CN109001132A - 一种大气分子检测方法 - Google Patents

一种大气分子检测方法 Download PDF

Info

Publication number
CN109001132A
CN109001132A CN201811025994.7A CN201811025994A CN109001132A CN 109001132 A CN109001132 A CN 109001132A CN 201811025994 A CN201811025994 A CN 201811025994A CN 109001132 A CN109001132 A CN 109001132A
Authority
CN
China
Prior art keywords
optical cavity
atmospheric molecule
gas
concentration
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811025994.7A
Other languages
English (en)
Inventor
欧阳彬
王玉政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen City Capri Environmental Technology Co Ltd
Original Assignee
Shenzhen City Capri Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen City Capri Environmental Technology Co Ltd filed Critical Shenzhen City Capri Environmental Technology Co Ltd
Priority to CN201811025994.7A priority Critical patent/CN109001132A/zh
Publication of CN109001132A publication Critical patent/CN109001132A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

一种大气分子检测方法,包括:在由两面高反射镜组成的光腔内充满含有待定浓度的大气分子的气体;光腔的一端设有第一凸透镜,另一端设有第二凸透镜;将光源发射出的光线由经第一光纤导出至第一凸透镜的焦点上,第一凸透镜对光线准直后射入光腔,光线在两面高反射镜之间来回反射多次后离开光腔,并经由第二凸透镜聚焦到第二光纤上,再经由第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ);将光强度图I(λ)传输给控制电脑,控制电脑结合光强度图I(λ)和预设公式计算待定浓度的大气分子的浓度c。本申请不仅有效、便捷地检测大气分子(如NO2、NO3)的浓度及大气颗粒物的消光,而且具有超高灵敏度、能有效检测超低浓度的气体分子浓度。

