后,可以得到一个完整音区进而可以确定单词“monitor”的基础分区单元包括:“ni/nI/”和这些基础分区单元组成的基础分区组合即“mon-ni-tor:-/nI/-”,其中,“n-n”用于表示其为共享音素)。最后,对这些基础分区单元进行合并和拆分,得到该单词的其它可能性分区组合,同时,确定每一种可能性分区组合中包括的分区单元,以及,每一分区单元对应的字母串和发音代码。比如,对和“ni/nI/”合并后可以得到新的分区单元其与另一个基础分区单元可以组成新的可能性分区组合“moni-tor:”;又如,对进行拆分后可以得到新的分区单元“m/m/”和这两个分区单元与剩下的基础分区单元“ni/nI/”和也可以组成新的可能性分区组合“m-on-ni-tor:/m/--/nI/-”。
如果该单词为传统语言学上定义的单音节型单词,则不需根据单词的音节标记,对该单词的完整字母串写序列进行拆分,其完整字母串写序列-完整发音代码即为其基础分区单元,也为其的其中一个可能性分区组合。在对该单词的基础分区单元进行拆分时,可以直接基于该单词的完整发音代码以及“基础字母串与基础发音代码对应关系库”,从左到右依次对这些字母串中的字母进行“基础字母串-基础发音代码”的匹配,得到每个字母串对应的发音代码。例如单词“they”,其基础分区单元即:对该基础分区单元进行拆分后,可以得到新的分区单元:和“ey/eI/”,这些新的分区单元可以组成新的可能性分区组合:“th-ey:-/eI/”。由此,单词“they”的各可能性分区组合包括:和“th-ey:-/eI/”。
在本实施例中,基于基础分区单元获取单词的各种可能性分区组合,能够避免因为跨音区而造成发音混乱的问题。
此外,在又一些实施例中,所述“基础字母串与基础发音代码对应关系库”也可以仅预设好一部分最基本、最常见的“基础字母串-基础发音代码”,在创建如表4所示的对应关系的过程中,逐步完善该“基础字母串与基础发音代码对应关系库”。
在该实施例中,创建如表4所示的对应关系的过程与上述实施例所描述的方式大体相同,其不同之处在于:
(1)、为了能够由简单到复杂地进行“基础字母串-基础发音代码”识别,在该实施例中,可以首先提取出目标词汇库中每个单词对应的完整字母串写序列和完整音标串(即,完整发音代码),并且,按照“字母数量和音标数量从少至多”以及“字母数量与音标数量之差由小至大”等等的规则对目标词汇库中的单词进行排序。比如,该顺序可以为:“1字母-1音标”、“2字母-2音标”、“2字母-1音标”、“3字母-3音标”、“3字母-2音标”、“3字母-1音标”…。然后再根据该排序,依次确定每个单词中包含的“基础字母串-基础发音代码”,以及,每个单词对应的若干种可能性分区组合,每种可能性分区组合中包括的分区单元,以及每个分区单元对应的字母串和发音代码。
(2)、需要首先基于记载在“基础字母串与基础发音代码对应关系库”中的对应关系,识别出每个单词中包含的“基础字母串-基础发音代码”,并将新增的“基础字母串-基础发音代码”同步更新到“基础字母串与基础发音代码对应关系库”。
具体地,针对单音节型单词,比如,their,可以根据如下步骤确定其包含的“基础字母串-基础发音代码”:
(A1)、创造出该单词的各种疑似可能性对比组合。
在本实施例中,可以根据预设的“对照排列模板”对单音节型单词的完整字母串写序列进行分割,生成若干种疑似可能性对比组合,该疑似可能性对比组合的各个分区代表一种基础字母串。比如,5个字母串数(12345)的对照排列模板为:
首先是包含最多5个字母:12345;
然后是包含最多4个字母:1234+5,1+2345;
其次是包含最多3个字母:123+45,123+4+5,12+345,1+234+5,1+2+345;
其次是包含最多2个字母:12+34+5,12+3+45,12+3+4+5,1+23+45,1+23+4+5,1+2+34+5,1+2+3+45;
最后是包含最多1个字母:1+2+3+4+5。
举例来说,假设该单词为“their”,那么,根据上述对照排列模板,可以得到其疑似可能性对比组合包括:their、thei+r、t+heir、the+ir、the+i+r、th+eir、t+hei+r、t+h+eir、th+ei+r、th+e+ir、th+e+i+r、t+he+ir、t+he+i+r、t+h+ei+r、t+h+e+ir以及t+h+e+i+r。
(A2)、删除不符合音素分割规则的组合,获得该单词的对比组合。
在本实施例中,可以根据语言特性设置若干个基础字母串-基础发音代码的匹配规则,用于删除不符合音素分割规则的疑似可能性对比组合。比如,其匹配规则可以包括但不限于:
a)、若没有特殊情况,基础字母串总数=基础发音代码总数。
比如,“their”对应的发音代码为其基础发音代码为和总数为2个,那么,其基础字母串总数也应该为2个,从而可以删除不符合该规则的疑似可能性对比组合后,剩下的对比组合仅包括:“thei+r”,“t+heir”,“the+ir”和“th+eir”。
