CN109000018A - 一种利用无刷电机的霍尔信号的阀门控制器 - Google Patents

一种利用无刷电机的霍尔信号的阀门控制器 Download PDF

Info

Publication number
CN109000018A
CN109000018A CN201711416171.2A CN201711416171A CN109000018A CN 109000018 A CN109000018 A CN 109000018A CN 201711416171 A CN201711416171 A CN 201711416171A CN 109000018 A CN109000018 A CN 109000018A
Authority
CN
China
Prior art keywords
motor
valve
mcu
control
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711416171.2A
Other languages
English (en)
Inventor
高建权
柯金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Industrial Park Aisi Science & Technology Co Ltd
Original Assignee
Suzhou Industrial Park Aisi Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Industrial Park Aisi Science & Technology Co Ltd filed Critical Suzhou Industrial Park Aisi Science & Technology Co Ltd
Priority to CN201711416171.2A priority Critical patent/CN109000018A/zh
Publication of CN109000018A publication Critical patent/CN109000018A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

传统的电动阀门控制器利用与阀门轴同心的位置传感器和/或限位器配合来确定阀门的绝对开关位置,其机械结构复杂,且在发生限位堵死的情况下,如不及时保护,长时间运行,很容易对机械结构造成损害。为了解决以上问题,本发明提出一种没有位置传感器和/或限位器,直接利用霍尔传感器就能够控制阀门开度的阀门控制器,其包括电源、直流‑直流降压电路、MCU、Mos驱动电路、运算放大电路、电机驱动电路,其特征在于:MCU中存储有计算机程序,该程序被处理器执行时实现利用自带的霍尔传感器实现阀门位置控制的步骤。

