CN109000586A - 一种用于管道轮廓测绘的测绘机器人 - Google Patents

一种用于管道轮廓测绘的测绘机器人 Download PDF

Info

Publication number
CN109000586A
CN109000586A CN201810976550.5A CN201810976550A CN109000586A CN 109000586 A CN109000586 A CN 109000586A CN 201810976550 A CN201810976550 A CN 201810976550A CN 109000586 A CN109000586 A CN 109000586A
Authority
CN
China
Prior art keywords
pipeline
robot
preset
sub
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810976550.5A
Other languages
English (en)
Inventor
饶昙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wei Lin Mao Biotechnology Co Ltd
Original Assignee
Shenzhen Wei Lin Mao Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Wei Lin Mao Biotechnology Co Ltd filed Critical Shenzhen Wei Lin Mao Biotechnology Co Ltd
Priority to CN201810976550.5A priority Critical patent/CN109000586A/zh
Publication of CN109000586A publication Critical patent/CN109000586A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss

Abstract

本发明公开一种用于管道轮廓测绘的测绘机器人,其中,该测绘机器人通过红外距离传感器在多个方向发送红外探测信号,获取多个方向的障碍物的距离信息,根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据,根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据,将管道轮廓数据发送至对应的接收终端。本发明提供的测绘机器人能够准确得知管道耗损的具体位置和耗损程度,且能够检查到即将破损的管道内壁。