b)、不拆分带有预设标记的基础字母串。
在本实施例中,可以对“基础字母串与基础发音代码对应关系库”中的部分基础字母串(比如,ch、th等)设置不拆分标记。比如,表5中的“*”,即表示,当存在“th”时,不将“t”和“h”拆分开来。从而,基于该匹配规则,可以删除组合“t+heir”。
c)、满足基础音节分类规则。
其中,所述音节分类规则是根据目标外语的语言学规则进行音节分类,例如英语的6音节分类法、德语的长短元音分类法等等。比如,在英语单词“their”中,单词结构是典型的“辅音-元音-辅音(C-V-C)”闭音节,而且刚好字尾是字母“r”,需要顺从英语6音节分类中的“r-控制型元音(R-controlled Syllable Types)”。所以,元音需与后面的“r”合并为一组。在3个余下对比组合中,就只有“th+eir”满足该规则。而有些外语的分割规则比英语的开闭音节分割原则更加简洁,以德语为例,两个元音之间只有一个辅音,辅音跟后面元音构成音节。
(A3)、按照步骤(A1)中的排序,基于剩下的对比组合与“基础字母串与基础发音代码对应关系库”中记载的对应关系进行匹配,确定该单词中包含的“基础字母串-基础发音代码”。
比如,经过步骤(A2)后,“their”的对比组合只剩下“th+eir”,而通过查询“基础字母串与基础发音代码对应关系库”,可以找到的对应关系,但找不到的对应关系,从而可以将作为新增的对应关系更新到“基础字母串与基础发音代码对应关系库”。
其中,在本实施例中,倒序排列各疑似可能性对比组合,是为了不与前级的“基础字母串-基础发音代码”混淆在一起,先保证在最多字母数量的“基础字母串-基础发音代码”中找不到匹配的对应关系,才一级级地往前一级里找。
而针对多音节型单词,比如“early”,可以根据如下步骤确定该单词中的“基础字母串-基础发音代码”的对应关系:
(B1)、根据单词的音节标记,对该单词进行音节拆分。
(B2)、把每个拆分后的音节,逐一以单音节型单词的方式(即上述步骤(A1)至(A3))确定其包含的“基础字母串-基础发音代码”对应关系。
其中,本步骤的具体实施方式与上述步骤(A1)至(A3)大致相同。比如,通过查询“基础字母串与基础发音代码对应关系库”,可以得到的对应关系,以及“l-/l/”“y-/i/”的对应关系,从而可以确定单词“early”的基础分区单元包括和“ly-/li/”。
而本步骤与上述步骤(A1)至(A3)的不同之处在于:在本步骤中,不会马上将新增的“基础字母串-基础发音代码”更新到“基础字母串与基础发音代码对应关系库”,而是需要等全部的音节都匹配完成后才能验证该新增的“基础字母串-基础发音代码”是否正确,如果正确才将该新增的“基础字母串-基础发音代码”更新到“基础字母串与基础发音代码对应关系库”。
其中,在一些实施例中,如果在进行匹配时,超过一个对比组合,或者,在一个对比组合中存在两个或以上的分区(基础字母串)对应的基础发音代码无法确定(或者说,存在两个或以上新增“基础字母串-基础发音代码”),那么,可以将这些无法确定的“基础字母串-基础发音代码”暂存于“待决定库”,以便专家介入手动选择。
步骤320:分别获取每一个备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元以及每个分区单元对应的字母串和发音代码,记录于“单词可能性分区组合数据库”中。
在本实施例中,确定备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元以及每个分区单元对应的字母串和发音代码的具体实施方式可以参考上述步骤310中相应的描述,此处便不再赘述。
步骤330:分别针对每一个所述备选单词对应的每种可能性分区组合中的每个分区单元,从所述分区单元数据库中提取出包括所述分区单元的第一类单词和包括所述分区单元对应的字母串的第二类单词,并基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率。
在本实施例中,将同时包括某一分区单元对应的字母串和发音代码的单词称为与该分区单元对应的“第一类单词”,而包括该分区单元对应的字母串的单词称为与该分区单元对应的“第二类单词”(亦即,实施例一中所描述的“关联单词”)。比如,如表3所示,对于分区单元“if/If/”,其对应的第一类单词为:包括字母串“if”并且该字母串“if”的发音为/If/的单词,比如:different、gift等;而其对应的第二类单词则为:包括字母串“if”的单词,比如:different、gift、life、rifle、uniform、modify等。
