CN108918421A - 一种适用于光腔结构的气体加热装置 - Google Patents

一种适用于光腔结构的气体加热装置 Download PDF

Info

Publication number
CN108918421A
CN108918421A CN201811024947.0A CN201811024947A CN108918421A CN 108918421 A CN108918421 A CN 108918421A CN 201811024947 A CN201811024947 A CN 201811024947A CN 108918421 A CN108918421 A CN 108918421A
Authority
CN
China
Prior art keywords
gas
optical
motion seat
high reflection
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811024947.0A
Other languages
English (en)
Inventor
欧阳彬
王玉政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen City Capri Environmental Technology Co Ltd
Original Assignee
Shenzhen City Capri Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen City Capri Environmental Technology Co Ltd filed Critical Shenzhen City Capri Environmental Technology Co Ltd
Priority to CN201811024947.0A priority Critical patent/CN108918421A/zh
Publication of CN108918421A publication Critical patent/CN108918421A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Abstract

一种适用于光腔结构的气体加热装置,通过所述气体加热装置可以将待加热气体先加热成已加热的气体后再灌入所述光腔结构,所述光腔结构可以通过直接测量大气分子的光吸收来测定大气分子的浓度,从而可以有效、便捷地检测出那些虽然自身对340nm‑800nm的紫外可见光不具备强吸收,但可被加热热解转化为对光有较强吸收的那类大气分子(如N2O5被热解生成对660nm附近可见光有强吸收的NO3)的浓度。此外,光线在所述光腔结构的两面高反射镜之间来回反射,可以显著增加吸收光程,从而可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。