Description

一种大气分子检测方法
技术领域
本申请涉及环境监测技术领域,尤其涉及一种大气分子检测方法。
背景技术
伴随着社会、经济的不断发展,大气污染在世界大部分地区,尤其是在发展中国家地区越来越引起人们的重视。为了检测大气污染的严重程度,通常需要利用检测仪器对大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的浓度进行检测。在现有技术中,在利用检测仪器检测大气分子的浓度之前,通常需要先用已知浓度的标准气体来标定检测仪器的灵敏系数(sensitivity coefficient),而用已知浓度的标准气体来标定检测仪器的灵敏系数会给检测添加额外的复杂度和步骤;此外,标准气体的购买、运输等可能较为昂贵、繁琐,甚至有时难以获得的标准气体(如N2O5和NO3),从而加剧检测难度;此外,现有的检测仪器对于超低浓度的大气分子的检测效果不理想。
发明内容
本申请实施例公开的一种大气分子检测方法,不仅能够有效、便捷地检测大气分子(如气体分子NO2、HCHO、CHOCHO、N2O5、NO3、HONO、气溶胶等)的浓度,而且能够有效地检测超低浓度的大气分子浓度。
本申请实施例第一方面公开一种大气分子检测方法,所述方法包括:
提供由两面高反射镜组成的光腔,并且在所述光腔内充满含有待定浓度的大气分子的气体;所述光腔的一端布设有第一凸透镜,所述光腔的另一端布设有第二凸透镜;
将光源发射出的光线由经第一光纤导出至所述第一凸透镜的焦点上,以使所述第一凸透镜对光线准直后射入所述光腔;其中,成功进入所述光腔的光线在所述两面高反射镜之间来回反射多次后离开所述光腔,并经由所述第二凸透镜聚焦到第二光纤上,再经由所述第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ);所述λ表示所述光线的波长;
将所述光强度图I(λ)传输给控制电脑,以使所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
基于本申请实施例第一方面,在本申请实施例第一方面的第一种实施方式中,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用一个设定流量的计量泵,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加质量流量计的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加节流管的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。
基于本申请实施例第一方面的第一种实施方式中,在本申请实施例第一方面的第二种实施方式中,所述方法还包括:
如果所述含有待定浓度的大气分子的气体中的环境颗粒物浓度很高,则在所述光腔的进气口添加一个颗粒物过滤器,以使所述含有待定浓度的大气分子的气体经过所述进气口添加的所述颗粒物过滤器过滤后进入所述光腔内。
基于本申请实施例第一方面,在本申请实施例第一方面的第三种实施方式中,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用电磁阀将不同的外加气体添加到气路中进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
基于本申请实施例第一方面,或本申请实施例第一方面的第一种实施方式,或本申请实施例第一方面的第二种实施方式,或本申请实施例第一方面的第三种实施方式,在本申请实施例第一方面的第四种实施方式中,所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c,包括:
所述控制电脑结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
基于本申请实施例第一方面,或本申请实施例第一方面的第一种实施方式,或本申请实施例第一方面的第二种实施方式,或本申请实施例第一方面的第三种实施方式,或本申请实施例第一方面的第四种实施方式,在本申请实施例第一方面的第五种实施方式中,所述光源包括非相干性强光源,所述方法还包括:
利用恒温器对所述光源进行恒温,以实现恒温光源;其中,所述恒温器包括热电冷却器。
基于本申请实施例第一方面的第五种实施方式,在本申请实施例第一方面的第六种实施方式中,所述利用恒温器对所述光源进行恒温,以实现恒温光源,包括:
将所述非相干性强光源焊在可打印电路板上,再将所述可打印电路板固定在所述热电冷却器上,以及在非相干性强光源与所述可打印电路板以及所述可打印电路板与所述热电冷却器之间的间隙涂上高性能的热胶,以便将所述相干性强光源恒温在指定摄氏度附近,从而实现恒温光源;所述非相干性强光源包括一个或多个发光二极管。
基于本申请实施例第一方面,或本申请实施例第一方面的第一种实施方式,或本申请实施例第一方面的第二种实施方式,或本申请实施例第一方面的第三种实施方式,或本申请实施例第一方面的第四种实施方式,或本申请实施例第一方面的第五种实施方式,或本申请实施例第一方面的第六种实施方式,在本申请实施例第一方面的第七种实施方式中,所述待定浓度的大气分子包括所有在340-900nm波长范围内具有特征结构吸收的分子。
本申请实施例第二方面公开一种计算机存储介质,所述计算机存储介质用于存储计算机程序,其中,所述计算机程序使得计算机执行本申请实施例第一方面中任一项所述大气分子检测方法。
本申请实施例第三方面公开一种包括指令的计算机程序产品,所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请实施例第一方面中任一项所述大气分子检测方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,通过直接测量大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测大气分子(如NO2、HCHO、CHOCHO、N2O5、HONO等)的浓度及大气颗粒物的消光;此外,本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著地增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种大气分子检测系统的原理图;
图2为本申请实施例公开的一种大气分子检测方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例公开的一种大气分子检测方法,不仅能够有效、便捷地检测大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的浓度,而且能够有效检测超低浓度的大气分子浓度。以下进行结合附图进行详细描述。
为了更好的、更清楚的理解本申请实施例描述的大气分子检测方法,下面先对本申请实施例涉及到的大气分子检测系统进行描述。
请参阅图1,图1为本申请实施例公开的一种大气分子检测系统的原理图。在图1所示的大气分子检测系统中,由相同的两面高反射镜(即位于左侧的高反射镜和位于右侧的高反射镜)组成光腔,所述两面高反射镜的镜面实现准直,即所述两面高反射镜的镜面相互正对;所述光腔上设有进气口和出气口,通过进气口可以在所述光腔内充满含有待定浓度的大气分子的气体(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等);所述光腔的一端布设有第一凸透镜,所述光腔的另一端布设有第二凸透镜。其中,第一光纤的一端连接光源的光发射口,所述光源可以是由恒温器(如热电冷却器)对非相干性强光源(如发光二极管)进行恒温构成的恒温光源,所述第一光纤的另一端被放置在图1中所示的第一凸透镜的焦点上;其中,第二光纤的一端连接光谱仪(如宽波段光谱仪),所述第二光纤的另一端被放置在图1中所示的第二凸透镜的焦点上。所述光谱仪(如宽波段光谱仪)通过数据线与控制电脑连接。
可选的,在图1所示的大气分子检测系统中,当所述光源是由恒温器(如热电冷却器)对非相干性强光源(如发光二极管)进行恒温构成的恒温光源时,构成所述恒温光源的所述恒温器(如热电冷却器)和所述非相干性强光源(如发光二极管)可以由光源及恒温器驱动模块来控制其工作,实现恒温效果。可选的,在图1所示的大气分子检测系统中,可以由电源通过供电线分别为所述光源及恒温器驱动模块、所述恒温光源、所述光谱仪以及控制电脑(如计算机)供电。可选的,在图1所示的大气分子检测系统中,还可以包括抽气设备和电磁阀;相应地,电源还可以通过供电线分别为所述抽气设备和所述电磁阀供电。所述抽气设备的功能是按照设定好的流速将含有待定浓度的大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。举例来说,所述抽气设备可以是一个计量抽气泵,或者是用泵加质量流量计的组合,又或者是泵加节流管的组合,本申请实施例不作限定。其中,所述电磁阀可以通过数据线与所述控制电脑连接;所述电磁阀的功能是,当输入匹配电压信号时,其开关状态可以发生变化;例如,对于常开的电磁阀,输入匹配电压信号后,该电磁阀可以关闭;而对于常关的电磁阀,输入匹配的电压信号可以使该电磁阀开启。在图1所示的大气分子检测系统中加入电磁阀的目的主要是作为控制外加气体气路的开关,以便于可以将不同的外加气体添加到气路中进行化学反应,以实现在所述光腔被充满不同的含有待定浓度的大气分子的气体,以实现不同的待定浓度的大气分子的浓度检测功能。
需要理解的是,为了便于描述,在图1所示的大气分子检测系统中仅仅示意出一个所述光腔,在实际应用中,所述光腔的数量可以为一个或多个,本申请实施例不作限定。
在图1所示的大气分子检测系统中,由热电冷却器对非相干性强光源(如发光二极管)进行恒温构成恒温光源时,可以避免由于温度漂移导致光源发射光谱改变。由于所述恒温光源发射出的光线可以经由所述第一光纤导出,并且所述第一光纤的另一端又被放置在图1中所示的所述第一凸透镜的焦点上,这样从所述第一凸透镜透出的光线可以接近平行光(即所述恒温光源发射出的光线被所述第一凸透镜准直),并从左侧的高反射镜射入所述光腔,而成功进入所述光腔的光线在两面高反射镜之间来回反射多次显著增加吸收光程后,最终从右侧的高反射镜离开所述光腔,并经由所述第二凸透镜聚焦在所述第二光纤上,最终导入所述光谱仪进行分光和光子检测,以得到覆盖一定波长范围的所述光腔内充满所述含有待定浓度的大气分子的气体时的光强度图I(λ),并提供给所述控制电脑,由所述控制电脑根据所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,吸收光程增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
本申请实施例中,不同的大气分子,其对紫外-可见光的特征吸收也不同。比如大气分子NO2在350-600nm范围内有强特征吸收,因此,当上述光腔内充满含有待定浓度的大气分子NO2的气体时,这一波段范围内的光强度会有明显衰减,且不同波长处衰减的比例不同,其具体值取决于NO2在这些波长处的吸收强弱。因此,本申请实施例中,控制电脑可以对光强度图I(λ)进行光谱数据分析,以分析出待定浓度的大气分子NO2及其浓度。
本申请实施例中,在图1所示的大气分子检测系统中,含有待定浓度的大气分子的气体可以由抽气设备(如一个计量抽气泵)抽入所述光腔内。如果所述含有待定浓度的大气分子的气体中的环境颗粒物浓度很高,由环境颗粒物导致的消光很强,可以在进气口加入一个颗粒物过滤器(如颗粒物滤膜)对环境颗粒物进行过滤。也即是说,颗粒物过滤器(如颗粒物滤膜)可以用于使所述含有待定浓度的大气分子的气体经过所述颗粒物过滤器过滤后进入所述光腔内。
本申请实施例中,在图1所示的大气分子检测系统中,需要加工的硬件有:
(1)所述光腔:大气分子检测系统可以包括一个或多个所述光腔,所述光腔可以由四个光学运动座(Kinematic mounts)、气体管道(又称腔体管)、入射光纤和出射光纤组成。其中,入射光纤即是图1中所示的所述第一光纤,出射光纤即是图1中所示的所述第二光纤,其中的第一、第二光学运动座分布在气体管道的两端,并且这样两个光学运动座上各自固定一面高反射镜,可以通过转动这两个光学运动座上面的旋钮,以调节这两面高反射镜的倾斜角,从而可以保证第一、第二光学运动座上固定的两面高反射镜实现准直(即两面高反射镜的镜面严格正对彼此)。
类似的,第三、第四光学运动座也分布在气体管道的两端;具体的,第三光学运动座位于第一光学运动座的外侧,第四光学运动座位于第二光学运动座的外侧;第三光学运动座固定了所述第一凸透镜及所述第一光纤,所述第一凸透镜位于所述第一光学运动座固定的高反射镜的外侧;第四光学运动座固定了所述第二凸透镜及所述第二光纤,所述第二凸透镜位于所述第二光学运动座固定的高反射镜的外侧;可以通过转动第三、第四光学运动座上面的旋钮,以实现调节所述第一凸透镜相对于所述第一光学运动座固定的高反射镜的倾斜角度,保证两者之间实现准直;以及,实现调节所述第二凸透镜相对于所述第二光学运动座固定的高反射镜的倾斜角度,保证两者之间实现准直;此外,需要水平调整的是所述第一光纤与所述第一凸透镜之间的距离,保证所述第一光纤的终端正好处在所述第一凸透镜的焦点位置;以及,需要水平调整的是所述第二光纤与所述第二凸透镜之间的距离,保证所述第二光纤的终端正好处在所述第二凸透镜的焦点位置。
(2)所述光源:所述光源可以是非相干性强光源,非相干性强光源可以是采用高功率(5-15W)的单芯片发光二极管;其中,所述光源的数目可以根据实际需要进行设置,本申请实施例不作限定。
本申请实施例中,将一个或多个非相干性强光源(如LED)焊在可打印电路板(PCB)上,再将该PCB固定在热电冷却器(thermoelectric cooler)上,以便将非相干性强光源(如LED)恒温在比如15摄氏度附近,从而实现光源发射光谱的高度稳定性。其中,对温度的恒定可以通过设计一个反馈电路实现,反馈信号可以由附在所述热电冷却器上的一个PT104热阻丝(thermistor)提供。
由于非相干性强光源(如LED)的温度稳定性要求很高(正负0.01摄氏度),因此可以在非相干性强光源(如LED)与该PCB以及该PCB与所述热电冷却器(TE cooler)之间的间隙涂上高性能的热胶(thermal glue),以保证它们之间可以实现有效的热传递。优选的,该PCB的背面可以布满金属丝,以方便该PCB很快朝所述热电冷却器上散热。总之,任何可以加强非相干性强光源(如LED)→该PCB→所述热电冷却器(TE cooler)之间的热传递的方法都可以单一采用或者组合采用,本申请实施例不作限定。
(3)气路:本申请实施例中,当需要往所述光腔填充含有待定浓度的大气分子的气体时,可以利用一个计量抽气泵,或者利用泵加质量流量计的组合,或者利用泵加节流管的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。当需要往所述光腔填充零气时,零气通常来自纯氮气或清洁空气的钢瓶,零气经减压阀减压后,其气压仍然会稍高于大气压,故要么从所述光腔的进气气路的反方向(即从出气口)注入所述光腔,并从进气口流出;要么在进气口加设一个三通阀,以将气路从大气样品的气路转为零气的气路。
本申请实施例中,图1所示的大气分子检测系统在气路方面还可以有三个额外可选项:
(A)、如果气体需要加热,可以额外加一段加热管,加热管的材质可以为石英玻璃(如果需要加热到400-600摄氏度,如对NOy(即含氮物)的浓度检测,需要先将其热解为NOx)或聚四氟乙烯管(如果需要加热到100摄氏度左右,且加热生成的气体化学活性高,易在表面损失,如对N2O5的浓度检测,需要先将其热解为NO3)。对后者的浓度检测还要求保证上图1中充满气体的所述光腔及镜座支架的温度也恒定在100摄氏度附近,通常通过在光腔管道上缠绕加热片或加热丝、同时在镜座支架上贴加热片实现。类似于对光源的恒温,上述光腔等温度的保持也需要用到一个温度反馈回路。
(B)、如果气体需要适当的化学转化,如对一氧化氮NO和臭氧O3的检测分别需要添加O3和NO,以便于在所述光腔中将二者转化为有显著光吸收的NO2。可以在所述光腔的进气口加一个气体三通管,气体三通管空闲的一个支路连外界大气,气体三通管空闲的另一个支路连臭氧发生器或者一氧化氮钢瓶,以便将这两种外加气体添加到所述光腔内的外界大气里进行化学反应,生成有显著光吸收的NO2。该另一个支路一般还添加一个电磁阀,实现外加气体(如O3和NO)的开启和关闭功能。即,利用电磁阀可以将不同的外加气体添加到所述光腔进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
(3)如果气溶胶浓度过高,可能附着于高反射镜面的表面进而降低其反射率,这时可以选择性添加一个清扫气路,以隔绝外界大气与镜面的接触。其中,清扫气路的气体一般为较高纯度的氮气,其流速由气路上添加的直径在50-70微米之间的微流孔(criticalorifice)控制在0.05-0.1升/分钟左右。
(4)光谱仪及控制电脑:光谱仪一般为成型商业产品,可以实现分光、记录不同波长位置的光强等功能。控制电脑可以为计算机,其控制程序及光谱数据分析程序一般由开发商自己编写。
本申请实施例中,图1所示的大气分子检测系统的技术原理为:
在由两面高反射镜组成的光腔内充满含有待定浓度的大气分子(如NO2)的气体;将光源(如恒温器和非相干性强光源组成的恒温光源)发射出的光线由经第一光纤导出至第一凸透镜的焦点上,使得第一凸透镜对光线准直后射入光腔,成功进入光腔的光线会两面高反射镜之间来回反射多次显著增加吸收光程后离开光腔,并经由第二凸透镜聚焦到第二光纤上,再经由第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ),λ表示光线的波长;将光强度图I(λ)传输给控制电脑,控制电脑结合光强度图I(λ)和预设公式计算待定浓度的大气分子的浓度c。
本申请实施例中,控制电脑可以结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
举例来说,假设所述光腔内先充满不含大气分子NO2的零气时,所述光谱仪测得的光强度图为I0(λ);再将所述光腔内充满含有待定浓度的大气分子NO2的气体,所述光谱仪测得的光强度图为I(λ),那么控制电脑可以根据所述光强度图I(λ)和如下的预设公式计算出待定浓度的大气分子NO2的浓度即:
其中,所述λ表示所述光线的波长;所述为所述待定浓度的大气分子NO2的浓度;所述为所述待定浓度的大气分子NO2的吸收截面,且所述已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子NO2的气体的那部分体积的长度,且所述d已知;式中,I(λ)、和R(λ)表示光强度I、吸收截面σ和镜面反射率R等均为波长λ的函数,随波长不同而变化(即前文所述的,NO2对不同波长的光的吸收强度不同)。
本申请实施例中,图1所示的大气分子检测系统通过直接测量大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测大气分子的浓度及大气颗粒物的消光;此外,图1所示的大气分子检测系统中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,从而可以显著地增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
基于图1所示的大气分子检测系统,本申请实施例公开一种大气分子检测方法。请参阅图2,图2为本申请实施例公开的一种大气分子检测方法的流程示意图。如图2所示,该大气分子检测方法可以包括以下步骤:
201、提供由两面高反射镜组成的光腔,并且在所述光腔内充满含有待定浓度的大气分子的气体;所述光腔的一端布设有第一凸透镜,所述光腔的另一端布设有第二凸透镜。
202、将光源发射出的光线由经第一光纤导出至所述第一凸透镜的焦点上,以使所述第一凸透镜对光线准直后射入所述光腔;其中,成功进入所述光腔的光线在所述两面高反射镜之间来回反射多次后离开所述光腔,并经由所述第二凸透镜聚焦到第二光纤上,再经由所述第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ);所述λ表示所述光线的波长。
本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,吸收光程增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
203、将所述光强度图I(λ)传输给控制电脑,以使所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
本申请实施例中,控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c,包括:
所述控制电脑结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
作为一种可选的实施方式,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用一个计量抽气泵,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加质量流量计的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加节流管的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。
作为一种可选的实施方式,在图2所描述的大气分子检测方法中,如果所述含有待定浓度的大气分子的气体中的环境颗粒物浓度很高,则在所述光腔的进气口添加一个颗粒物过滤器,以使所述含有待定浓度的大气分子的气体经过所述进气口添加的所述颗粒物过滤器过滤后进入所述光腔内。
作为另一种可选的实施方式,在图2所描述的大气分子检测方法中,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用电磁阀将不同的外加气体(如O3和NO)添加到所述光腔进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
举例来说,电磁阀可以和设置在所述光腔的进气口的气体三通管组合,气体三通管的一个支路连外界大气,另一个支路连臭氧发生器或者一氧化氮钢瓶,以便将这两种外加气体添加到所述光腔内的外界大气里进行化学反应,生成有显著光吸收的NO2。电磁阀可以添加在该另一个支路上,实现外加气体的开启和关闭功能。
作为一种可选的实施方式,在图2所描述的大气分子检测方法中,所述光源包括非相干性强光源,其中,非相干性强光源可以包括发光二极管(LED),相应地,在图2所描述的大气分子检测方法中,还可以利用恒温器对所述光源进行恒温,以实现恒温光源;其中,所述恒温器包括热电冷却器。
本申请实施例中,在图2所描述的大气分子检测方法中,所述利用恒温器对所述光源进行恒温,以实现恒温光源,包括:
将所述非相干性强光源焊在可打印电路板(PCB)上,再将所述可打印电路板固定在所述热电冷却器上,以及在非相干性强光源与所述可打印电路板以及所述可打印电路板与所述热电冷却器之间的间隙涂上高性能的热胶,以便将所述相干性强光源恒温在指定摄氏度附近,从而实现恒温光源;所述非相干性强光源包括一个或多个发光二极管。
在图2所描述的大气分子检测方法中,通过直接测量大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测大气分子(如气体分子NO2、HCHO、CHOCHO、N2O5、HONO、气溶胶等)的浓度及大气颗粒物的消光;此外,在图2所描述的大气分子检测方法中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,从而可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
本申请实施例公开的大气分子检测系统和大气分子检测方法可以实现所有在340-900nm波长范围内具有特征结构吸收(structured absorption)的大气分子的浓度检测,包括:
(a)甲醛(HCHO),其检测限在十亿至百亿分之一左右,检测结果可用来探测室内的甲醛浓度,并由于其结果的可靠性和准确性,可用作室内甲醛检测的“金标准”,用来校准、验证相对廉价、便携的甲醛传感器和检测装置;
(b)乙二醛(CHOCHO),其最低检测限一般在千亿分之一左右。由于乙二醛是大气苯及苯的同系物(主要来自汽车尾气排放、工业排放以及植物排放)和异戊二烯(主要来自植物排放和汽车尾气等)在大气氧化过程中产生的重要中间体,其液相反应也被认为可能是二次气溶胶的来源之一,所以乙二醛的检测对大气化学研究非常重要。另外,甲醛和乙二醛光解会产生HO2自由基,该自由基与NO的进一步反应会导致OH自由基的生成,所以同时监测甲醛和乙二醛有助于完整了解来自大气中主要的可光解性醛贡献的OH自由基来源(注:OH自由基是大气中最重要的氧化性自由基);
(c)二氧化氮(NO2)/一氧化氮(NO)/臭氧(O3):其中,NO2在可以直接通过本技术监测,NO和O3要分别添加O3和NO,将它们分别转化为NO2后再监测。本申请实施例实际提供了同时监测这三种典型的大气污染物的标准仪器方案;
(d)五氧化氮(N2O5)/三氧化氮(NO3):这两种物质是大气中的氮氧化物(NO+NO2)在夜间被臭氧O3氧化的重要活性中间体,对它们的监测有助于完整了解上述两种氮氧化物在大气中的氧化机理及其具体参与的大气化学过程(如N2O5转化为硝酸,NO3氧化可挥发性有机物);
(e)一氧化碘(IO)及碘蒸汽(I2):这两种物质是海洋边界层(MBL,MarineBoundary Layer)里的重要活性中间体,对催化MBL里的臭氧损耗有着重要的意义;
(f)亚硝酸(HONO):受污染的浅层大气里,如城市地面100-300米等处最主要的OH自由基来源。除此之外,测量HONO的光腔可以同时测量NO2,这两者都是室内燃气灶燃烧释放出的重要室内污染气体。
(g)气溶胶消光(aerosol extinction):如果在进气口不加颗粒物过滤器(aerosol filter),则颗粒物可以进入腔体进而直接测量由于颗粒物遮挡光线造成的消光值。
其中,实施本申请实施例,可以测得任意在紫外-可见光波段有吸收的大气分子及气溶胶消光。一般来说,本申请实施例公开的系统和方法的灵敏度主要受到如下一些因素的影响:
(1)分子的特征吸收截面的高低。这个值越高,对该分子的检测就越灵敏,检测限就越低。
(2)高反射镜的反射率、透射率的高低。前者决定了最终可以实现的光程长,后者则决定了光在经过高反射镜时,除被反射外,剩余的比例里(即1-R)有多少比例不受损失地成功透过凸透镜。因此,选择高反射镜时要综合考虑这两个值的高低,合理选择。
(3)光源的单位面积的能量密度。这个值越高,能被导入光纤并最终进入光腔的光强就越高。在最终噪音受散粒噪音(shot noise)控制时,光强越强,灵敏度就越高。在330-900nm的波长范围内,发光二极管(LED)的单位面积发光能量和效率均为最高,所以一般取LED做光源。若需要用到更短的紫外波长,有时也需要考虑其他光源如氘灯或汞灯。
(4)光源的热稳定性。由于要测的是一个在较高的光背景信号上的由大气分子吸收引起的极其微弱的该信号的变化,即便是非常微弱的光源热漂移引起的该背景信号的漂移也足以高过待测的分子吸收信号,进而影响最低检测限。以LED做光源时,一般以热电冷却器要对其做恒温并包裹绝热泡沫,把它的温度稳定在0.01摄氏度之内。
(5)光腔的热稳定性和机械稳定性。要求设计的光腔在环境温度变化时,其准直(alignment)不因材料的热胀冷缩有明显变化。其次,在腔内外有压力差时(如在飞机上做观测时),光腔要有足够的机械强度,确保两面反射镜的准直不因压力的挤压而发生明显变化。例如,可以利用碳纤维管做腔体(因其热膨胀系数小)或用四根碳纤维管支撑(因其密度小且机械强度高)上图所示镜座支架和光学运动座以使其在压力差环境下保持准直。
本申请实施例进一步公开一种计算机存储介质,所述计算机存储介质用于存储计算机程序,其中,所述计算机程序使得计算机执行本申请实施例公开的所述大气分子检测方法。
本申请实施例进一步公开一种包括指令的计算机程序产品,所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请实施例公开的所述大气分子检测方法。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本申请实施例公开的一种大气分子检测方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

1.一种大气分子检测方法,其特征在于,所述方法包括:
提供由两面高反射镜组成的光腔,并且在所述光腔内充满含有待定浓度的大气分子的气体;所述光腔的一端布设有第一凸透镜,所述光腔的另一端布设有第二凸透镜;
将光源发射出的光线由经第一光纤导出至所述第一凸透镜的焦点上,以使所述第一凸透镜对光线准直后射入所述光腔;其中,成功进入所述光腔的光线在所述两面高反射镜之间来回反射多次后离开所述光腔,并经由所述第二凸透镜聚焦到第二光纤上,再经由所述第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ);所述λ表示所述光线的波长;
将所述光强度图I(λ)传输给控制电脑,以使所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
2.根据权利要求1所述的大气分子检测方法,其特征在于,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用一个计量抽气泵,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加质量流量计的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加节流管的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。
3.根据权利要求2所述的大气分子检测方法,其特征在于,所述方法还包括:
如果所述含有待定浓度的大气分子的气体中的环境颗粒物浓度很高,则在所述光腔的进气口添加一个颗粒物过滤器,以使所述含有待定浓度的大气分子的气体经过所述进气口添加的所述颗粒物过滤器过滤后进入所述光腔内。
4.根据权利要求1所述的大气分子检测方法,其特征在于,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用电磁阀将不同的外加气体添加到气路中进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
5.根据权利要求1、2、3或4所述的大气分子检测方法,其特征在于,所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c,包括:
所述控制电脑结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
6.根据权利要求1~5任一项所述的大气分子检测方法,其特征在于,所述光源包括非相干性强光源,所述方法还包括:
利用恒温器对所述光源进行恒温,以实现恒温光源;其中,所述恒温器包括热电冷却器。
7.根据权利要求6所述的大气分子检测方法,其特征在于,所述利用恒温器对所述光源进行恒温,以实现恒温光源,包括:
将所述非相干性强光源焊在可打印电路板上,再将所述可打印电路板固定在所述热电冷却器上,以及在非相干性强光源与所述可打印电路板以及所述可打印电路板与所述热电冷却器之间的间隙涂上高性能的热胶,以便将所述相干性强光源恒温在指定摄氏度附近,从而实现恒温光源;所述非相干性强光源包括一个或多个发光二极管。
8.根据权利要求1~7任一项所述的大气分子检测方法,其特征在于,所述待定浓度的大气分子包括所有在340-900nm波长范围内具有特征结构吸收的分子。
9.一种计算机存储介质,其特征在于,所述计算机存储介质用于存储计算机程序,其中,所述计算机程序使得计算机执行权利要求1-8任一项所述大气分子检测方法。
10.一种包括指令的计算机程序产品,其特征在于,所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1-8任一项所述大气分子检测方法。
CN201811025994.7A 2018-09-04 2018-09-04 一种大气分子检测方法 Pending CN109001132A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811025994.7A CN109001132A (zh) 2018-09-04 2018-09-04 一种大气分子检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811025994.7A CN109001132A (zh) 2018-09-04 2018-09-04 一种大气分子检测方法