其中,在本实施例中,可以通过查询上述“分区单元数据库”,确定每个备选单词对应的每种可能性分区组合中的每个分区单元对应的第一类单词和第二类单词。比如,如表2所示,单词“different”的其中一个可能性分区组合“dif-ferent:/dIf/-”中包括分区单元“dif/dIf/”和通过查询“分区单元数据库”(如表3所示),即可确定分区单元“dif/dIf/”对应的第一类单词和第二类单词均包括difficult、difficulty等;分区单元对应的第一类单词包括different等,第二类单词包括different、differential等。
又,由于本实施例通过分区单元对应的结构性正确发音概率来表征该分区单元中的字母串在各关联单词中根据该发音代码进行发音的概率。因此,在本实施例中,可以分别针对每一个分区单元,基于其对应的第一类单词(同时包括字母串和发音代码)和第二类单词(仅包括字母串)确定其结构性正确发音概率。
具体地,所述“分别针对每一个分区单元,基于其对应的第一类单词和第二类单词确定其结构性正确发音概率”的具体实施方式可以是:分别针对每一个分区单元,统计出所述目标词汇库中该分区单元对应的第一类单词的个数N1以及第二类单词的个数N2;然后基于N1和N2确定该分区单元的结构性正确发音概率(比如:其结构性正确发音概率=N1/N2,或者,其结构性正确发音概率=N1/(N2-N1)等)。
此外,在实际应用中,外语学习者的语言水平或者主要接触的词汇类别有可能会有所差异,不同外语学习者有可能具有不同的词汇量,而在不同的词汇量的情况下,即便是根据相同的方法(比如,如上所述的根据相关单词的个数得到分区单元的结构性正确发音概率)统计得到的分区单元的结构性正确发音概率也有可能会存有差异。比如,对于小学生来说,其词汇量较少,在其所接触的单词中,某字母串X的发音有可能均为/x1/,从而,X/x1/的结构性正确发音概率为100%;然而,对于年级较高的学生来说,其词汇量相对较大,在其所接触的单词中,该字母串X的可能性发音除了/x1/之外还有可能包括/x2/,那么,此时,X/x1/的结构性正确发音概率就不再是100%,甚至有可能低于50%。若直接基于目标词汇库中的所有单词进行分区单元的结构性正确发音概率的计算,就无法针对学生的特性提供更加合适的拼读分区方案。
基于此,在一些实施例中,为了提升该“单词可能性分区组合数据库”中的分区单元的结构性正确发音概率的可靠性,所述第一类单词、所述第二类单词与所述备选单词属于同一词汇类别。该词汇类别可以包括但不限于:小学词汇、中学词汇、专业词汇、日常用语、旅游用语等等。
进一步地,考虑到外语学习者在学习外语时一般不仅仅是背单词,更多的是通过实际的应用场景(比如,阅读材料、听力材料、新闻娱乐网页等的语言、文字出现的被统计场所)进行语言学习,不同单词在对应的统计场景中出现的次数不一样,在又一些实施例中,所述“分别针对每一个分区单元,基于其对应的第一类单词和第二类单词确定其结构性正确发音概率”的具体实施方式还可以是:
首先,获取所述第一类单词在与所述词汇类别对应的统计场景中出现的次数(记为第一出现次数M1),以及,所述第二类单词在所述统计场景中出现的次数(记为第二出现次数M2);然后,根据所述第一出现次数M1与所述第二出现次数M2确定所述分区单元对应的结构性正确发音概率(比如,结构性正确发音概率=M1/M2,或者,结构性正确发音概率=M1/(M2-M1)等)。
其中,所述“与所述词汇类别对应的统计场景”可以具体为:与所述词汇类别对应的阅读材料、听力材料等。
由此,在该实施例中,通过根据所述第一出现次数M1与所述第二出现次数M2确定所述分区单元对应的结构性正确发音概率,能够更加符合学习者的学习场景,排除和不考虑那些在应用上罕见的词汇对分区单元的结构性正确发音概率的影响,可以进一步提升该“单词可能性分区组合数据库”中的分区单元的结构性正确发音概率的可靠性。
步骤340:将每一个所述分区单元对应的结构性正确发音概率对应记录于所述单词可能性分区组合数据库。
在本实施例中,在确定了每个分区单元对应的结构性正确发音概率之后,将其对应记录于所述“单词可能性分区组合数据库”,具体为,在确定了某分区单元的结构性正确发音概率之后,将该结构性正确发音概率记录在所述“单词可能性分区组合数据库”中与该分区单元对应的位置处。
通过上述技术方案可知,本实施例提供的创建单词可能性分区组合数据库的方法能够高效地得到目标词汇库中每个单词的若干种可能性分区组合、每种可能性分区组合中包括的分区单元,每个分区单元对应的字母串和发音代码,以及,每个分区单元对应的结构性正确发音概率。
另外,应当理解的是,在上述实施例中,基于分区单元对应的第一类单词和第二类单词确定其对应的结构性正确发音概率仅为其中一种较优的实施方式,在实际应用中,也可以采用其它方式确定分区单元的结构性正确发音概率,其均应落入本发明要求保护的范围。
比如,在一些实施例中,可以无需考虑关联单词,仅根据分区单元的关联分区单元的数量确定该分区单元的结构性正确发音概率。其中,所述“关联分区单元”是指与该分区单元具有相同字母串的分区单元。