Description

一种适用于光腔结构的气体加热装置
技术领域
本申请涉及环境监测技术领域,尤其涉及一种适用于光腔结构的气体加热装置。
背景技术
伴随着社会、经济的不断发展,大气污染在世界大部分地区,尤其是在发展中国家地区越来越引起人们的重视。为了检测大气污染的严重程度,通常需要利用检测仪器对大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的浓度进行检测。在实践中发现,某一些大气分子在进行浓度检测之前,通常需要先对其进行加热,以将其分解为对340-800nm光线有显著吸收的分子。例如,在对N2O5进行浓度检测之前,需要先将N2O5热解为NO3,后者在660nm波长附近有强吸收,适于监测。然而,现有的检测仪器通常无法对大气分子进行加热,从而难以有效地检测出需要被加热的大气分子(如N2O5)的浓度;此外,现有的检测仪器对于超低浓度的大气分子的检测效果不理想。
发明内容
本申请实施例公开的一种适用于光腔结构的气体加热装置,能够对大气分子进行加热,从而可以有效、便捷地检测出需要被加热的大气分子(如N2O5)的浓度,而且能够有效地检测超低浓度的大气分子浓度。
本申请实施例第一方面公开一种适用于光腔结构的气体加热装置,所述光腔结构包括:腔体管,所述腔体管的左端设有第一高反射镜,所述腔体管的右端设有第二高反射镜;所述第一高反射镜的镜面和所述第二高反射镜的镜面实现准直;所述第一高反射镜的外侧设有第一凸透镜,所述第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上;在所述腔体管内充满含有待定浓度的大气分子的气体时,所述第一凸透镜对所述第一光纤导出的光线准直后射入所述腔体管,以使光线在两面高反射镜之间来回反射多次后离开所述腔体管并经由所述第二凸透镜聚焦到所述第二光纤上,再经由所述第二光纤导入所述光谱仪;
所述气体加热装置,包括管道连接件以及固定在所述管道连接件上的加热管,所述加热管的一端用于输入待加热气体,所述加热管的另一端用于将已加热的气体灌入所述腔体管;所述加热管包括金属管,所述金属管内嵌有聚四氟乙烯管,所述金属管上缠绕加热电阻丝,并且所述金属管外壁贴有铂电阻,所述铂电阻用于记录管壁温度并为加热电源的功率控制器提供反馈信号;所述金属管外包裹有覆盖所述金属管外壁、所述加热电阻丝以及所述铂电阻的绝热材料。
基于本申请实施例第一方面,在本申请实施例第一方面的第一种实施方式中,所述光腔结构还包括:
第一光学运动座,所述第一光学运动座设置在所述腔体管的左端,并且所述第一高反射镜固定在所述第一光学运动座上;
所述第一光学运动座上设有用于调节所述第一高反射镜的倾斜角度,以使所述第一高反射镜的镜面与所述第二高反射镜的镜面实现准直的调节螺丝。
基于本申请实施例第一方面的第一种实施方式,在本申请实施例第一方面的第二种实施方式中,所述光腔结构还包括:
第二光学运动座,所述第二光学运动座设置在所述第一光学运动座的外侧,并且所述第一凸透镜固定在所述第二光学运动座上;
所述第二光学运动座上设有用于调节所述第一凸透镜相对于所述第一高反射镜的倾斜角度,以使所述第一凸透镜和所述第一高反射镜两者之间实现准直的调节螺丝。
基于本申请实施例第一方面的第二种实施方式,在本申请实施例第一方面的第三种实施方式中:
所述第一光纤的第二端设置在所述第二光学运动座上,并且所述第二光学运动座上还设有用于水平调节所述第一光纤的第二端与所述第一凸透镜之间的距离,以使所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上的光纤调节旋钮。
基于本申请实施例第一方面的第一种实施方式,或本申请实施例第一方面的第二种实施方式,或本申请实施例第一方面的第三种实施方式,在本申请实施例第一方面的第四种实施方式中,所述光腔结构还包括:
第三光学运动座,所述第三光学运动座设置在所述腔体管的右端,并且所述第二高反射镜固定在所述第三光学运动座上;
所述第三光学运动座上设有用于调节所述第二高反射镜的倾斜角度,以使所述第二高反射镜的镜面与所述第一高反射镜的镜面实现准直的调节螺丝。
基于本申请实施例第一方面的第四种实施方式,在本申请实施例第一方面的第五种实施方式,所述光腔结构还包括:
第四光学运动座,所述第四光学运动座设置在所述第三光学运动座的外侧,并且所述第二凸透镜固定在所述第四光学运动座上;
所述第四光学运动座上设有用于调节所述第二凸透镜相对于所述第二高反射镜的倾斜角度,以使所述第二凸透镜和所述第二高反射镜两者之间实现准直的调节螺丝。
基于本申请实施例第一方面的第五种实施方式,在本申请实施例第一方面的第六种实施方式中:
所述第二光纤的第二端设置在所述第四光学运动座上,并且所述第四光学运动座上还设有用于水平调节所述第二光纤的第二端与所述第二凸透镜之间的距离,以使所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上的光纤调节旋钮。
基于本申请实施例第一方面的第六种实施方式,在本申请实施例第一方面的第七种实施方式中:
从所述第一光学运动座到所述腔体管的左端之间依次设置有第一波纹管和第一镜座及腔体支架;
所述第一镜座及腔体支架上设有用于向所述腔体管抽入气体的进气管,所述进气管与用于将已加热的气体灌入所述腔体管的所述加热管的另一端连通。
基于本申请实施例第一方面的第七种实施方式,在本申请实施例第一方面的第八种实施方式中:
从所述第三光学运动座到所述腔体管的右端之间依次设置有第二波纹管和第二镜座及腔体支架;
所述第二镜座及腔体支架上设有用于供所述腔体管输出气体的出气管。
基于本申请实施例第一方面的第八种实施方式,在本申请实施例第一方面的第九种实施方式中:
所述第一镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第一高反射镜的镜面直接接触的第一吹扫气进气管;
所述第二镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第二高反射镜的镜面直接接触的第二吹扫气进气管;
其中,所述吹扫气包括纯氮气。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,通过气体加热装置可以将待加热气体先加热成已加热的气体后再灌入所述光腔结构,所述光腔结构可以通过直接测量大气分子的光吸收来测定大气分子的浓度,从而可以有效、便捷地检测出需要被加热的大气分子(如N2O5)的浓度。此外,本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种大气分子检测系统的原理图;
图2为本申请实施例公开的一种光腔结构的结构示意图;
图3为本申请实施例公开的一种适用于光腔结构的气体加热装置;
图4为本申请实施例公开的另一种适用于光腔结构的气体加热装置;
图5为本申请实施例公开的一种大气分子检测方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例公开的一种适用于光腔结构的气体加热装置,能够对大气分子进行加热,从而可以有效、便捷地检测出需要被加热的大气分子(如N2O5)的浓度,而且能够有效地检测超低浓度的大气分子浓度。以下进行结合附图进行详细描述。
为了更好的、更清楚的理解本申请实施例描述的一种适用于光腔结构的气体加热装置,下面先对本申请实施例涉及到的大气分子检测系统进行描述。