Publications (1)

Publication Number Publication Date
CN109001132A true CN109001132A (zh) 2018-12-14

Family

ID=64590956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811025994.7A Pending CN109001132A (zh) 2018-09-04 2018-09-04 一种大气分子检测方法

Country Status (1)

Country Link
CN (1) CN109001132A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026123A1 (en) * 2000-09-26 2002-04-04 Sensys Medical, Inc. Led light source-based instrument for non-invasive blood analyte determination
CN1910489A (zh) * 2004-01-28 2007-02-07 株式会社东芝 激光入射光学装置
CN101109835A (zh) * 2006-07-19 2008-01-23 株式会社东芝 光纤用激光入射光学装置
CN102374510A (zh) * 2011-05-03 2012-03-14 中国科学院合肥物质科学研究院 一种辐射光谱稳定的led光源及其控制装置
CN104122214A (zh) * 2014-07-09 2014-10-29 广州禾信分析仪器有限公司 同时检测气溶胶消光和散射系数的腔增强吸收光谱仪
CN104142308A (zh) * 2013-05-08 2014-11-12 浙江师范大学 一种基于宽带光源腔增强吸收光谱的feno检测系统
CN104237129A (zh) * 2014-10-08 2014-12-24 上海理工大学 用于腔增强光谱仪器的密封调整镜架
CN104596955A (zh) * 2014-12-11 2015-05-06 中国科学院合肥物质科学研究院 一种应用于痕量气体浓度和气溶胶消光同时测量的腔增强吸收光谱装置及方法
CN104995511A (zh) * 2012-11-16 2015-10-21 牛津医药有限公司 便携式呼气挥发性有机化合物分析仪和对应元件
CN105424631A (zh) * 2015-12-25 2016-03-23 中国科学院合肥物质科学研究院 一种基于紫外可见波段吸收光谱的超高灵敏度氮氧化物测量系统
CN106124407A (zh) * 2016-06-03 2016-11-16 中国科学院合肥物质科学研究院 一种光腔、具有该光腔的气溶胶消光仪及气溶胶消光系数的测量方法
CN106596437A (zh) * 2016-12-30 2017-04-26 北京大学 大气no3自由基浓度在线测量系统和在线测量方法
CN106644986A (zh) * 2016-12-30 2017-05-10 北京大学 高no2低no大气中no浓度在线测量装置和测量方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026123A1 (en) * 2000-09-26 2002-04-04 Sensys Medical, Inc. Led light source-based instrument for non-invasive blood analyte determination
CN1910489A (zh) * 2004-01-28 2007-02-07 株式会社东芝 激光入射光学装置
CN101109835A (zh) * 2006-07-19 2008-01-23 株式会社东芝 光纤用激光入射光学装置
CN102374510A (zh) * 2011-05-03 2012-03-14 中国科学院合肥物质科学研究院 一种辐射光谱稳定的led光源及其控制装置
CN104995511A (zh) * 2012-11-16 2015-10-21 牛津医药有限公司 便携式呼气挥发性有机化合物分析仪和对应元件
CN104142308A (zh) * 2013-05-08 2014-11-12 浙江师范大学 一种基于宽带光源腔增强吸收光谱的feno检测系统
CN104122214A (zh) * 2014-07-09 2014-10-29 广州禾信分析仪器有限公司 同时检测气溶胶消光和散射系数的腔增强吸收光谱仪
CN104237129A (zh) * 2014-10-08 2014-12-24 上海理工大学 用于腔增强光谱仪器的密封调整镜架
CN104596955A (zh) * 2014-12-11 2015-05-06 中国科学院合肥物质科学研究院 一种应用于痕量气体浓度和气溶胶消光同时测量的腔增强吸收光谱装置及方法
CN105424631A (zh) * 2015-12-25 2016-03-23 中国科学院合肥物质科学研究院 一种基于紫外可见波段吸收光谱的超高灵敏度氮氧化物测量系统
CN106124407A (zh) * 2016-06-03 2016-11-16 中国科学院合肥物质科学研究院 一种光腔、具有该光腔的气溶胶消光仪及气溶胶消光系数的测量方法
CN106596437A (zh) * 2016-12-30 2017-04-26 北京大学 大气no3自由基浓度在线测量系统和在线测量方法
CN106644986A (zh) * 2016-12-30 2017-05-10 北京大学 高no2低no大气中no浓度在线测量装置和测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
仝兴存: "《电子封装热管理先进材料》", 2016123 *
刘宏伟 等: "LED光谱温度特性测试与分析", 《天津工业大学学报》 *
宋露露,陈世伟: "《LED封装检测与应用》", 31 December 2011 *

Similar Documents

Publication Publication Date Title
Strawa et al. The measurement of aerosol optical properties using continuous wave cavity ring-down techniques
Mi et al. Silicon microring refractometric sensor for atmospheric CO 2 gas monitoring
US5281816A (en) Method and apparatus for detecting hydrocarbon vapors in a monitored area
US7710566B2 (en) Method and apparatus for photoacoustic measurements
Ryerson et al. An efficient photolysis system for fast‐response NO2 measurements
Stritzke et al. TDLAS-based NH 3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-µm DFB diode laser
CN108956503A (zh) 一种水分子浓度计算方法
Li et al. Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO 3 and N 2 O 5
US11604142B2 (en) Device for measuring a property of a measurement object by luminescence
ElBaz et al. N 2 O molecular tagging velocimetry
Nakayama et al. Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques
CN109187355A (zh) 一种应用于光腔结构的吹扫气路装置
Thompson et al. A fixed frequency aerosol albedometer
CN109100316A (zh) 一种应用于光腔结构的高反射镜筛选方法
US6118134A (en) Optical mass gauge sensor having an energy per unit area of illumination detection
CN109001132A (zh) 一种大气分子检测方法
CN108956502A (zh) 一种大气分子检测系统
CN109060691A (zh) 一种大气分子浓度的计算方法及设备
CN109115683A (zh) 一种光腔结构中凸透镜与高反射镜的安装方法
CN108956475A (zh) 一种光腔结构
CN109115706A (zh) 一种水分子吸收系数的温度校正方法
CN108956471A (zh) 一种光腔结构中凸透镜与光纤的安装方法
CN109187344A (zh) 一种应用于大气分子检测系统的气路结构
CN109187354A (zh) 一种适用于光腔结构的吹扫气路装置
CN108918421A (zh) 一种适用于光腔结构的气体加热装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181214

RJ01 Rejection of invention patent application after publication