具体为,首先确定目标词汇库中所有单词的所有分区单元,并将具有相同字母串的分区单元作为彼此的关联分区单元。当需要确定某一分区单元的结构性正确发音概率时,可以首先确定该分区单元的关联分区单元的数量Q,然后根据该数量Q确定该分区单元的结构性正确发音概率。比如,其结构性正确发音概率=1/Q。Q越大,说明与该分区单元同字母异音的关联分区单元越多,该分区单元的结构性正确发音概率越低。举例来说,在确定分区单元“if/If/”的结构性正确发音概率时,可以确定该分区单元的关联分区单元包括:“if/If/”、“if/aIf/”和数量Q=3,从而,分区单元“if/If/”的结构性正确发音概率为1/3;而在确定分区单元“dif/dIf/”的结构性正确发音概率时,由于其关联分区单元的数量Q=1,从而,分区单元“dif/dIf/”的结构性正确发音概率为1(100%)。
实施例三
图4是本发明实施例提供的一种确定目标单词的拼读分区的装置的结构示意图,请参阅图4,该装置40包括:最佳分区组合确定单元41和拼读分区确定单元42。
其中,最佳分区组合确定单元41用于基于预设的拼读总库,确定接收到的目标单词对应的最佳分区组合,其中,所述拼读总库包括单词最佳分区组合数据库,所述单词最佳分区组合数据库中记载有备选单词以及每一个所述备选单词对应的最佳分区组合,所述目标单词为所述备选单词中的一个;
拼读分区确定单元42用于根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区。
在实际应用中,当接收到目标单词时,可以首先通过最佳分区组合确定单元41基于预设的拼读总库,确定该接收到的目标单词对应的最佳分区组合,然后再利用拼读分区确定单元42根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区。其中,所述拼读总库包括单词最佳分区组合数据库,所述单词最佳分区组合数据库中记载有备选单词以及每一个所述备选单词对应的最佳分区组合,所述目标单词为所述备选单词中的一个,并且所述最佳分区组合中的各分区单元的结构性正确发音概率较高。
其中,在一些实施例中,所述拼读总库还包括:单词可能性分区组合数据库,所述单词可能性分区组合数据库中记载有所述备选单词,每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率;其中,每一个所述分区单元代表一种字母串和一种发音代码的对应关系;所述单词最佳分区组合数据库中的每一个所述备选单词所对应的最佳分区组合可从所述单词可能性分区组合数据库中筛选得到。
基于此,在一些实施例中,该装置40还包括:结构性正确发音概率提取单元43、筛选单元44以及单词最佳分区组合数据库创建单元45。
其中,结构性正确发音概率提取单元43用于基于所述单词可能性分区组合数据库,确定每一所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率;
筛选单元44用于分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合;
单词最佳分区组合数据库创建单元45用于将所述备选单词及其对应的最佳分区组合记录于所述单词最佳分区组合数据库。
具体地,在一些实施例中,所述筛选单元44包括:综合结构性正确发音概率确定模块441和筛选模块442。
综合结构性正确发音概率确定模块441用于分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,确定所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率;
筛选模块442用于基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合。
其中,在一些实施例中,所述筛选模块442具体用于:筛选出综合结构性正确发音概率满足第一预设条件的可能性分区组合,构成所述备选单词对应的优选可能性分区组合群;根据第二预设条件从所述优选可能性分区组合群中筛选出所述备选单词对应的最佳分区组合。
其中,在又一些实施例中,所述拼读总库还包括:分区单元数据库,所述分区单元数据库中记载有目标词汇库中每一个单词对应的全部分区单元,每一个所述分区单元对应的字母串和发音代码以及包括所述分区单元的单词,其中,所述目标词汇库中包括所述备选单词;所述单词可能性分区组合数据库中的每一个所述分区单元的结构性正确发音概率可基于所述分区单元数据库计算得到。
基于此,在一些实施例中,该装置40还包括:可能性分区组合获取单元46、结构性正确发音概率计算单元47以及单词可能性分区组合数据库创建单元48。
可能性分区组合获取单元46用于分别获取每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括若干个分区单元;