请参阅图1,图1为本申请实施例公开的一种大气分子检测系统的原理图。如图1所示,该大气分子检测系统包括:
由相同的两面高反射镜(即位于左侧的高反射镜和位于右侧的高反射镜)组成光腔结构,所述两面高反射镜的镜面实现准直,即所述两面高反射镜的镜面相互正对;所述光腔结构上设有进气口和出气口;所述光腔结构的一端(图1所示的左端)布设有第一凸透镜,所述光腔结构的另一端(图1所示的右端)布设有第二凸透镜。其中,第一光纤的一端连接光源的光发射口,所述光源可以是由恒温器(如热电冷却器)对非相干性强光源(如发光二极管)进行恒温构成的恒温光源,所述第一光纤的另一端被放置在图1中所示的第一凸透镜的焦点(即外侧焦点)上;其中,第二光纤的一端连接光谱仪(如宽波段光谱仪),所述第二光纤的另一端被放置在图1中所示的第二凸透镜的焦点(即外侧焦点)上。所述光谱仪(如宽波段光谱仪)通过数据线与控制电脑连接。
可选的,在图1所示的大气分子检测系统中,当所述光源是由恒温器(如热电冷却器)对非相干性强光源(如发光二极管)进行恒温构成的恒温光源时,构成所述恒温光源的所述恒温器(如热电冷却器)和所述非相干性强光源(如发光二极管)可以由光源及恒温器驱动模块来控制其工作,实现恒温效果。可选的,在图1所示的大气分子检测系统中,可以由电源通过供电线分别为所述光源及恒温器驱动模块、所述恒温光源、所述光谱仪以及控制电脑(如计算机)供电。可选的,在图1所示的大气分子检测系统中,还可以包括抽气设备和电磁阀;相应地,电源还可以通过供电线分别为所述抽气设备和所述电磁阀供电。所述抽气设备的功能是按照设定好的流速将外界待分析大气通过所述光腔结构的进气口抽进所述光腔结构内,直至所述光腔结构内充满含有待定浓度的大气分子的气体。举例来说,所述抽气设备可以是一个计量抽气泵,或者是抽气泵与质量流量控制器的组合,又或者是抽气泵与节流管的组合,本申请实施例不作限定。其中,所述电磁阀可以通过数据线与所述控制电脑连接;所述电磁阀的功能是,当输入匹配电压信号时,其开关状态可以发生变化;例如,对于常开的电磁阀,输入匹配电压信号后,该电磁阀可以关闭;而对于常关的电磁阀,输入匹配的电压信号可以使该电磁阀开启。在图1所示的大气分子检测系统中,电磁阀可以作为控制外加气体气路的开关。
需要理解的是,为了便于描述,在图1所示的大气分子检测系统中仅仅示意出一个所述光腔结构,在实际应用中,所述光腔结构的数量可以为一个或多个,本申请实施例不作限定。
在图1所示的大气分子检测系统中,由热电冷却器对非相干性强光源(如发光二极管)进行恒温构成恒温光源时,可以避免由于温度漂移导致光源发射光谱改变。由于所述恒温光源发射出的光线可以经由所述第一光纤导出,并且所述第一光纤的另一端又被放置在图1中所示的所述第一凸透镜的焦点上,这样从所述第一凸透镜透出的光线可以接近平行光(即所述恒温光源发射出的光线被所述第一凸透镜准直),并从左侧的高反射镜射入所述光腔结构,而成功进入所述光腔结构的光线在两面高反射镜之间来回反射多次显著增加吸收光程后,最终从右侧的高反射镜离开所述光腔结构,并经由所述第二凸透镜聚焦在所述第二光纤上,最终导入所述光谱仪进行分光和光子检测,以得到覆盖一定波长范围的所述光腔内充满含有待定浓度的大气分子的气体时的光强度图I(λ),并提供给所述控制电脑,由所述控制电脑根据所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
本申请实施例中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,吸收光程增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999,且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
本申请实施例中,不同的大气分子,其对紫外-可见光的特征吸收也不同。比如大气分子NO2在350-600nm范围内有强特征吸收,因此,当上述光腔内充满含有待定浓度的大气分子NO2的气体时,这一波段范围内的光强度会有明显衰减,且不同波长处衰减的比例不同,其具体值取决于NO2在这些波长处的吸收强弱。因此,本申请实施例中,控制电脑可以对光强度图I(λ)进行光谱数据分析,以分析出待定浓度的大气分子NO2及其浓度。
本申请实施例中,在图1所示的大气分子检测系统中,如果气体中的环境颗粒物浓度很高,由环境颗粒物导致的消光很强,可以在进气口加入一个颗粒物过滤器(如颗粒物滤膜)对环境颗粒物进行过滤。
本申请实施例中,在图1所示的大气分子检测系统中,需要加工的硬件有:
(1)所述光腔结构:
请参阅图2,图2为本申请实施例公开的一种大气分子检测系统包含的光腔结构的结构示意图。如图2所示,所述光腔结构包括:
腔体管11,所述腔体管11的左端设有第一高反射镜21,所述腔体管11的右端设有第二高反射镜22;其中,第一高反射镜21与第二高反射镜22相同;
其中,所述第一高反射镜21的镜面和所述第二高反射镜22的镜面实现准直;所述第一高反射镜21的外侧设有第一凸透镜31,所述第二高反射镜22的外侧设有第二凸透镜32;
第一光纤41的第一端用于连接光源的发射口,所述第一光纤41的第二端(即所述第一光纤的终端)被放置在所述第一凸透镜31的外侧焦点上;第二光纤42的第一端用于连接光谱仪,所述第二光纤42的第二端(即所述第二光纤的终端)被放置在所述第二凸透镜的外侧焦点上;
在所述腔体管11内充满含有待定浓度的大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的气体时,所述第一凸透镜31对所述第一光纤41导出的光线准直后射入(从左端的所述第一高反射镜21射入)所述腔体管11,以使光线在两面高反射镜(即21和22)之间来回反射多次后离开所述腔体管11并经由所述第二凸透镜32聚焦到所述第二光纤42上,再经由所述第二光纤42导入所述光谱仪;其中,所述光谱仪可以进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ)并提供给控制电脑;
在所述腔体管11内充满未含有待定浓度的大气分子的零气时,所述第一凸透镜31对所述第一光纤41导出的光线准直后射入(从左端的所述第一高反射镜21射入)所述腔体管11,以使光线在两面高反射镜(即21和22)之间来回反射多次后离开所述腔体管11并经由所述第二凸透镜32聚焦到所述第二光纤42上,再经由所述第二光纤42导入所述光谱仪;其中,所述光谱仪可以进行分光和光子检测,以得到覆盖一定波长范围的光强度图I0(λ)并提供给控制电脑;
控制电脑根据光强度图I(λ)和光强度图I0(λ),计算出所述待定浓度的大气分子的浓度c。
作为一种可选的实施方式,本申请实施例中,所述光腔结构还可以包括:
第一光学运动座51,所述第一光学运动座51设置在所述腔体管11的左端,并且所述第一高反射镜21固定在所述第一光学运动座51上;
所述第一光学运动座51上设有用于调节所述第一高反射镜21的倾斜角度,以使所述第一高反射镜21的镜面与所述第二高反射镜22的镜面实现准直的调节螺丝61。
作为一种可选的实施方式,本申请实施例中,所述光腔结构还可以包括:
第二光学运动座52,所述第二光学运动座52设置在所述第一光学运动座51的外侧,并且所述第一凸透镜31固定在所述第二光学运动座52上;
所述第二光学运动座52上设有用于调节所述第一凸透镜31相对于所述第一高反射镜21的倾斜角度,以使所述第一凸透镜31和所述第一高反射镜21两者之间实现准直的调节螺丝61。
作为一种可选的实施方式,本申请实施例中:
所述第一光纤41的第二端设置在所述第二光学运动座52上,并且所述第二光学运动座52上还设有用于水平调节所述第一光纤41的第二端与所述第一凸透镜31之间的距离,以使所述第一光纤41的第二端被放置在所述第一凸透镜31的外侧焦点上的光纤调节旋钮62。
作为一种可选的实施方式,本申请实施例中,所述光腔结构还可以包括:
第三光学运动座53,所述第三光学运动座53设置在所述腔体管11的右端,并且所述第二高反射镜22固定在所述第三光学运动座53上;
所述第三光学运动座53上设有用于调节所述第二高反射镜22的倾斜角度,以使所述第二高反射镜22的镜面与所述第一高反射镜21的镜面实现准直的调节螺丝61。
作为一种可选的实施方式,本申请实施例中,所述光腔结构还可以包括:
第四光学运动座54,所述第四光学运动座54设置在所述第三光学运动座53的外侧,并且所述第二凸透镜32固定在所述第四光学运动座54上;
所述第四光学运动座54上设有用于调节所述第二凸透镜32相对于所述第二高反射镜22的倾斜角度,以使所述第二凸透镜32和所述第二高反射镜22两者之间实现准直的调节螺丝61。
作为一种可选的实施方式,本申请实施例中,所述第二光纤42的第二端设置在所述第四光学运动座54上,并且所述第四光学运动座54上还设有用于水平调节所述第二光纤42的第二端与所述第二凸透镜32之间的距离,以使所述第二光纤42的第二端被放置在所述第二凸透镜32的外侧焦点上的光纤调节旋钮62。
作为一种可选的实施方式,本申请实施例中:
从所述第一光学运动座51到所述腔体管11的左端之间依次设置有第一波纹管71和第一镜座及腔体支架81;
所述第一镜座及腔体支架上81设有用于向所述腔体管11抽入气体的进气管811(包含所述进气口)。
作为一种可选的实施方式,本申请实施例中:
从所述第三光学运动座53到所述腔体管11的右端之间依次设置有第二波纹管72和第二镜座及腔体支架82;
所述第二镜座及腔体支架82上设有用于供所述腔体管11输出气体的出气管821(包括所述出气口)。
作为一种可选的实施方式,本申请实施例中:
所述第一镜座及腔体支架81上还设有用于输入吹扫气以阻断所述腔体管11内的气体与所述第一高反射镜21的镜面直接接触的第一吹扫气进气管812;
所述第二镜座及腔体支架82上还设有用于输入吹扫气以阻断所述腔体管11内的气体与所述第二高反射镜22的镜面直接接触的第二吹扫气进气管822;
其中,所述吹扫气包括纯氮气,其流速由清扫气路上添加的直径在50-70微米之间的微流孔(critical orifice)控制在0.05-0.1升/分钟左右。
举例来说,本申请实施例中,所述第一、第二、第三以及第四光学运动座可以包括但不限于Thorlabs公司的KC1-T光学调整架。
(2)所述光源:所述光源可以是非相干性强光源,非相干性强光源可以是采用高功率(5-15W)的单芯片发光二极管;其中,所述光源的数目可以根据实际需要进行设置,本申请实施例不作限定。
本申请实施例中,将一个或多个非相干性强光源(如LED)焊在可打印电路板(PCB)上,再将该PCB固定在热电冷却器(thermoelectric cooler)上,以便将非相干性强光源(如LED)恒温在比如15摄氏度附近,从而实现光源发射光谱的高度稳定性。其中,对温度的恒定可以通过设计一个反馈电路实现,反馈信号可以由附在所述热电冷却器上的一个PT104热阻丝(thermistor)提供。
由于非相干性强光源(如LED)的温度稳定性要求很高(正负0.01摄氏度),因此可以在非相干性强光源(如LED)与该PCB之间的间隙涂上高性能的导热胶(thermal glue),以及在该PCB与所述热电冷却器(TE cooler)之间的间隙涂上高性能的导热胶(thermalglue),以保证它们之间可以实现有效的热传递。优选的,该PCB的背面可以布满金属丝,以方便该PCB很快朝所述热电冷却器上散热。总之,任何可以加强非相干性强光源(如LED)→该PCB→所述热电冷却器(TE cooler)之间的热传递的方法都可以单一采用或者组合采用,本申请实施例不作限定。
(3)气路:本申请实施例中,当需要在所述光腔结构填充含有待定浓度的大气分子的气体时,可以利用一个计量抽气泵,或者利用抽气泵与质量流量控制器的组合,或者利用抽气泵与节流管的组合,按照设定好的流速将外界待分析大气从大气气路抽进所述光腔结构内,直至所述光腔结构内充满含有待定浓度的大气分子的气体。当需要往所述光腔结构填充零气时,零气通常来自纯氮气或清洁空气的钢瓶,零气经减压阀减压后,其气压仍然会稍高于大气压,故要么从所述光腔结构的大气气路的反方向(即从出气口)倒灌入所述光腔结构,并最终从进气口流出;要么在进气口加设一个三通电磁阀,以将气路由大气气路转换为零气气路。
本申请实施例中,图1所示的大气分子检测系统在气路方面还可以有三个额外可选项:
(A)、如果气体需要加热,可以额外加一段加热管,加热管的材质可以为石英玻璃(如果需要加热到400-600摄氏度,如对NOy(即含氮物)的浓度检测,需要先将其热解为NOx)或聚四氟乙烯管(如果需要加热到100摄氏度左右,且加热生成的气体化学活性高、易在表面损失,如对N2O5的浓度检测,需要先将其热解为NO3)。对后者的浓度检测还要求保证上图1中充满气体的所述光腔及镜座支架的温度也恒定在100摄氏度附近,通常通过在光腔管道上缠绕加热片或加热丝、同时在镜座支架上贴加热片实现。类似于对光源的恒温,上述光腔等温度的保持也需要用到一个温度反馈回路。
请参阅图3,图3为本申请实施例公开的一种适用于光腔结构的气体加热装置的结构示意图。其中,图3所示的气体加热装置可以用于加热N2O5。如图3所示,该气体加热装置可以包括:
管道连接件以及固定在所述管道连接件上的加热管,所述加热管的一端用于输入待加热气体,所述加热管的另一端用于将已加热的气体灌入所述光腔结构的腔体管;所述加热管包括金属管,所述金属管内嵌有聚四氟乙烯管,所述金属管上缠绕加热电阻丝,并且所述金属管外壁贴有铂电阻,所述铂电阻用于记录管壁温度并为加热电源的功率控制器提供反馈信号;所述金属管外包裹有覆盖所述金属管外壁、所述加热电阻丝以及所述铂电阻的绝热材料。
可选的,在图3所示的气体加热装置中,加热管的长度可以为50cm左右;其中,位于管道连接件左侧的所述加热电阻丝可以是镍丝,一般加热至约130-150℃;位于管道连接件右侧的所述加热电阻丝也可以是镍丝,可以加热至80-90℃。在图3所示的气体加热装置中,加热电源在功率控制器的控制下,可以使所述加热管的温度始终恒定在设定值的±1-2℃上下。
本申请实施例中,图3所示的气体加热装置可以将待加热气体先加热成已加热的气体后再灌入所述光腔结构,所述光腔结构可以通过直接测量大气分子的光吸收来测定大气分子的浓度,从而可以有效、便捷地检测出需要被加热的大气分子(如N2O5)的浓度。
请参阅图4,图4为本申请实施例公开的另一种适用于光腔结构的气体加热装置的结构示意图。其中,图4所示的气体加热装置可以用于加热NOy(即含氮物)。如图4所示,该气体加热装置可以包括:
第一管道连接件、第二管道连接件、加热管、冷却管以及反应管,所述反应管上设置有用于添加外加气体(如O3)的气体入口;
其中,所述加热管的一端用于输入待加热气体,所述加热管的另一端与第一管道连接件的一端连通;所述冷却管的一端与所述第一管道连接件的另一端连通,并且所述冷却管的另一端与所述第二管道连接件的一端连通;所述反应管的一端与所述第二管道连接件的另一端连通,所述反应管的另一端用于输出反应后的气体至与所述第二管道连接件的另一端连接的所述光腔结构的腔体管;所述加热管包括石英管,所述石英管上缠绕加热电阻丝,并且所述石英管外壁贴有铂电阻,所述铂电阻用于记录管壁温度并为加热电源的功率控制器提供反馈信号;所述石英管外包裹有覆盖所述金属管外壁、所述加热电阻丝以及所述铂电阻的绝热材料。