Description

一种利用无刷电机的霍尔信号的阀门控制器
技术领域
本发明涉及电动阀门执行器控制领域,具体的涉及一种利用无刷电机的霍尔信号的阀门控制器。
背景技术
电动阀门执行控制器普遍使用在化工、电厂、通风管道的应用中。传统的电动阀门控制器采用霍尔传感器来控制阀门的开度,同时利用与阀门轴同心的位置传感器和/或限位器配合来确定阀门的绝对开关位置,并将此绝对开关位置反馈给计算机程序,经计算机程序分析后,再由霍尔传感器来发送信号调节阀门的开关,由于增加了限位开关和机械位置信号指示,机械结构复杂,且在发生限位堵死的情况下,如不及时保护,长时间运行,很容易对机械结构造成损害。
发明内容
为了解决以上问题,本发明提出一种利用无刷电机的霍尔信号的阀门控制器,其通过电动阀门执行控制器的电机的轴连接到减速齿轮,再由减速齿轮连接到阀门,从而控制阀门的开关。由于电机内部自带的霍尔传感器的信号,可以实现对阀门的调节型开关角度精确控制,故用户可以随时启动阀门开关行程的测量,实现阀门低范围角度的调节,实现3秒至5秒内控制阀门开关。且阀门在手动模式切换到自动模式时,可以自动归位;在阀门阀门位置和电子记录位置不匹配时,亦可以自动归位;同时能够实现堵死自动判断及自动归位。另外,本发明的利用无刷电机的霍尔信号的阀门控制器可以有效降低成本,简化整体控制器的机械结构。
如图1所示,为现有的电动阀门执行控制器的电机控制的电路框图,其包括电源、直流-直流降压电路(模块1)、MCU(模块2)、Mos驱动电路(模块3)、运算放大电路、电机驱动电路(模块4),其中电源为24V直流电,该24V直流电压一部分直接接到电机驱动电路(模块4)的Mos1~Mos3的漏极,另一部分经过直流-直流降压电路(模块1)将24V直流电降压为15V和3.3V分别供给给Mos驱动电路(模块3)和MCU(模块2),MCU(模块2)通过计算机程序运算输出PWM波控制信号经过Mos驱动电路抬升电压后控制电机驱动电路,电机驱动电路上采用Rbus采样电阻将母线的电压信号经过运算放大电路反馈给MCU(模块2),用于MCU的计算机程序计算下一个PWM波输出信号。
进一步的,直流-直流降压电路(模块1)降压芯片选择XL7005A降压直流电源变化芯片、78L05稳压芯片及LM1117稳压芯片。24V直流电压经过XL7005A降压直流电源变化芯片后降低到15V供给Mos驱动(模块3),15V电压通过78L05稳压芯片降低到5V供给运算放大电路,5V电压再通过LM1117芯片降压到3.3V供给MCU(模块2)。
进一步的,MCU(模块2)中的主控芯片为IC2,选择位STM32F0XX系列芯片,MCU通过采集电机的电流等其它参数用来做程序运算。MCU的电机控制PWM输出信号U,V,W,X,Y,Z的电压级别为+3.3V,通过连接到MOS驱动电路(模块3),将PWM控制信号提高为+15V,来驱动电机驱动电路(模块4)的Mos1~Mos6的栅极,通过PWM的开关高低电平来控制Mos1~Mos6的开关,使得24V电源电压能加在电机的三相UVW相线,产生一定的磁场方向,控制直流无刷电机旋转。
进一步的,Mos驱动电路(模块3)中选用的是FAN7888驱动芯片。
进一步的,电机驱动电路(模块4)包含驱动桥的6个Mos1~Mos6,其中Mos1、Mos2、Mos3的漏极与24V直流电相连,Mos1、Mos2、Mos3、Mos4、Mos5、Mos6的栅极分别与15V的电机控制PWM(脉冲调制宽度)输出信号u、v、w、x、y、z相连,由上述6路PWM(脉冲调制宽度)来分别控制Mos1~Mos6的通断。且Mos1的源极与Mos4的漏极相连,Mos2的源极与Mos5的漏极相连,Mos3的源极与Mos6的漏极相连,且Mos1、Mos2和Mos3的源极及Mos4、Mos5和Mos6的漏极分别连接到电机的三个相线端,当控制电机的时候,同一时刻只有两个Mos导通,且这两个Mos分别为Mos1~Mos3中的一个和Mos4~Mos6中的一个,且Mos1和Mos4,Mos2和Mos5,Mos3和Mos6不能同时导通。
进一步的,Rbus采样电阻连接在UVW三相线的母线上,并经过运放模块的放大,再接到MCU的A直流端口,MCU采集这个信号做程序控制。
进一步的,运算放大电路中R5接到运放的同相端,再通过上拉接R4到Vref(+1.65V),R8为运算放大器反馈电阻,R6接地电阻,C3和C4分别为输入信号滤波电容和输出信号滤波电容,用于滤除高频杂波干扰。这样,通过运放模块就能将母线电流信号放大到一定倍数方便MCU采集,放大倍数由R8,R6的阻值比值决定。该运放电路是标准的运算放大电路。