结构性正确发音概率计算单元47用于分别针对每一个所述备选单词对应的每种可能性分区组合中的每个分区单元,从所述分区单元数据库中提取出包括所述分区单元的第一类单词和包括所述分区单元对应的字母串的第二类单词,并基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率;
单词可能性分区组合数据库创建单元48用于将每一个所述分区单元对应的结构性正确发音概率对应记录于所述单词可能性分区组合数据库。
其中,在一些实施例中,所述第一类单词、所述第二类单词与所述备选单词属于同一词汇类别。
其中,在一些实施例中,结构性正确发音概率计算单元47具体用于:分别针对每一个所述备选单词对应的每种可能性分区组合中的每个分区单元,从所述分区单元数据库中提取出包括所述分区单元的第一类单词和包括所述分区单元对应的字母串的第二类单词;获取所述第一类单词在与所述词汇类别对应的统计场景中出现的次数,记为第一出现次数;获取所述第二类单词在所述统计场景中出现的次数,记为第二出现次数;根据所述第一出现次数和所述第二出现次数确定所述分区单元对应的结构性正确发音概率。
再者,在有一些实施例中,所述拼读总库还包括:基础字母串与基础发音代码对应关系库,所述基础字母串与基础发音代码对应关系库中记载有所有基础字母串及其对应的基础发音代码;所述分区单元数据库可基于所述目标词汇库和所述基础字母串与基础发音代码对应关系库计算得到。
需要说明的是,由于所述确定目标单词的拼读分区的装置与上述实施例提供的方法基于相同的发明构思,因此,方法实施例一和二中相应的内容及其有益效果同样适用于装置实施例,此处不再详述。
通过上述技术方案可知,本发明实施例的有益效果在于:本发明实施例提供的确定目标单词的拼读分区的装置通过最佳分区组合确定单元41基于预设的拼读总库中的单词最佳分区组合数据库,确定接收到的目标单词对应的最佳分区组合,进而利用拼读分区确定单元42根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区,其中,所确定的最佳分区组合中的分区单元具有较高的结构性正确发音概率,从而能够从拼读结构本质上提升目标单词的正确发音概率。
实施例四
图5是本发明实施例提供的一种电子设备的结构示意图,该电子设备500可以是任意类型的电子设备,如:学习机、智能手机、机器人、个人电脑、中央或云服务器等,能够执行上述方法实施例提供的确定目标单词的拼读分区的方法,或者,运行上述装置实施例提供的确定目标单词的拼读分区的装置。
具体地,请参阅图5,该电子设备500包括:
一个或多个处理器501以及存储器502,图5中以一个处理器501为例。
处理器501和存储器502可以通过总线或者其它方式连接,图5中以通过总线连接为例。
存储器502作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态性计算机可执行程序以及模块,如本发明实施例中的确定目标单词的拼读分区的方法对应的程序指令/模块(例如,附图4所示的最佳分区组合确定单元41、拼读分区确定单元42、结构性正确发音概率提取单元43、筛选单元44、单词最佳分区组合数据库创建单元45、可能性分区组合获取单元46、结构性正确发音概率计算单元47以及单词可能性分区组合数据库创建单元48)。处理器501通过运行存储在存储器502中的非暂态软件程序、指令以及模块,从而执行确定目标单词的拼读分区的装置40的各种功能应用以及数据处理,即实现上述任一方法实施例的确定目标单词的拼读分区的方法。
存储器502可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据确定目标单词的拼读分区的装置40的使用所创建的数据等。此外,存储器502可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其它非暂态固态存储器件。在一些实施例中,存储器502可选包括相对于处理器501远程设置的存储器,这些远程存储器可以通过网络连接至电子设备500。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器502中,当被所述一个或者多个处理器501执行时,执行上述任意方法实施例中的确定目标单词的拼读分区的方法,例如,执行以上描述的图1中的方法步骤100至200,图2中的方法步骤110至130,图3中的方法步骤310至340,实现图4中的单元41-48的功能。