可选的,在图4所示的气体加热装置中,加热管的长度可以为50cm左右;其中,所述加热电阻丝可以是镍丝,可以加热至约650-700℃;所述冷却管可以为聚四氟乙烯管,其长度可以为50cm左右;所述反应管也可以为聚四氟乙烯管,其长度可以为50cm左右。在图4所示的气体加热装置中,加热电源在功率控制器的控制下,可以使所述加热管的温度始终恒定在650℃左右。
本申请实施例中,图4所示的气体加热装置可以将待加热气体先加热成已加热的气体再与外加气体(如O3)进行化学反应后灌入所述光腔结构,所述光腔结构可以通过直接测量大气分子的光吸收来测定大气分子的浓度,从而可以有效、便捷地检测出需要被热解才能被有效检测的大气分子(如NOy)的浓度。
本申请实施例中,图4所示的气体加热装置也可以用于对过氧有机硝酸酯及烷基硝酸酯,与上述NOy类似,唯一区别是加热温度不同。其中,分解过氧有机硝酸酯的加热温度一般在120摄氏度左右,而分解烷基硝酸酯的加热温度一般在350-400摄氏度左右。
(B)、如果气体需要适当的化学转化,如对一氧化氮NO和臭氧O3的检测分别需要添加O3和NO,以便于在所述光腔中将二者转化为有显著光吸收的NO2,可以在所述光腔的进气口加一个气体三通管,气体三通管空闲的一个支路连外界大气,气体三通管空闲的另一个支路连臭氧发生器或者一氧化氮钢瓶,以便将这两种外加气体添加到所述光腔内的外界大气里进行化学反应,生成有显著光吸收的NO2。该另一个支路一般还添加一个电磁阀,实现外加气体(如O3和NO)的开启和关闭功能。即,利用电磁阀可以将不同的外加气体添加到气路中进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
(3)如果气溶胶浓度过高,可能附着于高反射镜面的表面进而降低其反射率,这时可以选择性添加一个清扫气路,以隔绝外界大气与镜面的接触。其中,清扫气路的气体一般为较高纯度的氮气,其流速由气路上添加的直径在50-70微米之间的微流孔(criticalorifice)控制在0.05-0.1升/分钟左右。
(4)光谱仪及控制电脑:光谱仪一般为成型商业产品,可以实现分光、记录不同波长位置的光强等功能。控制电脑可以为计算机,其控制程序及光谱数据分析程序一般由开发商自己编写。
本申请实施例中,图1所示的大气分子检测系统的技术原理为:
在由两面高反射镜组成的光腔结构内充满含有待定浓度的大气分子(如NO2)的气体;将光源(如恒温器和非相干性强光源组成的恒温光源)发射出的光线由经第一光纤导出至第一凸透镜的焦点上,使得第一凸透镜对光线准直后射入光腔,成功进入光腔的光线会两面高反射镜之间来回反射多次显著增加吸收光程后离开光腔,并经由第二凸透镜聚焦到第二光纤上,再经由第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ),λ表示光线的波长;将光强度图I(λ)传输给控制电脑,控制电脑结合光强度图I(λ)和预设公式计算待定浓度的大气分子的浓度c。
本申请实施例中,控制电脑可以结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔结构内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔结构内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
举例来说,假设所述光腔结构内先充满不含大气分子NO2的零气时,所述光谱仪测得的光强度图为I0(λ);再将所述光腔内充满含有待定浓度的大气分子NO2的气体,所述光谱仪测得的光强度图为I(λ),那么控制电脑可以根据所述光强度图I(λ)和如下的预设公式计算出待定浓度的大气分子NO2的浓度即:
其中,所述λ表示所述光线的波长;所述为所述待定浓度的大气分子NO2的浓度;所述为所述待定浓度的大气分子NO2的吸收截面,且所述已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子NO2的气体的那部分体积的长度,且所述d已知;式中,I(λ)、和R(λ)表示光强度I、吸收截面σ和镜面反射率R等均为波长λ的函数,随波长不同而变化(即前文所述的,NO2对不同波长的光的吸收强度不同)。
本申请实施例中,图1所示的大气分子检测系统通过直接测量大气分子(如NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测大气分子(如NO2、HCHO、CHOCHO、N2O5、HONO等)的浓度及大气颗粒物的消光;此外,图1所示的大气分子检测系统中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,从而可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
基于图1所示的大气分子检测系统,本申请实施例进一步公开一种大气分子检测方法。请参阅图5,图5为本申请实施例公开的一种大气分子检测方法的流程示意图。如图5所示,该大气分子检测方法可以包括以下步骤:
501、提供由两面高反射镜组成的光腔,并且在所述光腔内充满含有待定浓度的大气分子的气体;所述光腔的一端布设有第一凸透镜,所述光腔的另一端布设有第二凸透镜。
其中,所述两面高反射镜的镜面相互正对。
502、将光源发射出的光线由经第一光纤导出至所述第一凸透镜的焦点上,以使所述第一凸透镜对光线准直后射入所述光腔;其中,成功进入所述光腔的光线在所述两面高反射镜之间来回反射多次后离开所述光腔,并经由所述第二凸透镜聚焦到第二光纤上,再经由所述第二光纤导入光谱仪进行分光和光子检测,以得到覆盖一定波长范围的光强度图I(λ);所述λ表示所述光线的波长。
本申请实施例中,光线在两面高反射镜之间来回反射,可以显著的增加吸收光程,吸收光程增加的倍数为1/(1-R),其中R为高反射镜的镜面反射率,假设R为0.9999,且两面高反射镜之间的距离为1米,则可以(在该1米的间距内)实现10000米(即10公里)的吸收光程,根据Beer-Lambert光吸收定律,这种超长的吸收光程可以显著增加大气分子的吸收(即消光),从而可以有效地检测超低浓度的大气分子浓度。
503、将所述光强度图I(λ)传输给控制电脑,以使所述控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c。
本申请实施例中,控制电脑结合所述光强度图I(λ)和预设公式计算出所述待定浓度的大气分子的浓度c,包括:
所述控制电脑结合所述光强度图I(λ)和如下的预设公式计算出所述待定浓度的大气分子的浓度c,即:
其中,所述λ表示所述光线的波长;所述c为所述待定浓度的大气分子的浓度;所述σ(λ)为所述待定浓度的大气分子的吸收截面,且所述σ(λ)已知;所述R(λ)为所述高反射镜对所述光线的反射率,且所述R(λ)已知;所述d为所述光腔内充满所述含有待定浓度的大气分子的气体的那部分体积的长度,且所述d已知;所述I0(λ)为所述光腔内先充满不含所述待定浓度的大气分子的零气时所述光谱仪测得的光强度图。
作为一种可选的实施方式,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用一个计量抽气泵,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加质量流量计的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体;
或者,利用泵加节流管的组合,按照设定好的流速将含有待定浓度的大气分子的气体通过所述光腔的进气口抽进所述光腔内,直至所述光腔内充满所述含有待定浓度的大气分子的气体。
作为一种可选的实施方式,在图5所描述的大气分子检测方法中,如果所述含有待定浓度的大气分子的气体中的环境颗粒物浓度很高,则在所述光腔的进气口添加一个颗粒物过滤器,以使所述含有待定浓度的大气分子的气体经过所述进气口添加的所述颗粒物过滤器过滤后进入所述光腔内。
作为另一种可选的实施方式,在图5所描述的大气分子检测方法中,所述在所述光腔内充满含有待定浓度的大气分子的气体,包括:
利用电磁阀将不同的外加气体添加到所述气路中进行化学反应,以实现在所述光腔内充满含有待定浓度的大气分子的气体。
作为一种可选的实施方式,在图5所描述的大气分子检测方法中,所述光源包括非相干性强光源,其中,非相干性强光源可以包括发光二极管(LED),相应地,在图5所描述的大气分子检测方法中,还可以利用恒温器对所述光源进行恒温,以实现恒温光源;其中,所述恒温器包括热电冷却器。
本申请实施例中,在图5所描述的大气分子检测方法中,所述利用恒温器对所述光源进行恒温,以实现恒温光源,包括:
将所述非相干性强光源焊在可打印电路板(PCB)上,再将所述可打印电路板固定在所述热电冷却器上,以及在非相干性强光源与所述可打印电路板以及所述可打印电路板与所述热电冷却器之间的间隙涂上高性能的热胶,以便将所述相干性强光源恒温在指定摄氏度附近,从而实现恒温光源;所述非相干性强光源包括一个或多个发光二极管。
在图5所描述的大气分子检测方法中,通过直接测量大气分子(如气体分子NO2、HCHO、CHOCHO、N2O5、NO3、HONO等)的光吸收来测定大气分子的浓度,所以不需要用已知浓度的标准气体来标定检测仪器的灵敏系数,从而可以有效、便捷地检测大气分子(如NO2、HCHO、CHOCHO、N2O5、HONO等)的浓度及大气颗粒物的消光;此外,在图5所描述的大气分子检测方法中,光线在两面高反射镜之间来回反射,可以显著增加吸收光程,从而可以显著增加大气分子的吸收,从而可以有效地检测超低浓度的大气分子浓度。
本申请实施例公开的大气分子检测系统和大气分子检测方法可以实现所有在340-900nm波长范围内具有特征结构吸收(structured absorption)的大气分子的浓度检测,包括:
(a)甲醛(HCHO),其检测限在十亿至百亿分之一左右,检测结果可用来探测室内的甲醛浓度,并由于其结果的可靠性和准确性,可用作室内甲醛检测的“金标准”,用来校准、验证相对廉价、便携的甲醛传感器和检测装置;
(b)乙二醛(CHOCHO),其最低检测限一般在千亿分之一左右。由于乙二醛是大气苯及苯的同系物(主要来自汽车尾气排放、工业排放以及植物排放)和异戊二烯(主要来自植物排放和汽车尾气等)在大气氧化过程中产生的重要中间体,其液相反应也被认为可能是二次气溶胶的来源之一,所以乙二醛的检测对大气化学研究非常重要。另外,甲醛和乙二醛光解会产生HO2自由基,该自由基与NO的进一步反应会导致OH自由基的生成,所以同时监测甲醛和乙二醛有助于完整了解来自大气中主要的可光解性醛贡献的OH自由基来源(注:OH自由基是大气中最重要的氧化性自由基);
(c)二氧化氮(NO2)/一氧化氮(NO)/臭氧(O3):其中,NO2在可以直接通过本技术监测,NO和O3要分别添加O3和NO,将它们分别转化为NO2后再监测。本申请实施例实际提供了同时监测这三种典型的大气污染物的标准仪器方案;
(d)五氧化氮(N2O5)/三氧化氮(NO3):这两种物质是大气中的氮氧化物(NO+NO2)在夜间被臭氧O3氧化后产生的重要活性中间体,对它们的监测有助于完整了解上述两种氮氧化物在大气中的氧化机理及其具体参与的大气化学过程(如N2O5转化为硝酸,NO3氧化可挥发性有机物);
(e)一氧化碘(IO)及碘蒸汽(I2):这两种物质是海洋边界层(MBL,MarineBoundary Layer)里的重要活性中间体,对催化MBL里的臭氧损耗有着重要的意义;
(f)亚硝酸(HONO):受污染的浅层大气里,如城市地面100-300米等处最主要的OH自由基来源。除此之外,测量HONO的光腔可以同时测量NO2,这两者都是室内燃气灶燃烧释放出的重要室内污染气体。
(g)气溶胶消光(aerosol extinction):如果在进气口不加颗粒物过滤器(aerosol filter),则颗粒物可以进入腔体进而直接测量由于颗粒物遮挡光线造成的消光值。
其中,实施本申请实施例,可以测得任意在紫外-可见光波段有吸收的大气分子及气溶胶消光。一般来说,本申请实施例公开的系统和方法的灵敏度主要受到如下一些因素的影响:
(1)分子的特征吸收截面的高低。这个值越高,对该分子的检测就越灵敏,检测限就越低。
(2)高反射镜的反射率、透射率的高低。前者决定了最终可以实现的光程长,后者则决定了光在经过高反射镜时,除被反射外,剩余的比例里(即1-R)有多少比例不受损失地成功透过凸透镜。因此,选择高反射镜时要综合考虑这两个值的高低,合理选择。
(3)光源的单位面积的能量密度。这个值越高,能被导入光纤并最终进入光腔的光强就越高。在最终噪音受散粒噪音(shot noise)控制时,光强越强,灵敏度就越高。在330-900nm的波长范围内,发光二极管(LED)的单位面积发光能量和效率均为最高,所以一般取LED做光源。若需要用到更短的紫外波长,有时也需要考虑其他光源如氘灯或汞灯。
(4)光源的热稳定性。由于要测的是一个在较高的光背景信号上的由大气分子吸收引起的极其微弱的该信号的变化,即便是非常微弱的光源热漂移引起的该背景信号的漂移也足以高过待测的分子吸收信号,进而影响最低检测限。以LED做光源时,一般以热电冷却器要对其做恒温并包裹绝热泡沫,把它的温度稳定在0.01摄氏度之内。
(5)光腔的热稳定性和机械稳定性。要求设计的光腔在环境温度变化时,其准直(alignment)不因材料的热胀冷缩有明显变化。其次,在腔内外有压力差时(如在飞机上做观测时),光腔要有足够的机械强度,确保两面反射镜的准直不因压力的挤压而发生明显变化。例如,可以利用碳纤维管做腔体(因其热膨胀系数小)或用四根碳纤维管支撑(因其密度小且机械强度高)上图所示镜座支架和光学运动座以使其在压力差环境下保持准直。
本申请实施例进一步公开一种计算机存储介质,所述计算机存储介质用于存储计算机程序,其中,所述计算机程序使得计算机执行本申请实施例公开的所述大气分子检测方法。
本申请实施例进一步公开一种包括指令的计算机程序产品,所述计算机程序产品在计算机上运行时,使得所述计算机执行本申请实施例公开的所述大气分子检测方法。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(CompactDisc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本申请实施例公开的一种大气分子检测系统、光腔结构、适用于光腔结构的气体加热装置以及大气分子检测方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

1.一种适用于光腔结构的气体加热装置,其特征在于,所述光腔结构包括:腔体管,所述腔体管的左端设有第一高反射镜,所述腔体管的右端设有第二高反射镜;所述第一高反射镜的镜面和所述第二高反射镜的镜面实现准直;所述第一高反射镜的外侧设有第一凸透镜,所述第二高反射镜的外侧设有第二凸透镜;第一光纤的第一端用于连接光源的发射口,所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上;第二光纤的第一端用于连接光谱仪,所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上;在所述腔体管内充满含有待定浓度的大气分子的气体时,所述第一凸透镜对所述第一光纤导出的光线准直后射入所述腔体管,以使光线在两面高反射镜之间来回反射多次后离开所述腔体管并经由所述第二凸透镜聚焦到所述第二光纤上,再经由所述第二光纤导入所述光谱仪;
所述气体加热装置,包括管道连接件以及固定在所述管道连接件上的加热管,所述加热管的一端用于输入待加热气体,所述加热管的另一端用于将已加热的气体灌入所述腔体管;所述加热管包括金属管,所述金属管内嵌有聚四氟乙烯管,所述金属管上缠绕加热电阻丝,并且所述金属管外壁贴有铂电阻,所述铂电阻用于记录管壁温度并为加热电源的功率控制器提供反馈信号;所述金属管外包裹有覆盖所述金属管外壁、所述加热电阻丝以及所述铂电阻的绝热材料。
2.根据权利要求1所述的气体加热装置,其特征在于,所述光腔结构还包括:
第一光学运动座,所述第一光学运动座设置在所述腔体管的左端,并且所述第一高反射镜固定在所述第一光学运动座上;
所述第一光学运动座上设有用于调节所述第一高反射镜的倾斜角度,以使所述第一高反射镜的镜面与所述第二高反射镜的镜面实现准直的调节螺丝。
3.根据权利要求2所述的气体加热装置,其特征在于,所述光腔结构还包括:
第二光学运动座,所述第二光学运动座设置在所述第一光学运动座的外侧,并且所述第一凸透镜固定在所述第二光学运动座上;
所述第二光学运动座上设有用于调节所述第一凸透镜相对于所述第一高反射镜的倾斜角度,以使所述第一凸透镜和所述第一高反射镜两者之间实现准直的调节螺丝。
4.根据权利要求3所述的气体加热装置,其特征在于:
所述第一光纤的第二端设置在所述第二光学运动座上,并且所述第二光学运动座上还设有用于水平调节所述第一光纤的第二端与所述第一凸透镜之间的距离,以使所述第一光纤的第二端被放置在所述第一凸透镜的外侧焦点上的光纤调节旋钮。
5.根据权利要求2、3或4所述的气体加热装置,其特征在于,所述光腔结构还包括:
第三光学运动座,所述第三光学运动座设置在所述腔体管的右端,并且所述第二高反射镜固定在所述第三光学运动座上;
所述第三光学运动座上设有用于调节所述第二高反射镜的倾斜角度,以使所述第二高反射镜的镜面与所述第一高反射镜的镜面实现准直的调节螺丝。
6.根据权利要求5所述的气体加热装置,其特征在于,所述光腔结构还包括:
第四光学运动座,所述第四光学运动座设置在所述第三光学运动座的外侧,并且所述第二凸透镜固定在所述第四光学运动座上;
所述第四光学运动座上设有用于调节所述第二凸透镜相对于所述第二高反射镜的倾斜角度,以使所述第二凸透镜和所述第二高反射镜两者之间实现准直的调节螺丝。
7.根据权利要求6所述的气体加热装置,其特征在于:
所述第二光纤的第二端设置在所述第四光学运动座上,并且所述第四光学运动座上还设有用于水平调节所述第二光纤的第二端与所述第二凸透镜之间的距离,以使所述第二光纤的第二端被放置在所述第二凸透镜的外侧焦点上的光纤调节旋钮。
8.根据权利要求7所述的气体加热装置,其特征在于:
从所述第一光学运动座到所述腔体管的左端之间依次设置有第一波纹管和第一镜座及腔体支架;
所述第一镜座及腔体支架上设有用于向所述腔体管抽入气体的进气管,所述进气管与用于将已加热的气体灌入所述腔体管的所述加热管的另一端连通。
9.根据权利要求8所述的气体加热装置,其特征在于:
从所述第三光学运动座到所述腔体管的右端之间依次设置有第二波纹管和第二镜座及腔体支架;
所述第二镜座及腔体支架上设有用于供所述腔体管输出气体的出气管。
10.根据权利要求9所述的气体加热装置,其特征在于:
所述第一镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第一高反射镜的镜面直接接触的第一吹扫气进气管;
所述第二镜座及腔体支架上还设有用于输入吹扫气以阻断所述腔体管内的气体与所述第二高反射镜的镜面直接接触的第二吹扫气进气管;
其中,所述吹扫气包括纯氮气。
CN201811024947.0A 2018-09-04 2018-09-04 一种适用于光腔结构的气体加热装置 Pending CN108918421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811024947.0A CN108918421A (zh) 2018-09-04 2018-09-04 一种适用于光腔结构的气体加热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811024947.0A CN108918421A (zh) 2018-09-04 2018-09-04 一种适用于光腔结构的气体加热装置

Publications (1)

Publication Number Publication Date
CN108918421A true CN108918421A (zh) 2018-11-30

Family

ID=64407673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811024947.0A Pending CN108918421A (zh) 2018-09-04 2018-09-04 一种适用于光腔结构的气体加热装置

Country Status (1)

Country Link
CN (1) CN108918421A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655472A (zh) * 2009-10-09 2010-02-24 丁五行 一种用于热导式气体检测的恒温绝热系统
CN102374510A (zh) * 2011-05-03 2012-03-14 中国科学院合肥物质科学研究院 一种辐射光谱稳定的led光源及其控制装置
CN103149156A (zh) * 2013-03-19 2013-06-12 中国气象科学研究院 双通道光腔衰荡大气气溶胶消光仪及消光系数测量方法
CN203385657U (zh) * 2013-06-19 2014-01-08 中国石油化工股份有限公司 一种应用于硫磺制酸so2浓度在线监测的传感系统
CN104596955A (zh) * 2014-12-11 2015-05-06 中国科学院合肥物质科学研究院 一种应用于痕量气体浓度和气溶胶消光同时测量的腔增强吸收光谱装置及方法
CN204346898U (zh) * 2014-12-31 2015-05-20 郑州光力科技股份有限公司 一种气体浓度测量气室及使用该气室的检测装置
CN205157417U (zh) * 2015-08-19 2016-04-13 苏州华和呼吸气体分析研究所有限公司 一种用于无创测量血液酮体水平的crds丙酮呼吸分析仪
CN206146560U (zh) * 2016-11-01 2017-05-03 山东农业大学 中低温域干体温度校验器
CN107401889A (zh) * 2017-06-23 2017-11-28 东南大学 一种复合干燥设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101655472A (zh) * 2009-10-09 2010-02-24 丁五行 一种用于热导式气体检测的恒温绝热系统
CN102374510A (zh) * 2011-05-03 2012-03-14 中国科学院合肥物质科学研究院 一种辐射光谱稳定的led光源及其控制装置
CN103149156A (zh) * 2013-03-19 2013-06-12 中国气象科学研究院 双通道光腔衰荡大气气溶胶消光仪及消光系数测量方法
CN203385657U (zh) * 2013-06-19 2014-01-08 中国石油化工股份有限公司 一种应用于硫磺制酸so2浓度在线监测的传感系统
CN104596955A (zh) * 2014-12-11 2015-05-06 中国科学院合肥物质科学研究院 一种应用于痕量气体浓度和气溶胶消光同时测量的腔增强吸收光谱装置及方法
CN204346898U (zh) * 2014-12-31 2015-05-20 郑州光力科技股份有限公司 一种气体浓度测量气室及使用该气室的检测装置
CN205157417U (zh) * 2015-08-19 2016-04-13 苏州华和呼吸气体分析研究所有限公司 一种用于无创测量血液酮体水平的crds丙酮呼吸分析仪
CN206146560U (zh) * 2016-11-01 2017-05-03 山东农业大学 中低温域干体温度校验器
CN107401889A (zh) * 2017-06-23 2017-11-28 东南大学 一种复合干燥设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘宏伟等: "LED光谱温度特性测试与分析", 《天津工业大学学报》 *
周志敏等: "《漫步LED世界》", 31 January 2013, 国防工业出版社 *

Similar Documents

Publication Publication Date Title
Kiefer et al. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant
Mi et al. Silicon microring refractometric sensor for atmospheric CO 2 gas monitoring
US7710566B2 (en) Method and apparatus for photoacoustic measurements
Stritzke et al. TDLAS-based NH 3 mole fraction measurement for exhaust diagnostics during selective catalytic reduction using a fiber-coupled 2.2-µm DFB diode laser
CN102890045B (zh) 纳米颗粒物计数浓度测量装置
US20040168504A1 (en) Vehicle ultraviolet gas emission analysis
CN108956503A (zh) 一种水分子浓度计算方法
CN109187355A (zh) 一种应用于光腔结构的吹扫气路装置
ElBaz et al. N 2 O molecular tagging velocimetry
Bryant et al. The NIST 3 megawatt quantitative heat release rate facility
CN103048285B (zh) 利用光-热法测量大气气溶胶吸收系数的新方法
Rosner et al. Optical experiments on thermophoretically augmented submicron particle deposition from “dusty” high temperature gas flows
CN109100316A (zh) 一种应用于光腔结构的高反射镜筛选方法
CN108918421A (zh) 一种适用于光腔结构的气体加热装置
CN109115706A (zh) 一种水分子吸收系数的温度校正方法
CN108956475A (zh) 一种光腔结构
CN109187344A (zh) 一种应用于大气分子检测系统的气路结构
CN109187354A (zh) 一种适用于光腔结构的吹扫气路装置
CN109115683A (zh) 一种光腔结构中凸透镜与高反射镜的安装方法
CN108956502A (zh) 一种大气分子检测系统
CN109060691A (zh) 一种大气分子浓度的计算方法及设备
CN108956471A (zh) 一种光腔结构中凸透镜与光纤的安装方法
CN109211807A (zh) 一种具备气体检前预转化装置的大气分子检测系统
CN109001132A (zh) 一种大气分子检测方法
CN109238975A (zh) 一种大气分子检测系统中兼容倒灌零气的气路结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130