以上电动阀门执行控制器的电机控制的电路图为现有技术,本发明的一种利用无刷电机的霍尔信号的阀门控制器,其包括上述的电动阀门执行控制器的电机控制的电路结构,其特征在于:其中,MCU中还存储有计算机程序,该程序被处理器执行时实现利用自带的霍尔传感器实现阀门位置控制的步骤。
如图2所示,为利用电机自带的霍尔传感器实现阀门位置控制的示意图图。其中,MCU中存储计算机程序,该程序接受用户预先设定目标位置信号,根据该设定的目标位置信号,以及根据霍尔传感器检测出的电机的脉冲信号推断出的阀门的开度,根据位置环代码计算出速度环,并根据速度环计算出电机驱动信息,然后通过该电机驱动信息输出PWM方波控制电机的Mos1~Mos6的开关,从而实现电机的转速控制和换相控制,最终实现对阀门开度的控制。
如上所述利用自带的霍尔传感器实现阀门位置控制的方法,其包括如下步骤:
S1,MCU上电后,程序对MCU的外设资源做初始化配置,整个程序功能环境配置好后,进入代码while(1)循环执行代码,开始阀门控制流程。
S2,上电后,初始化相关参数及硬件配置,判断是否进入行程测量模式还是进入正常运行模式。
S3,若判断进入行程测量模式,电机处于行程模式1,直接开始反转,直到反转到电机发生堵转时,判断此时电机处于原点,清零当前位置,测量模式切换到行程模式2;
在行程模式2,电机开始正转,往行程终点运转,直到电机发生堵转,判断此时电机到达终点,将当前的位置测量值赋值给行程值,保存相关参数,退出行程测量模式。
S4,若判断进入正常运行模式,则需要判断实际位置和目标位置有无偏差,若没有偏差,则停止电机;
若实际位置与目标位置有偏差,则计算机程序执行位置环代码,计算出实际位置与目标位置的偏差,同时计算出电机运动速度,该运动速度能够使得电机在设定好的时间内到达目标位置;
计算机程序执行电机驱动代码,将上一步中运算获得的电机运动速度作为目标速度,计算出PWM波输出,由PWM波控制Mos1~Mos6,实现电机的换相和速度控制,从而实现阀门从当前位置进入到目标位置。
在正常运行模式中,实时监测电机出现的故障,若出现故障,则停止电机,保护电机和控制板。
S5,掉电,计算机程序自动记录阀门的当前位置和目标位置。
进一步优选的,在如上利用自带的霍尔传感器实现阀门位置控制的方法中,还包括S6:当计算机程序检测到目标位置改变时,需要进行堵转电流保护,然后恢复零点或者终点位置。
进一步优选的,在如上利用自带的霍尔传感器实现阀门位置控制的方法中,还包括S7:在每个PWM控制周期进行一次中断处理,在中断处理过程中,MCU采集并存储目标位置信号、霍尔传感器信号、母线电流信号、Mos1~Mos6的温度信号,然后将这些信号用于给正常运行模式做分析;同时,在每一次中断处理中,MCU中的计算机程序通过霍尔传感器信号计算出电机的速度及当前电机的转子位置,并控制PWM波输出换相信号。
进一步的,所述的步骤S2中,用户第一次使用该系统来控制阀门位置,或者重新设定阀门的开度,或是断电后重新上电,而断电前处于行程测量模式,则进入行程测量模式,其他都进入正常运行模式。
进一步的,所述的步骤S3中,若在行程测量模式中发生故障,或者掉电,当上电后,则继续行程测量模式。
进一步的,所述的步骤S4中,实际位置通过霍尔传感器信号进行判断,霍尔传感器可以检测到转子的速度以及当前转子的位置,通过以上信息可以推算出阀门的开度,也就是阀门的实际位置。
进一步的,所述的步骤S6中由于没有类似传统的阀门电动控制器有机械位置反馈信号,所以当执行器由自动模式切换到手动模式后,阀门被人工操作了,此时,阀门的实际位置变化了,但是计算机程序记录的位置没有发生变化,导致阀门的实际位置和计算机程序记录的位置不匹配,此时执行器动作后,将会造成电机发生堵转,卡死在行程原点或者终点。
进一步的,所述的S7中采集母线电流信号用于电机的过流保护,当产生过流时,停止电机运行。
进一步的,所述的S7中采集Mos1~Mos6的温度信号,防止在高温(≥90℃)时,由于Mos1~Mos6可能的损坏给电机带来的伤害,故产生高温预警后,停止电机运行。
采用本发明的利用无刷电机的霍尔信号的阀门控制器,仅用霍尔传感器,而不采用与阀门轴同心的位置传感器和/或限位器,就能实现对阀门的开度的精准控制,降低了成本,简化整体控制器的机械结构。
附图说明:
图1为现有的电动阀门执行控制器的电机控制的电路框图。
图2为利用电机自带的霍尔传感器实现阀门位置控制的示意图。
图3为利用自带的霍尔传感器实现阀门位置控制的方法的整体流程图。
图4为判断进入行程测量模式或正常模式的逻辑图。
图5为正常模式的逻辑图。
图6为中断处理的逻辑图。
图7为行程测量模式的逻辑图。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
具体实施案例1:
一种利用无刷电机的霍尔信号的阀门控制器,其包括电源、直流-直流降压电路(模块1)、MCU(模块2)、Mos驱动电路(模块3)、运算放大电路、电机驱动电路(模块4),其中电源为24V直流电,该24V直流电压一部分直接接到电机驱动电路(模块4)的Mos1~Mos3的漏极,另一部分经过直流-直流降压电路(模块1)将24V直流电降压为15V和3.3V分别供给给Mos驱动电路(模块3)和MCU(模块2),MCU(模块2)通过计算机程序运算输出PWM波控制信号经过Mos驱动电路抬升电压后控制电机驱动电路,电机驱动电路上采用Rbus采样电阻将母线的电压信号经过运算放大电路反馈给MCU(模块2),其特征在于:其中,MCU中还存储有计算机程序,该程序被处理器执行时实现利用自带的霍尔传感器实现阀门位置控制的步骤。
如图2所示,为利用电机自带的霍尔传感器实现阀门位置控制的示意图图。其中,MCU中存储计算机程序,该程序接受用户预先设定目标位置信号,根据该设定的目标位置信号,以及根据霍尔传感器检测出的电机的脉冲信号推断出的阀门的开度,根据位置环代码计算出速度环,并根据速度环计算出电机驱动信息,然后通过该电机驱动信息输出PWM方波控制电机的Mos1~Mos6的开关,从而实现电机的转速控制和换相控制,最终实现对阀门开度的控制。
如上所述利用自带的霍尔传感器实现阀门位置控制的方法,其包括如下步骤:
S1,MCU上电后,程序对MCU的外设资源做初始化配置,整个程序功能环境配置好后,进入代码while(1)循环执行代码,开始阀门控制流程。
S2,上电后,初始化相关参数及硬件配置,判断是否进入行程测量模式还是进入正常运行模式。
S3,若判断进入行程测量模式,电机处于行程模式1,直接开始反转,直到反转到电机发生堵转时,判断此时电机处于原点,清零当前位置,测量模式切换到行程模式2;
在行程模式2,电机开始正转,往行程终点运转,直到电机发生堵转,判断此时电机到达终点,将当前的位置测量值赋值给行程值,保存相关参数,退出行程测量模式。
S4,若判断进入正常运行模式,则需要判断实际位置和目标位置有无偏差,若没有偏差,则停止电机;
若实际位置与目标位置有偏差,则计算机程序执行位置环代码,计算出实际位置与目标位置的偏差,同时计算出电机运动速度,该运动速度能够使得电机在设定好的时间内到达目标位置;
计算机程序执行电机驱动代码,将上一步中运算获得的电机运动速度作为目标速度,计算出PWM波输出,由PWM波控制Mos1~Mos6,实现电机的换相和速度控制,从而实现阀门从当前位置进入到目标位置。
在正常运行模式中,实时监测电机出现的故障,若出现故障,则停止电机,保护电机和控制板。
S5,掉电,计算机程序自动记录阀门的当前位置和目标位置。
进一步优选的,在如上利用自带的霍尔传感器实现阀门位置控制的方法中,还包括S6:当计算机程序检测到目标位置改变时,需要进行堵转电流保护,然后恢复零点或者终点位置。
进一步优选的,在如上利用自带的霍尔传感器实现阀门位置控制的方法中,还包括S7:在每个PWM控制周期进行一次中断处理,在中断处理过程中,MCU采集并存储目标位置信号、霍尔传感器信号、母线电流信号、Mos1~Mos6的温度信号,然后将这些信号用于给正常运行模式做分析;同时,在每一次中断处理中,MCU中的计算机程序通过霍尔传感器信号计算出电机的速度及当前电机的转子位置,并控制PWM波输出换相信号。
进一步的,所述的步骤S2中,用户第一次使用该系统来控制阀门位置,或者重新设定阀门的开度,或是断电后重新上电,而断电前处于行程测量模式,则进入行程测量模式,其他都进入正常运行模式。
进一步的,所述的步骤S3中,若在行程测量模式中发生故障,或者掉电,当上电后,则继续行程测量模式。
进一步的,所述的步骤S4中,实际位置通过霍尔传感器信号进行判断,霍尔传感器可以检测到转子的速度以及当前转子的位置,通过以上信息可以推算出阀门的开度,也就是阀门的实际位置。
进一步的,所述的步骤S6中由于没有类似传统的阀门电动控制器有机械位置反馈信号,所以当执行器由自动模式切换到手动模式后,阀门被人工操作了,此时,阀门的实际位置变化了,但是计算机程序记录的位置没有发生变化,导致阀门的实际位置和计算机程序记录的位置不匹配,此时执行器动作后,将会造成电机发生堵转,卡死在行程原点或者终点。
进一步的,所述的S7中采集母线电流信号用于电机的过流保护,当产生过流时,停止电机运行。
进一步的,所述的S7中采集Mos1~Mos6的温度信号,防止在高温(≥90℃)时,由于Mos1~Mos6可能的损坏给电机带来的伤害,故产生高温预警后,停止电机运行。
采用本发明的利用无刷电机的霍尔信号的阀门控制器,仅用霍尔传感器,而不采用与阀门轴同心的位置传感器和/或限位器,就能实现对阀门的开度的精准控制,降低了成本,简化整体控制器的机械结构。
以上所述实施例其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种利用无刷电机的霍尔信号的阀门控制器,其包括电源、直流-直流降压电路、MCU、Mos驱动电路、运算放大电路、电机驱动电路,其中电源为直流电压,该直流电压一部分直接接到电机驱动电路的Mos1~Mos3的漏极,另一部分经过直流-直流降压电路将该直流电降压为15V和3.3V分别供给给Mos驱动电路和MCU,电机驱动电路上采用Rbus采样电阻将母线的电压信号经过运算放大电路反馈给MCU,MCU通过计算机程序运算输出PWM波控制信号经过Mos驱动电路抬升电压后控制电机驱动电路,其特征在于:其中,MCU中还存储有计算机程序,该程序被处理器执行时实现利用自带的霍尔传感器实现阀门位置控制的步骤。
2.如权利要求1所述的利用自带的霍尔传感器的阀门控制器实现实现阀门位置控制的方法,其包括如下步骤:
S1,MCU上电后,程序对MCU的外设资源做初始化配置,整个程序功能环境配置好后,进入代码while(1)循环执行代码,开始阀门控制流程;
S2,上电后,初始化相关参数及硬件配置,判断是否进入行程测量模式还是进入正常运行模式;
S3,若判断进入行程测量模式,电机处于行程模式1,直接开始反转,直到反转到电机发生堵转时,判断此时电机处于原点,清零当前位置,测量模式切换到行程模式2;
在行程模式2,电机开始正转,往行程终点运转,直到电机发生堵转,判断此时电机到达终点,将当前的位置测量值赋值给行程值,保存相关参数,退出行程测量模式;
S4,若判断进入正常运行模式,则需要判断实际位置和目标位置有无偏差,若没有偏差,则停止电机;
若实际位置与目标位置有偏差,则计算机程序执行位置环代码,计算出实际位置与目标位置的偏差,同时计算出电机运动速度,该运动速度能够使得电机在设定好的时间内到达目标位置;
计算机程序执行电机驱动代码,将上一步中运算获得的电机运动速度作为目标速度,计算出PWM波输出,由PWM波控制Mos1~Mos6,实现电机的换相和速度控制,从而实现阀门从当前位置进入到目标位置。
在正常运行模式中,实时监测电机出现的故障,若出现故障,则停止电机,保护电机和控制板。
S5,掉电,计算机程序自动记录阀门的当前位置和目标位置。
3.如权利要求2所述的控制方法,其特征在于:还包括S6:当计算机程序检测到目标位置改变时,需要进行堵转电流保护,然后恢复零点或者终点位置。
4.如权利要求3所述的控制方法,其特征在于:还包括S7:在每个PWM控制周期进行一次中断处理,在中断处理过程中,MCU采集并存储目标位置信号、霍尔传感器信号、母线电流信号、Mos1~Mos6的温度信号,然后将这些信号用于给正常运行模式做分析;同时,在每一次中断处理中,MCU中的计算机程序通过霍尔传感器信号计算出电机的速度及当前电机的转子位置,并控制PWM波输出换相信号。
5.如权利要求4所述的控制方法,其特征在于:所述的S7中采集母线电流,当产生过流时,停止电机运行。
6.如权利要求4所述的控制方法,其特征在于:所述的S7中采集Mos1~Mos6的温度信号,在≥90℃时,产生高温预警,停止电机运行。
7.如权利要求2~4中任意一项所述的控制方法,其特征在于:所述的步骤S2中,用户第一次使用该系统来控制阀门位置,或者重新设定阀门的开度,或是断电后重新上电,而断电前处于行程测量模式,则进入行程测量模式,其他都进入正常运行模式。
8.如权利要求2~4中任意一项所述的控制方法,其特征在于:所述的步骤S3中,若在行程测量模式中发生故障,或者掉电,当上电后,则继续行程测量模式。
9.如权利要求2~4中任意一项所述的控制方法,其特征在于:所述的步骤S4中,实际位置通过霍尔传感器信号进行判断,霍尔传感器可以检测到转子的速度以及当前转子的位置,通过以上信息可以推算出阀门的开度,也就是阀门的实际位置。
CN201711416171.2A 2017-12-25 2017-12-25 一种利用无刷电机的霍尔信号的阀门控制器 Pending CN109000018A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711416171.2A CN109000018A (zh) 2017-12-25 2017-12-25 一种利用无刷电机的霍尔信号的阀门控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711416171.2A CN109000018A (zh) 2017-12-25 2017-12-25 一种利用无刷电机的霍尔信号的阀门控制器