本发明实施例还提供了一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如,被图5中的一个处理器501执行,可使得上述一个或多个处理器执行上述任意方法实施例中的确定目标单词的拼读分区的方法,例如,执行以上描述的图1中的方法步骤100至200,图2中的方法步骤110至130,图3中的方法步骤310至340,实现图4中的单元41-48的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序产品中的计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非暂态计算机可读取存储介质中,该计算机程序包括程序指令,当所述程序指令被电子设备执行时,可使所述电子设备执行上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
上述产品(包括:电子设备、非暂态计算机可读存储介质以及计算机程序产品)可执行本发明实施例所提供的确定目标单词的拼读分区的方法,具备执行确定目标单词的拼读分区的方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的确定目标单词的拼读分区的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (11)
1.一种确定目标单词的拼读分区的方法,其特征在于,包括:
获取预设的拼读总库,其中,所述拼读总库包括单词可能性分区组合数据库,所述单词可能性分区组合数据库包括多个备选单词和所述多个备选单词分别对应的若干种可能性分区组合,一所述可能性分区组合包括若干个分区单元和每一所述分区单元的结构性正确发音概率,一所述分区单元代表一种字母串和一种发音代码的对应关系,所述分区单元的结构性发音正确概率是指分区单元所代表的字母串在各关联单词中根据所述字母串的发音代码进行发音的概率,所述拼读总库还包括单词最佳分区组合数据库,所述单词最佳分区组合数据库包括所述多个备选单词对应的最佳分区组合,其中,所述单词最佳分区组合数据库中的每一个所述备选单词所对应的最佳分区组合是从所述单词可能性分区组合数据库中根据所述备选单词对应的若干种可能性分区组合的综合结构性正确发音概率筛选得到;
根据所述拼读总库中的单词最佳分区组合数据库,查询出目标单词对应的最佳分区组合;
根据所述目标单词对应的最佳分区组合确定所述目标单词的拼读分区。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:
基于所述单词可能性分区组合数据库,确定每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元,以及,每一个所述分区单元对应的结构性正确发音概率;
分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合;
将所述备选单词及其对应的最佳分区组合记录于所述单词最佳分区组合数据库。
3.根据权利要求2所述的方法,其特征在于,所述分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合,包括:
分别针对每一个所述备选单词,根据所述备选单词对应的每种可能性分区组合中每个分区单元的结构性正确发音概率,确定所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率;
基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合。
4.根据权利要求3所述的方法,其特征在于,所述基于所述备选单词对应的每种可能性分区组合的综合结构性正确发音概率,筛选出所述备选单词对应的最佳分区组合,包括:
筛选出综合结构性正确发音概率满足第一预设条件的可能性分区组合,构成所述备选单词对应的优选可能性分区组合群;
根据第二预设条件从所述优选可能性分区组合群中筛选出所述备选单词对应的最佳分区组合。
5.根据权利要求1-4任一项所述的方法,其特征在于,所述拼读总库还包括:分区单元数据库,所述分区单元数据库中记载有目标词汇库中每一个单词对应的全部分区单元,每一个所述分区单元对应的字母串和发音代码以及包括所述分区单元的单词,其中,所述目标词汇库中包括所述备选单词;
所述单词可能性分区组合数据库中的每一个所述分区单元的结构性正确发音概率可基于所述分区单元数据库计算得到。
6.根据权利要求5所述的方法,其特征在于,所述方法还包括:
分别获取每一个所述备选单词对应的若干种可能性分区组合,每一种所述可能性分区组合中包括的若干个分区单元;
分别针对每一个所述备选单词对应的每种可能性分区组合中的每个分区单元,从所述分区单元数据库中提取出包括所述分区单元对应的字母串且发音为所述分区单元对应的发音代码的第一类单词和包括所述分区单元对应的字母串的第二类单词,并基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率;
将每一个所述分区单元对应的结构性正确发音概率对应记录于所述单词可能性分区组合数据库。
7.根据权利要求6所述的方法,其特征在于,所述第一类单词、所述第二类单词与所述备选单词属于同一词汇类别。