Description

一种用于管道轮廓测绘的测绘机器人
技术领域
本发明涉及机器人技术领域,具体涉及一种用于管道轮廓测绘的测绘机器人。
背景技术
在对管道进行检修时,由于有些管道相对比较长,而中间又没有开孔且不便拆卸,从内部检修相当繁琐,而从外部检修则会导致检修结果不可靠。例如,在大型工业生产设备中的管道需要进行定期检查时,管道中可能残留有对人体有害的物质,但拆卸和清洗管道需要耗费大量人力和时间。现有的管道检修通常会在管道中灌水、通气,通过检查是否有漏水或者漏气来判断管道的运输性能,或直接观察管道压强表,判断管道压强是否正常。但上述的检查方法并不能准确得知管道耗损的具体位置和耗损程度,且不能检查到即将破损的管道内壁。
发明内容
本发明的主要目的是提供一种管道轮廓测绘方法、测绘机器人及计算机可读存储介质,旨在解决检修管道时不能准确得知管道耗损的具体位置和耗损程度,且不能检查到即将破损的管道内壁的技术问题。
为实现上述目的,本发明提供一种管道轮廓测绘方法,包括如下步骤:
根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向运动;
通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号,获取多个方向的障碍物的距离信息,预设的侦测平面为与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面;
根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据;
根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据;
将管道轮廓数据发送至对应的接收终端。
其中,根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向运动的步骤,包括:
根据接收到的移动指令,确定移动指令对应的移动方向与移动速度,控制测绘机器人沿移动方向以移动速度运动;
通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
根据移动速度,确定红外距离传感器的扫描频率;
控制红外距离传感器按照确定的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
其中,红外距离传感器发射的红外线的扫描方向为分别在预设的侦测平面内,以红外距离传感器的红外发射器为中心,按照确定的扫描频率环形扫描。
其中,预设的侦测平面为与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;多个侦测平面按照预设的摆动方式,在预设的角度阈值范围内来回摆动切换;
通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
根据多个侦测平面的摆动方式,确定当前的侦测平面;
通过红外距离传感器在确定的当前的侦测平面,在多个方向发送红外探测信号。
其中,根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据的步骤之后,还包括:
将管道子轮廓数据转化为管道子轮廓图像;
将管道子轮廓图像发送至接收终端。
其中,将管道轮廓子数据转化为管道子轮廓图像的步骤之后,还包括:
将当前位置标记在管道子轮廓图像上。
其中,将当前位置标记在管道子轮廓图像上的步骤之后,还包括:
根据多个方向的障碍物的距离信息,计算出当前位置至每个障碍物的距离;
将距离标注在管道子轮廓图像上。
其中,通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
控制红外距离传感器按照预设的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
本发明还提供一种用于管道轮廓测绘的测绘机器人,包括:存储器、处理器、通信模块以及红外距离传感器,其中,所述存储器用于存储数据和可在所述处理器上运行的计算机程序,所述通信模块用于所述测绘机器人与其他设备进行通信交互,所述处理器执行所述计算机程序时实现以下步骤:
根据接收到的移动指令,确定所述移动指令对应的移动方向,控制所述测绘机器人沿所述移动方向运动;
通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号,以获取所述多个方向的障碍物的距离信息,所述预设的侦测平面为与垂直于所述移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面;
根据所述测绘机器人的当前位置与所述多个方向的障碍物的距离信息生成管道子轮廓数据;
根据行进中的所述测绘机器人处于不同的位置所生成的多个所述管道子轮廓数据,生成被探测管道的管道轮廓数据;
控制所述通信模块将所述管道轮廓数据发送至对应的接收终端。
优选的,所述处理器根据接收到的移动指令,确定所述移动指令对应的移动方向,控制所述测绘机器人沿所述移动方向运动的方式包括:
根据接收到的移动指令,确定所述移动指令对应的移动方向与移动速度,控制所述测绘机器人沿所述移动方向以所述移动速度运动;
所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据所述移动速度,确定所述红外距离传感器的扫描频率;
控制所述红外距离传感器按照确定的所述扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
优选的,所述红外距离传感器发射的红外线的扫描方向为分别在所述预设的侦测平面内,以所述红外距离传感器的红外发射器为中心,按照确定的所述扫描频率环形扫描。
优选的,所述预设的侦测平面为与垂直于所述移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;所述多个侦测平面按照预设的摆动方式,在所述预设的角度阈值范围内来回摆动切换;
所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据所述多个侦测平面的摆动方式,确定当前的侦测平面;
通过所述红外距离传感器在确定的所述当前的侦测平面,在所述多个方向发送所述红外探测信号。
优选的,所述处理器根据所述测绘机器人的当前位置与所述多个方向的障碍物的距离信息生成管道子轮廓数据之后,所述处理器执行所述计算机程序时还实现以下步骤:
将所述管道子轮廓数据转化为管道子轮廓图像;
控制所述通信模块将所述管道子轮廓图像发送至所述接收终端。
优选的,所述处理器将所述管道轮廓子数据转化为管道子轮廓图像之后,所述处理器执行所述计算机程序时还实现以下步骤:
将所述当前位置标记在所述管道子轮廓图像上。
优选的,所述处理器将所述当前位置标记在所述管道子轮廓图像上之后,所述处理器执行所述计算机程序时还实现以下步骤:
根据所述多个方向的障碍物的距离信息,计算出当前位置至每个所述障碍物的距离;
将所述距离标注在所述管道子轮廓图像上。
优选的,所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
控制所述红外距离传感器按照预设的扫描频率在预设的侦测平面内向多个方向发送所述红外探测信号。
本发明还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现上述的管道轮廓测绘方法的步骤。
本发明提供的测绘机器人具有以下有益效果:
本发明提供的测绘机器人,首先根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向移动,然后通过红外距离传感器在多个方向发送红外探测信号,获取多个方向的障碍物的距离信息,多个方向与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,然后根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据,并根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据最后将管道轮廓数据发送至对应的接收终端。从而能够使得测绘机器人能够在管道内部准确得知管道耗损的具体位置和耗损程度,且能检查到即将破损的管道内壁。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的内容获得其他的附图。
图1为本发明具体实施例中管道轮廓测绘方法的流程图;
图2为本发明具体实施例中发送管道子轮廓图像至接收终端的流程图;
图3为本发明具体实施例中在管道子轮廓图像上标注距离的流程图;
图4为本发明具体实施例中用于管道轮廓测绘的测绘机器人的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参阅图1,本发明提供一种管道轮廓测绘方法,包括如下步骤:
S1,根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向运动。
在步骤S1中,测绘机器人接收其他终端发送的移动指令,根据其他终端发送的移动指令中包含的移动方向,向移动指令中指示的方向移动。
S2,通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号,获取多个方向的障碍物的距离信息。
其中,预设的侦测平面为与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面。
在步骤S2中,红外探测信号用于探测周围障碍物至红外距离传感器的距离信息;预设的侦测平面的数量可以根据实际使用条件进行调整设置;预设的侦测平面与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,例如,在管道内部时,探测的范围应是以移动方向为中轴的圆环状探测范围;实际使用时,对于管道内部的探测,红外距离传感器不需要进行全方位360°探测,因此能够节省机能。
S3,根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据。
在步骤S3中,管道子轮廓数据为中间处理数据,管道子轮廓数据是根据红外距离传感器探测到的多个方向上的障碍物的距离信息计算获得的。
S4,根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据。
在步骤S4中,管道轮廓数据是多个管道子轮廓数据经过计算得到的管道整体轮廓图像;在测绘机器人的行进过程中红外线传感器持续进行探测,以获得不同位置的管道轮廓数据,同时将不同位置的管道轮廓子数据进行组合,得到被探测管道的管道轮廓数据。
S5,将管道轮廓数据发送至对应的接收终端。
在步骤S5中,测绘机器人在测绘过程中可以实时将测绘得到的管道轮廓数据发送到预设的接收终端,以便于使用者实时观察。可以理解的是,接收终端也可以将接收到的管道轮廓数据存储在本地,以在测绘结束之后观察。
本发明提供的管道轮廓测绘方法,首先根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向移动,然后通过红外距离传感器在多个方向发送红外探测信号,获取多个方向的障碍物的距离信息,多个方向与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,然后根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据,并根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据最后将管道轮廓数据发送至对应的接收终端。从而能够使得测绘机器人能够在管道内部准确得知管道耗损的具体位置和耗损程度,且能检查到即将破损的管道内壁。
其中,根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向移动的步骤,包括:
根据接收到的移动指令,确定移动指令对应的移动方向与移动速度,控制测绘机器人沿移动方向以移动速度移动。
在具体实施例中,移动指令中包含具体的移动方向和移动速度,测绘机器人根据移动方向和移动速度,沿移动方向以移动速度移动。
其中,通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
步骤一,根据移动速度,确定红外距离传感器的扫描频率。
在步骤一中,扫描频率是指测绘机器人每秒扫描的次数,单位为次/秒;测绘机器人可以根据移动指令中的移动速度对应调整扫描频率,移动速度越快扫描频率也越快,扫描频率还与预设的扫描区域大小相关,扫描区域是指,在一定管径的管道中,测绘机器人一次扫描能够扫描到管道内部的长度;例如,在一固定管径为2米的管道中,测绘机器人一次扫描能够测绘的管道长度为0.2米,移动速度为1米/秒,那么为了保证管道测绘的完整性,扫描的频率应大于等于1米/秒/0.2米=5次/秒,即,扫描的频率应能够保证在测绘机器人以移动指令中对应的移动速度移动时,完整测绘管道内的轮廓,不出现断点,而具体的扫描频率可以根据实际使用时的精度要求进行调整。
步骤二,控制红外距离传感器按照确定的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
在步骤二中,根据确定出的扫描频率,控制红外距离传感器按照计算好的或者人为调整过的扫描频率在多个方向上发送红外探测信号。
由此可见,上述步骤能够根据测绘机器人的行进速度调整红外距离传感器的扫描频率,能够完整测绘管道内的轮廓,不出现断点,保证测绘的完整性。
其中,红外距离传感器发射的红外线的扫描方向为分别在预设的侦测平面内,以红外距离传感器的红外发射器为中心,按照确定的扫描频率环形扫描。
作为本发明的一种优选方式,红外距离传感器在预设的侦测平面内向四周发送红外探测信号,可以理解的是,预设的侦测平面为平均分布的多个平面,即,两相邻平面之间夹角相等的多个平面,可以理解的是,垂直于水平面的侦测平面数量越多,侦测到的数据精度越高,具体的平面数量可以根据实际情况进行人为设置。
其中,预设的侦测平面为,与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;多个侦测平面按照预设的摆动方式,在预设的角度阈值范围内来回摆动切换;
预设的摆动方式为,在与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面中,依次切换侦测平面的方式,例如,按照顺时针方向以5度间距依次选择与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的侦测平面。
通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
步骤一,根据多个侦测平面的摆动方式,确定当前的侦测平面。
在步骤一中,预设的摆动方式为,在与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面中,依次切换侦测平面的方式,例如,按照顺时针方向以5度间距依次选择与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内的侦测平面。根据预设的摆动方式,选择当前时刻的侦测平面。
步骤二,通过红外距离传感器在确定的当前的侦测平面,在多个方向发送红外探测信号。
在步骤二中,在确定侦测平面之后,在侦测平面内,通过红外距离传感器在当前侦测平面多个方向发送红外探测信号,通过调整侦测平面的摆动方式,能够得到不同角度的侦测结果,也可以让侦测结果的精度针对不同使用环境调整,能够节省电能,使测绘机器人达到更长时间的续航。
由此可见,上述步骤能够通过在侦测平面在与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内以预设摆动方式摆动时,确定当前侦测平面,得到不同角度的侦测结果,同时也可以节省电能,使测绘机器人达到更长时间的续航。
其中,根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据的步骤之后,还包括:
S21,将管道子轮廓数据转化为管道子轮廓图像。
在步骤S21中,管道子轮廓图像可以是3D模型;将红外传感器获取到的管道子轮廓数据转化为可视的3D模型,以提供给使用者观察。
S22,将管道子轮廓图像发送至接收终端。
在步骤S22中,将管道子轮廓图像发送至接收终端,以实时显示管道内部的轮廓图像。
由此可见,上述步骤能够将红外传感器获取的管道子轮廓数据转化为管道子轮廓图像,并将管道子轮廓图像发送至接收终端,以使用户能够通过接收终端观察管道子轮廓图像。
其中,将管道轮廓子数据转化为管道子轮廓图像的步骤之后,还包括:
将当前位置标记在管道子轮廓图像上。
在生成管道子轮廓图像之后,根据红外距离传感器探测的实时当前位置将当前位置标记在管道子轮廓图像上,以便于观察者清楚的了解管道轮廓图像对应管道的位置。
其中,将当前位置标记在管道子轮廓图像上的步骤之后,还包括:
S31,根据多个方向的障碍物的距离信息,计算出当前位置至每个障碍物的距离。
在步骤S31中,根据红外传感器探测到的多个方向的障碍物的距离信息,计算出当前红外传感器的位置至每个障碍物的距离。
S32,将距离标注在管道子轮廓图像上。
在步骤S32中,将当前红外传感器的位置至每个障碍物的距离标注在管道子轮廓图像上,以能够根据图像了解管道内壁的损耗程度。
由此可见,上述步骤能够实时将管道内红外传感器的位置至每个障碍物的距离标注在管道子轮廓图像上,使管道内壁的损耗程度可以根据管道子轮廓图像上标注的当前红外传感器的位置至每个障碍物的距离分辨,相较于单纯观察图像更加直观,可以通过标注在图像上的距离,分辨人眼观察不出来的细小差别。
其中,通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的步骤,包括:
控制红外距离传感器按照预设的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
作为本发明的一种优选方式,红外距离传感器按照预设的扫描频率发送红外探测信号,预设的扫描频率可以根据实际使用时需要的扫描精度进行调整设置。
如图4所示,本发明还提供一种用于管道轮廓测绘的测绘机器人100,包括存储器101、处理器102、通信模块103以及红外距离传感器104,其中,存储器101用于存储数据1011和可在处理器102上运行的计算机程序1012,通信模块103用于测绘机器人100与其他设备进行通信交互,红外距离传感器104用于测距,处理器102执行计算机程序1012时可以实现上述的管道轮廓测绘方法的步骤。
具体的,处理器102执行计算机程序1012时可以实现以下步骤:
根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人100沿移动方向运动;
通过红外距离传感器104在预设的侦测平面内向多个方向发送红外探测信号,获取多个方向的障碍物的距离信息;
根据测绘机器人100的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据;
根据行进中的测绘机器人100处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据;
控制通信模块103将管道轮廓数据发送至对应的接收终端。
可选的,处理器102根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人100沿移动方向运动的方式可以包括:
根据接收到的移动指令,确定移动指令对应的移动方向与移动速度,控制测绘机器人100沿移动方向以移动速度运动;
处理器102通过红外距离传感器104在预设的侦测平面内向多个方向发送红外探测信号的方式可以包括:
根据移动速度,确定红外距离传感器的扫描频率;
控制红外距离传感器104按照确定的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
可选的,红外距离传感器104发射的红外线的扫描方向为分别在预设的侦测平面内,以红外距离传感器104的红外发射器为中心,按照确定的扫描频率环形扫描。
可选的,预设的侦测平面为与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;多个侦测平面按照预设的摆动方式,在预设的角度阈值范围内来回摆动切换;处理器102通过红外距离传感器104在预设的侦测平面内向多个方向发送红外探测信号的方式可以包括:
根据多个侦测平面的摆动方式,确定当前的侦测平面;
通过红外距离传感器在确定的当前的侦测平面,在多个方向发送红外探测信号。
可选的,处理器102根据测绘机器人100的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据之后,处理器102执行计算机程序1012时还可以实现以下步骤:
将管道子轮廓数据转化为管道子轮廓图像;
控制通信模块103将管道子轮廓图像发送至接收终端。
可选的,处理器102将管道子轮廓数据转化为管道子轮廓图像之后,处理器102执行计算机程序1012时还可以实现以下步骤:
将当前位置标记在管道子轮廓图像上。
可选的,处理器102将当前位置标记在管道子轮廓图像上之后,处理器102执行计算机程序1012时还可以实现以下步骤:
根据多个方向的障碍物的距离信息,计算出当前位置至每个障碍物的距离;
将距离标注在管道子轮廓图像上。
可选的,处理器102通过红外距离传感器104在预设的侦测平面内向多个方向发送红外探测信号的方式可以包括:
控制红外距离传感器104按照预设的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
即,在本发明的具体实施例中,测绘将机器人100的处理器102执行计算机程序1012时实现上述的管道轮廓测绘方法的步骤,从而能够使得测绘机器人100在地形不能确定,信号传输受限制的情况下能够在其他测绘机器人100的支持下深入,且减小更深入的测绘可能会失去与测绘机器人100的通讯的风险,同时测绘数据也能够在其他测绘机器人100的支持下传输到外界。
需要说明的是,由于测绘机器人100的处理器102执行计算机程序1012时实现上述的管道轮廓测绘方法的步骤,因此上述方法的所有实施例均适用于该测绘机器人100,且均能达到相同或相似的有益效果。
此外,本发明还提供一种计算机可读存储介质,计算机可读介质存储有计算机程序,该计算机程序被处理器执行时实现上述的管道轮廓测绘方法的步骤。
具体的,计算机程序被处理器执行时实现以下步骤:
根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向运动;
通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号,获取多个方向的障碍物的距离信息;
根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据;
根据行进中的测绘机器人处于不同的位置所生成的多个管道子轮廓数据,生成被探测管道的管道轮廓数据;
将管道轮廓数据发送至对应的接收终端。
可选的,处理器根据接收到的移动指令,确定移动指令对应的移动方向,控制测绘机器人沿移动方向运动的方式包括:
根据接收到的移动指令,确定移动指令对应的移动方向与移动速度,控制测绘机器人沿移动方向以移动速度运动;
处理器通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据移动速度,确定红外距离传感器的扫描频率;
控制红外距离传感器按照确定的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
可选的,红外距离传感器发射的红外线的扫描方向为分别在预设的侦测平面内,以红外距离传感器的红外发射器为中心,按照确定的扫描频率环形扫描。
可选的,预设的侦测平面为与垂直于移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;多个侦测平面按照预设的摆动方式,在预设的角度阈值范围内来回摆动切换;处理器通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据多个侦测平面的摆动方式,确定当前的侦测平面;
通过红外距离传感器在确定的当前的侦测平面,在多个方向发送红外探测信号。
可选的,处理器根据测绘机器人的当前位置与多个方向的障碍物的距离信息生成管道子轮廓数据之后,计算机程序被处理器执行时还实现以下步骤:
将管道子轮廓数据转化为管道子轮廓图像;
将管道子轮廓图像发送至接收终端。
可选的,处理器将管道子轮廓数据转化为管道子轮廓图像之后,计算机程序被处理器执行时还实现以下步骤:
将当前位置标记在管道子轮廓图像上。
可选的,处理器将当前位置标记在管道子轮廓图像上之后,计算机程序被处理器执行时还实现以下步骤:
根据多个方向的障碍物的距离信息,计算出当前位置至每个障碍物的距离;
将距离标注在管道子轮廓图像上。
可选的,处理器通过红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
控制红外距离传感器按照预设的扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
即,在本发明的具体实施例中,计算机可读存储介质的计算机程序被处理器执行时实现上述的管道轮廓测绘方法的步骤,从而能够使得测绘机器人在地形不能确定,信号传输受限制的情况下能够在其他测绘机器人的支持下深入,且减小更深入的测绘可能会失去与测绘机器人的通讯的风险,同时测绘数据也能够在其他测绘机器人的支持下传输到外界。
需要说明的是,由于计算机可读存储介质的计算机程序被处理器执行时实现上述的管道轮廓测绘方法的步骤,因此上述方法的所有实施例均适用于该计算机可读存储介质,且均能达到相同或相似的有益效果。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (8)

1.一种用于管道轮廓测绘的测绘机器人,其特征在于,包括:存储器、处理器、通信模块以及红外距离传感器,其中,所述存储器用于存储数据和可在所述处理器上运行的计算机程序,所述通信模块用于所述测绘机器人与其他设备进行通信交互,所述处理器执行所述计算机程序时实现以下步骤:
根据接收到的移动指令,确定所述移动指令对应的移动方向,控制所述测绘机器人沿所述移动方向运动;
通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号,以获取所述多个方向的障碍物的距离信息,所述预设的侦测平面为与垂直于所述移动方向的平面之间的夹角在预设的角度阈值范围内的多个侦测平面;
根据所述测绘机器人的当前位置与所述多个方向的障碍物的距离信息生成管道子轮廓数据;
根据行进中的所述测绘机器人处于不同的位置所生成的多个所述管道子轮廓数据,生成被探测管道的管道轮廓数据;
控制所述通信模块将所述管道轮廓数据发送至对应的接收终端。
2.根据权利要求1所述的测绘机器人,其特征在于,
所述处理器根据接收到的移动指令,确定所述移动指令对应的移动方向,控制所述测绘机器人沿所述移动方向运动的方式包括:
根据接收到的移动指令,确定所述移动指令对应的移动方向与移动速度,控制所述测绘机器人沿所述移动方向以所述移动速度运动;
所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据所述移动速度,确定所述红外距离传感器的扫描频率;
控制所述红外距离传感器按照确定的所述扫描频率在预设的侦测平面内向多个方向发送红外探测信号。
3.根据权利要求2所述的测绘机器人,其特征在于,所述红外距离传感器发射的红外线的扫描方向为分别在所述预设的侦测平面内,以所述红外距离传感器的红外发射器为中心,按照确定的所述扫描频率环形扫描。
4.根据权利要求1所述的测绘机器人,其特征在于,所述预设的侦测平面为与垂直于所述移动方向的平面之间的夹角在预设的角度阈值范围内,且与水平面垂直的多个侦测平面;所述多个侦测平面按照预设的摆动方式,在所述预设的角度阈值范围内来回摆动切换;
所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
根据所述多个侦测平面的摆动方式,确定当前的侦测平面;
通过所述红外距离传感器在确定的所述当前的侦测平面,在所述多个方向发送所述红外探测信号。
5.根据权利要求1-4任一所述的测绘机器人,其特征在于,所述处理器根据所述测绘机器人的当前位置与所述多个方向的障碍物的距离信息生成管道子轮廓数据之后,所述处理器执行所述计算机程序时还实现以下步骤:
将所述管道子轮廓数据转化为管道子轮廓图像;
控制所述通信模块将所述管道子轮廓图像发送至所述接收终端。
6.根据权利要求5所述的测绘机器人,其特征在于,所述处理器将所述管道轮廓子数据转化为管道子轮廓图像之后,所述处理器执行所述计算机程序时还实现以下步骤:
将所述当前位置标记在所述管道子轮廓图像上。
7.根据权利要求6所述的测绘机器人,其特征在于,所述处理器将所述当前位置标记在所述管道子轮廓图像上之后,所述处理器执行所述计算机程序时还实现以下步骤:
根据所述多个方向的障碍物的距离信息,计算出当前位置至每个所述障碍物的距离;
将所述距离标注在所述管道子轮廓图像上。
8.根据权利要求1所述的测绘机器人,其特征在于,所述处理器通过所述红外距离传感器在预设的侦测平面内向多个方向发送红外探测信号的方式包括:
控制所述红外距离传感器按照预设的扫描频率在预设的侦测平面内向多个方向发送所述红外探测信号。
CN201810976550.5A 2018-08-25 2018-08-25 一种用于管道轮廓测绘的测绘机器人 Pending CN109000586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810976550.5A CN109000586A (zh) 2018-08-25 2018-08-25 一种用于管道轮廓测绘的测绘机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810976550.5A CN109000586A (zh) 2018-08-25 2018-08-25 一种用于管道轮廓测绘的测绘机器人

Publications (1)

Publication Number Publication Date
CN109000586A true CN109000586A (zh) 2018-12-14

Family

ID=64592236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810976550.5A Pending CN109000586A (zh) 2018-08-25 2018-08-25 一种用于管道轮廓测绘的测绘机器人

Country Status (1)

Country Link
CN (1) CN109000586A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608124A (zh) * 2012-04-06 2012-07-25 天津大学 微细管道管内缺陷及形貌测量装置及方法
CN204115674U (zh) * 2014-08-27 2015-01-21 宿迁泽达职业技术学院 房屋内轮廓激光扫测仪
CN205263654U (zh) * 2015-12-30 2016-05-25 东北石油大学 一种石油管道飞行机器人
CN105758889A (zh) * 2016-03-30 2016-07-13 哈尔滨工业大学 油气管道红外热波成像检测系统与方法
CN205808923U (zh) * 2016-07-21 2016-12-14 卢涵宇 一种数字化管道腐蚀数据综合分析评价系统
JP2017226259A (ja) * 2016-06-21 2017-12-28 株式会社日立製作所 管路施設点検飛行体と、それを用いた管路施設点検システム
CN107782785A (zh) * 2017-09-08 2018-03-09 中冶建筑研究总院有限公司 一种地下管线安全性评估方法
CN108189040A (zh) * 2018-03-09 2018-06-22 成都圭目机器人有限公司 一种污水管线检测机器人系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608124A (zh) * 2012-04-06 2012-07-25 天津大学 微细管道管内缺陷及形貌测量装置及方法
CN204115674U (zh) * 2014-08-27 2015-01-21 宿迁泽达职业技术学院 房屋内轮廓激光扫测仪
CN205263654U (zh) * 2015-12-30 2016-05-25 东北石油大学 一种石油管道飞行机器人
CN105758889A (zh) * 2016-03-30 2016-07-13 哈尔滨工业大学 油气管道红外热波成像检测系统与方法
JP2017226259A (ja) * 2016-06-21 2017-12-28 株式会社日立製作所 管路施設点検飛行体と、それを用いた管路施設点検システム
CN205808923U (zh) * 2016-07-21 2016-12-14 卢涵宇 一种数字化管道腐蚀数据综合分析评价系统
CN107782785A (zh) * 2017-09-08 2018-03-09 中冶建筑研究总院有限公司 一种地下管线安全性评估方法
CN108189040A (zh) * 2018-03-09 2018-06-22 成都圭目机器人有限公司 一种污水管线检测机器人系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王艺等: "排水管道检测技术", 《河南科技》 *
胡惟文等: "遥控测绘机器人设计", 《微计算机信息》 *

Similar Documents

Publication Publication Date Title
US10520950B2 (en) Self-moving robot movement boundary delimiting method
CN105066917B (zh) 一种小型管道地理信息系统测量装置及其测量方法
CN102495420B (zh) 一种水下目标精确定位系统及方法
CN103018757B (zh) 一种浮式及半潜式移动平台方位及三维姿态监测显示系统
CN106855411A (zh) 一种机器人及其以深度摄像头和避障系统构建地图的方法
CN104142145B (zh) 大断面矩形顶管自动测量方法及装置
CN102382918B (zh) 一种在线测量高炉料面的系统和方法
CN106092195A (zh) 一种水环境监测系统
CN105302296A (zh) 基于激光雷达的人机交互地面系统
JP2008026185A (ja) 放射線可視化システム
CN110726373A (zh) 一种盾构机盾尾间隙动态实时测量装置
CN104207801A (zh) 一种超声检测图像三维标定方法
CN208239637U (zh) 一种用于竖井或深孔的探测装置
CN106017465A (zh) 巡检移动终端基于微惯导的定位系统以及定位方法
CN109141283A (zh) 一种用于管道内壁测绘的测绘机器人
CN109164803A (zh) 一种测绘机器人
CN109115124A (zh) 管道内壁测绘方法及计算机可读存储介质
CN107356902B (zh) 一种WiFi定位指纹数据自动采集方法
CN108803628A (zh) 测绘机器人的控制方法及计算机可读存储介质
JP2016099125A (ja) 探査装置
CN109000586A (zh) 一种用于管道轮廓测绘的测绘机器人
CN109141282A (zh) 管道轮廓测绘方法及计算机可读存储介质
JP2011053165A (ja) 無軌道式移動台車の位置検出装置及び方法
CN111175317A (zh) 一种数字智能配网闲置电力电缆管道检测系统
CN107607677B (zh) 工业区碳排放检测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181214

WD01 Invention patent application deemed withdrawn after publication