Publications (1)

Publication Number Publication Date
CN109000018A true CN109000018A (zh) 2018-12-14

Family

ID=64574058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711416171.2A Pending CN109000018A (zh) 2017-12-25 2017-12-25 一种利用无刷电机的霍尔信号的阀门控制器

Country Status (1)

Country Link
CN (1) CN109000018A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918945U (zh) * 2011-01-25 2011-08-03 深圳市博巨兴实业发展有限公司 一种单霍尔直流无刷电机控制装置
CN104682784A (zh) * 2013-11-26 2015-06-03 哈尔滨恒誉名翔科技有限公司 一种直流无刷电机驱动器
CN106787999A (zh) * 2016-12-23 2017-05-31 惠州市蓝微电子有限公司 一种直流无刷无霍尔电机的启动定位方法及其电路
CN107701782A (zh) * 2017-11-20 2018-02-16 昆山伊斯科特电子科技有限公司 一种利用无刷电机的霍尔信号的阀门控制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201918945U (zh) * 2011-01-25 2011-08-03 深圳市博巨兴实业发展有限公司 一种单霍尔直流无刷电机控制装置
CN104682784A (zh) * 2013-11-26 2015-06-03 哈尔滨恒誉名翔科技有限公司 一种直流无刷电机驱动器
CN106787999A (zh) * 2016-12-23 2017-05-31 惠州市蓝微电子有限公司 一种直流无刷无霍尔电机的启动定位方法及其电路
CN107701782A (zh) * 2017-11-20 2018-02-16 昆山伊斯科特电子科技有限公司 一种利用无刷电机的霍尔信号的阀门控制器

Similar Documents

Publication Publication Date Title
CN107701782B (zh) 一种利用无刷电机的霍尔信号的阀门控制器
CN105729413B (zh) 电动机械器具
CN103427735B (zh) 3相无刷电机的制动装置
DE102008029910C5 (de) Verfahren zur Lastzustandserkennung einer Pumpe
CN106053928B (zh) 用于校正电流传感器的偏移的设备
US10819264B1 (en) Robust starting system and method for interior permanent magnet synchronous motor control
CN109873578A (zh) 电动工具及电动工具的控制方法
CN106301100B (zh) 一种永磁同步电机的自动标定方法、系统和控制器
CN103812390A (zh) 一种应用于搅拌机中的启动无刷直流电机的方法及搅拌机
CN108809199B (zh) 变频器追踪电机转速的方法、装置及变频器
CN110417330A (zh) 电动工具
CN109742982A (zh) 一种功率可调的限功率控制方法及控制器
CN203942468U (zh) 空调室外机中直流电机的逆风启动控制装置
CN109004869A (zh) 一种无带电流运算放大器foc电机控制系统及方法
US11770079B2 (en) Electric working machine
CN109994998B (zh) 电机反电动势保护方法、系统、装置及存储介质
US7777442B2 (en) Method of controlling the speed of an electric motor
US9581649B2 (en) Method and apparatus for load fault detection
CN109000018A (zh) 一种利用无刷电机的霍尔信号的阀门控制器
CN203457094U (zh) 一种交流伺服永磁同步电机控制系统
US20170223903A1 (en) Method of controlling speed change of a pruning machine
WO2020008666A1 (ja) 電動工具およびその制御方法、制御プログラム
CN103956940A (zh) 空调室外机中直流电机的逆风启动控制方法和控制装置
CN115360940A (zh) 一种基于mm32spin360c的bldc驱动系统及方法
CN107294460B (zh) 一种电动自行车控制器软硬启动调整的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181214