8.根据权利要求7所述的方法,其特征在于,所述基于所述第一类单词和所述第二类单词确定所述分区单元对应的结构性正确发音概率,包括:
获取所述第一类单词在与所述词汇类别对应的统计场景中出现的次数,记为第一出现次数;
获取所述第二类单词在所述统计场景中出现的次数,记为第二出现次数;
根据所述第一出现次数和所述第二出现次数确定所述分区单元对应的结构性正确发音概率。
9.根据权利要求5所述的方法,其特征在于,所述拼读总库还包括:基础字母串与基础发音代码对应关系库,所述基础字母串与基础发音代码对应关系库中记载有所有基础字母串及其对应的基础发音代码;
所述分区单元数据库可基于所述目标词汇库和所述基础字母串与基础发音代码对应关系库得到。
10.一种电子设备,其特征在于,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-9任一项所述的方法。
11.一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使电子设备执行如权利要求1-9任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810402172.XA CN109002454B (zh) | 2018-04-28 | 2018-04-28 | 一种确定目标单词的拼读分区的方法和电子设备 |
PCT/CN2019/081628 WO2019205917A1 (zh) | 2018-04-28 | 2019-04-05 | 一种确定目标单词的拼读分区的方法和电子设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810402172.XA CN109002454B (zh) | 2018-04-28 | 2018-04-28 | 一种确定目标单词的拼读分区的方法和电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109002454A CN109002454A (zh) | 2018-12-14 |
CN109002454B true CN109002454B (zh) | 2022-05-27 |
Family
ID=64573212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810402172.XA Active CN109002454B (zh) | 2018-04-28 | 2018-04-28 | 一种确定目标单词的拼读分区的方法和电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109002454B (zh) |
WO (1) | WO2019205917A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109002454B (zh) * | 2018-04-28 | 2022-05-27 | 陈逸天 | 一种确定目标单词的拼读分区的方法和电子设备 |
CN109376358B (zh) * | 2018-10-25 | 2021-07-16 | 陈逸天 | 一种借用历史拼读经验的单词学习方法、装置和电子设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5867812A (en) * | 1992-08-14 | 1999-02-02 | Fujitsu Limited | Registration apparatus for compound-word dictionary |
CN1308908C (zh) * | 2003-09-29 | 2007-04-04 | 摩托罗拉公司 | 用于文字到语音合成的方法 |
CN1883959A (zh) * | 2005-06-21 | 2006-12-27 | 容毅 | 英文电子词典数据中单词和音标的压缩方法 |
US8140336B2 (en) * | 2005-12-08 | 2012-03-20 | Nuance Communications Austria Gmbh | Speech recognition system with huge vocabulary |
JP4827721B2 (ja) * | 2006-12-26 | 2011-11-30 | ニュアンス コミュニケーションズ,インコーポレイテッド | 発話分割方法、装置およびプログラム |
CN101630457A (zh) * | 2009-02-25 | 2010-01-20 | 范海涛 | 一种英语单词切片及教学拼写记忆系列卡 |
CN101706797A (zh) * | 2009-11-24 | 2010-05-12 | 无敌科技(西安)有限公司 | 通过语音查询单词的系统及其方法 |
CN104239289B (zh) * | 2013-06-24 | 2017-08-29 | 富士通株式会社 | 音节划分方法和音节划分设备 |
CN104252800B (zh) * | 2014-09-12 | 2017-10-10 | 广东小天才科技有限公司 | 一种单词播报评分的方法和装置 |
JP6641680B2 (ja) * | 2014-09-22 | 2020-02-05 | カシオ計算機株式会社 | 音声出力装置、音声出力プログラムおよび音声出力方法 |
CN105760356B (zh) * | 2016-03-17 | 2018-10-19 | 广东小天才科技有限公司 | 一种英文单词听写题目备选选项自动生成方法及系统 |
CN109002454B (zh) * | 2018-04-28 | 2022-05-27 | 陈逸天 | 一种确定目标单词的拼读分区的方法和电子设备 |
-
2018
- 2018-04-28 CN CN201810402172.XA patent/CN109002454B/zh active Active
-
2019
- 2019-04-05 WO PCT/CN2019/081628 patent/WO2019205917A1/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN109002454A (zh) | 2018-12-14 |
WO2019205917A1 (zh) | 2019-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111968649B (zh) | 一种字幕纠正方法、字幕显示方法、装置、设备及介质 | |
CN108287858B (zh) | 自然语言的语义提取方法及装置 | |
CN108847241B (zh) | 将会议语音识别为文本的方法、电子设备及存储介质 | |
CN106570180B (zh) | 基于人工智能的语音搜索方法及装置 | |
CN106534548B (zh) | 语音纠错方法和装置 | |
Pedler | Computer correction of real-word spelling errors in dyslexic text | |
CN110750993A (zh) | 分词方法及分词器、命名实体识别方法及系统 | |
WO2022267353A1 (zh) | 文本纠错的方法、装置、电子设备及存储介质 | |
CN112541095B (zh) | 视频标题生成方法、装置、电子设备及存储介质 | |
KR102189894B1 (ko) | 외국어 문장 빈칸 추론 문제 자동 생성 방법 및 시스템 | |
CN113255331B (zh) | 文本纠错方法、装置及存储介质 | |
CN109614623B (zh) | 一种基于句法分析的作文处理方法及系统 | |
KR20210042845A (ko) | 외국어 문장 빈칸 추론 문제 자동 생성 방법 및 시스템 | |
KR20230009564A (ko) | 앙상블 스코어를 이용한 학습 데이터 교정 방법 및 그 장치 | |
CN109524008A (zh) | 一种语音识别方法、装置及设备 | |
CN109002454B (zh) | 一种确定目标单词的拼读分区的方法和电子设备 | |
CN110633456B (zh) | 语种识别方法、装置、服务器及存储介质 | |
CN114896382A (zh) | 人工智能问答模型生成方法、问答方法、装置及存储介质 | |
CN111046649A (zh) | 一种文本分割方法和装置 | |
CN110945514B (zh) | 用于分割句子的系统和方法 | |
JP2018066800A (ja) | 日本語音声認識モデル学習装置及びプログラム | |
Mekki et al. | COTA 2.0: An automatic corrector of Tunisian Arabic social media texts | |
US10102203B2 (en) | Method for writing a foreign language in a pseudo language phonetically resembling native language of the speaker | |
CN111310457B (zh) | 词语搭配不当识别方法、装置、电子设备和存储介质 | |
JP2013069157A (ja) | 自然言語処理装置、自然言語処理方法および自然言語処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |