CN108987935A - A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method - Google Patents
A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method Download PDFInfo
- Publication number
- CN108987935A CN108987935A CN201810695054.2A CN201810695054A CN108987935A CN 108987935 A CN108987935 A CN 108987935A CN 201810695054 A CN201810695054 A CN 201810695054A CN 108987935 A CN108987935 A CN 108987935A
- Authority
- CN
- China
- Prior art keywords
- wave
- vortex
- phase
- polarization
- polarized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000013461 design Methods 0.000 title abstract description 9
- 239000000463 material Substances 0.000 title abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 230000010287 polarization Effects 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims description 13
- 238000011161 development Methods 0.000 abstract description 7
- 230000033228 biological regulation Effects 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 5
- 230000001413 cellular effect Effects 0.000 abstract 2
- 238000004891 communication Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005388 cross polarization Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001093 holography Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920006934 PMI Polymers 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/0046—Theoretical analysis and design methods of such selective devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0086—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于轨道角动量、无线通信和新型人工电磁材料领域,具体涉及一种能够产生涡旋波束,同时调控涡旋波束极化的超材料反射阵。The invention belongs to the fields of orbital angular momentum, wireless communication and new artificial electromagnetic materials, and specifically relates to a metamaterial reflection array capable of generating vortex beams and simultaneously regulating the polarization of the vortex beams.
背景技术Background technique
随着时代的发展,新媒体、新技术层出不穷,网络直播、视频通话、无人驾驶、物联网,对通信的容量、响应速度、时延等方面提出了更高的要求。特别是频谱这一有限资源在高速发展的需求下,显得愈发紧张,如何提高频谱的利用率再次成为通信技术面临的重要挑战。近些年,轨道角动量电磁涡旋(Orbital Angular Momentum,OAM)技术出现和发展,让人们看到了新的曙光。1992年,Allen等人发现在近轴传播条件下,光束的相位因子exp(-ilφ)具有确定的轨道角动量lh的特性,其中l是拓扑荷数,h是普朗克常数,φ是方位角。OAM复用技术能够将载波所携带的轨道角动量模式作为调制参数,并且利用轨道角动量模式内在的正交性,将多路信号调制到不同的轨道角动量模式上。通过这种方式,人们在同一载频上可以得到多个相互独立的轨道角动量信道。由于轨道角动量在理论上可以拥有无穷维阶数,因此理论上同一载波频率利用轨道角动量电磁涡旋复用可获得无穷的传输能力。轨道角动量技术除了可以有效地增大信道的信息容量外,其在信息编码中的应用也使得被编码的信息保密性更强,传输的过程更安全。在光波段,OAM光束在操控光子自旋霍尔效应、光学成像、量子纠缠、信息存储及生物医学等领域中也具有新颖的应用。With the development of the times, new media and new technologies are emerging one after another. Webcasting, video calls, driverless driving, and the Internet of Things have put forward higher requirements for communication capacity, response speed, and delay. In particular, the limited resource of spectrum is becoming more and more tense under the demand of rapid development. How to improve the utilization of spectrum has once again become an important challenge for communication technology. In recent years, the emergence and development of Orbital Angular Momentum (OAM) technology has made people see a new dawn. In 1992, Allen et al. found that under the condition of paraxial propagation, the phase factor exp(-ilφ) of the beam has the characteristics of a definite orbital angular momentum lh, where l is the topological charge, h is Planck’s constant, and φ is the orientation horn. The OAM multiplexing technology can use the orbital angular momentum mode carried by the carrier as a modulation parameter, and utilize the inherent orthogonality of the orbital angular momentum mode to modulate multiple signals to different orbital angular momentum modes. In this way, people can obtain multiple independent orbital angular momentum channels on the same carrier frequency. Since the orbital angular momentum can theoretically have an infinite dimensional order, theoretically the same carrier frequency can obtain infinite transmission capacity by using the orbital angular momentum electromagnetic vortex multiplexing. In addition to effectively increasing the information capacity of the channel, the orbital angular momentum technology also makes the encoded information more confidential and the transmission process more secure. In the optical band, OAM beams also have novel applications in the fields of manipulating photon spin Hall effect, optical imaging, quantum entanglement, information storage, and biomedicine.
由于OAM的独特新颖的性质,OAM的应用越来越广泛,OAM波束的产生和调控方法也引起研究者们极大的兴趣。轨道角动量的产生方法主要有螺旋相位板法、计算全息法、天线阵列法和螺旋反射面法等方法。前两种方法源自光学,主要用于较高的频率,后两种方法用于较低频率。螺旋相位板法的设计思想是波束透过不同高度的相位板表面时,为反射波添加不同的相位因子,进而形成电磁涡旋波,由于螺旋梯度制作精度的限制,很难得到高质量的OAM光束;计算全息法利用计算机制作能够干涉得到涡旋波的相位全息图,当波束照在相位全息图上时,通过波的干涉产生涡旋波束,然而全息图的制作很复杂,不利于OAM实际应用;天线阵列法的不同天线单元对于输入的相同信号会产生360°梯度相位差,将这些单元沿轴线进行扇形分布,从而形成涡旋波束,若对这些单元进行一些特定方式的排布,还可得到不同模式的轨道角动量波束,该方法通过引入大量移相器,T/R组件,导致系统结构过于复杂,应用和维护成本过高,无法大规模推广。Due to the unique and novel properties of OAM, the application of OAM is more and more extensive, and the generation and control methods of OAM beams have also aroused great interest of researchers. The generation methods of orbital angular momentum mainly include spiral phase plate method, computational holography method, antenna array method and spiral reflector method. The first two methods are derived from optics and are mainly used at higher frequencies, while the latter two methods are used at lower frequencies. The design idea of the spiral phase plate method is that when the beam passes through the surface of the phase plate at different heights, different phase factors are added to the reflected wave, thereby forming an electromagnetic vortex wave. Due to the limitation of the precision of the spiral gradient, it is difficult to obtain high-quality OAM Beam; Computational holography uses a computer to make a phase hologram that can interfere with vortex waves. When the beam shines on the phase hologram, the vortex beam is generated through wave interference. However, the production of holograms is very complicated, which is not conducive to OAM practice. Application; Different antenna units of the antenna array method will produce a 360° gradient phase difference for the same input signal, and these units will be fan-shaped along the axis to form a vortex beam. If these units are arranged in some specific ways, it will also Different modes of orbital angular momentum beams can be obtained. This method introduces a large number of phase shifters and T/R components, resulting in too complicated system structure, high application and maintenance costs, and cannot be widely promoted.
随着新型电磁功能材料的出现,超材料以其特异的电磁特性已经成为人们研究的热点,超材料的出现为OAM波束的产生与调控提供了新的契机。超材料通过将精心设计的结构单元进行周期性或者非周期性的排布可以实现许多自然界材料所无法实现的电磁特性,例如逆切伦科夫、逆多普勒现象、负折射率、超光速、超分辨率等。不同于传统材料,超材料设计往往不会受到材料体系的制约,具有极高的灵活性,可以通过基体材料的选择以及结构单元的设计,在同一结构中同时实现多种电磁功能。这里,我们利用超材料反射阵实现OAM波束产生,及OAM波束极化状态的调控。此工作可以降低传统OAM器件的成本,同时促进多功能化OAM器件的发展,该超材料将在OAM微波通信领域具有极高的应用前景。With the emergence of new electromagnetic functional materials, metamaterials have become a research hotspot due to their specific electromagnetic properties. The emergence of metamaterials provides a new opportunity for the generation and regulation of OAM beams. Metamaterials can achieve many electromagnetic properties that cannot be achieved by natural materials by arranging well-designed structural units periodically or aperiodically, such as inverse Cherenkov, inverse Doppler phenomenon, negative refractive index, superluminal speed , super-resolution, etc. Different from traditional materials, the design of metamaterials is often not restricted by the material system, and has extremely high flexibility. Through the selection of matrix materials and the design of structural units, multiple electromagnetic functions can be simultaneously realized in the same structure. Here, we use metamaterial reflectarrays to realize OAM beam generation and control the polarization state of OAM beams. This work can reduce the cost of traditional OAM devices and promote the development of multifunctional OAM devices. This metamaterial will have a very high application prospect in the field of OAM microwave communication.
发明内容Contents of the invention
为了降低传统OAM器件的成本,促进多功能化OAM器件的发展,提出了一种极化可控的涡旋波超材料反射阵及其设计方法,在OAM通信领域具有极高的应用前景。In order to reduce the cost of traditional OAM devices and promote the development of multifunctional OAM devices, a polarization-controllable vortex metamaterial reflectarray and its design method are proposed, which has a very high application prospect in the field of OAM communication.
本发明公开了一种极化可控的涡旋波超材料反射阵,包括电磁各向异性单元,所述电磁各向异性单元从上至下依次包括金属结构层、介质层和金属背板层,所述金属结构层为正交的工字形结构。The invention discloses a polarization-controllable vortex wave metamaterial reflection array, which includes an electromagnetic anisotropy unit, and the electromagnetic anisotropy unit includes a metal structure layer, a dielectric layer and a metal back plate layer sequentially from top to bottom , the metal structure layer is an orthogonal I-shaped structure.
本发明还公开了一种极化可控的涡旋波超材料反射阵设计方法,包括以下步骤:The invention also discloses a method for designing a polarization-controllable vortex wave metamaterial reflection array, which includes the following steps:
步骤1:根据涡旋波的工作频率,仿真满足工作频段的电磁各向异性单元的结构尺寸;Step 1: According to the working frequency of the vortex wave, simulate the structural size of the electromagnetic anisotropy unit that meets the working frequency band;
步骤2:基于天线远场方向图叠加原理,根据入射波相位分布特点、涡旋波束的拓扑荷数,计算产生涡旋波的相位分布;Step 2: Based on the superposition principle of the antenna far-field pattern, calculate the phase distribution of the generated vortex wave according to the phase distribution characteristics of the incident wave and the topological charge of the vortex beam;
步骤3:根据入射电磁的极化方向,通过调控水平极化反射波、垂直极化反射波的相位差,可控制涡旋波束极化方向;Step 3: According to the polarization direction of the incident electromagnetic wave, the polarization direction of the vortex beam can be controlled by adjusting the phase difference between the horizontally polarized reflected wave and the vertically polarized reflected wave;
步骤4:根据水平、垂直极化波的相位分布,确定电磁各向异性单元的结构尺寸,并按相位分布状况进行排布。Step 4: According to the phase distribution of the horizontal and vertical polarized waves, determine the structural size of the electromagnetic anisotropy unit, and arrange it according to the phase distribution.
步骤1中的电磁各向异性单元在工作频段内相位线性变化,反射波幅度趋于1。The phase of the electromagnetic anisotropy unit in step 1 changes linearly in the working frequency band, and the amplitude of the reflected wave tends to 1.
调整各向异性单元的金属结构层的水平臂长,能控制水平极化波的反射相位,调控金属结构层的垂直臂长,能控制垂直极化波的反射相位。Adjusting the length of the horizontal arm of the metal structure layer of the anisotropic unit can control the reflection phase of the horizontally polarized wave, and adjusting the length of the vertical arm of the metal structure layer can control the reflection phase of the vertically polarized wave.
有益效果:本发明与现有技术相比,本发明的超材料反射阵不仅能够有效地产生涡旋波束,同时实现对涡旋波束极化的调控,该超材料反射阵可以降低传统涡旋波器件的成本,促进多功能化涡旋波器件的发展,所设计的超材料将在未来轨道角动量微波通信领域具有极高的应用前景。Beneficial effects: Compared with the prior art, the metamaterial reflection array of the present invention can not only effectively generate the vortex beam, but also realize the regulation of the polarization of the vortex beam. The metamaterial reflection array can reduce the traditional vortex wave The cost of the device promotes the development of multifunctional vortex wave devices, and the designed metamaterial will have a very high application prospect in the field of orbital angular momentum microwave communication in the future.
附图说明Description of drawings
图1是各向异性超材料单个单元上层金属结构正视图。Fig. 1 is a front view of a metal structure on a single unit of an anisotropic metamaterial.
图2是各向异性超材料单个单元结构侧视图。Fig. 2 is a side view of a single unit structure of an anisotropic metamaterial.
图3为本发明设计的工字型结构臂长ly对应单元的y极化的反射相位分布。Fig. 3 is the reflection phase distribution of the y-polarized unit corresponding to the arm length l y of the I-shaped structure designed in the present invention.
图4为本发明设计的工字型结构臂长ly对应单元的x极化的反射相位分布。Fig. 4 is the reflection phase distribution of the x-polarized unit corresponding to the arm length l y of the I-shaped structure designed in the present invention.
图5为本发明设计圆极化OAM波超材料反射阵的上层金属图案结构示意图。Fig. 5 is a schematic diagram of the upper metal pattern structure of the circularly polarized OAM wave metamaterial reflector array designed in the present invention.
图6为本发明设计交叉极化OAM波超材料反射阵的上层金属图案结构示意图。Fig. 6 is a schematic diagram of the upper metal pattern structure of the cross-polarized OAM wave metamaterial reflector array designed in the present invention.
图7为本发明圆极化OAM,交叉极化OAM超材料反射阵的近场幅相分布测试结果。Fig. 7 shows the test results of the near-field amplitude and phase distribution of the circular polarization OAM and cross-polarization OAM metamaterial reflectarrays of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例进一步阐述本发明。The present invention will be further described below in conjunction with the accompanying drawings and examples.
实施例1Example 1
一种极化可控的涡旋波超材料反射阵,由电磁各向异性单元结构组成。各向异性单元结构包括上层的金属图案层、中层介质基板和底层为金属背板,其中上层金属图案层结构如图1所示,由2个正交的工字型构成,该金属图案层位于介质基体上方,底层金属背板位于介质基体下方,金属图案层与金属背板均有导电优良的材料如铜、银等结构组成,介质基板可以为FR-4、F4b、PMI、有机玻璃、聚酰亚胺、PET、PDMS等材料。金属图案层、介质基板、金属背板三层直接的位置关系如图2所示。A polarization-controllable vortex wave metamaterial reflectarray composed of electromagnetic anisotropic unit structures. The anisotropic unit structure includes an upper metal pattern layer, a middle dielectric substrate, and a bottom metal backplane. The structure of the upper metal pattern layer is shown in Figure 1. It consists of two orthogonal I-shaped layers. The metal pattern layer is located at Above the dielectric substrate, the underlying metal backplane is located below the dielectric substrate. Both the metal pattern layer and the metal backplane are made of conductive materials such as copper and silver. The dielectric substrate can be FR-4, F4b, PMI, plexiglass, poly Imide, PET, PDMS and other materials. The direct positional relationship of the metal pattern layer, the dielectric substrate, and the metal backplane is shown in Figure 2.
极化可控的涡旋波超材料反射阵利用各向异性单元结构,分别对水平极化波(x极化波),垂直极化波(y极化波)的相位分布进行独立调控和设计。调控水平工字形的臂长ly,不同极化的反射波相位分布如图3和图4所示。由图3可以看出,水平极化(y极化)反射波的相位可以通过改变臂长ly实现调控,单元的反射相位在较宽的频带内线性变化,相位变化范围应尽可能满足360°,这里相位变化在270°。同时,从图4中可以看出,臂长ly的改变几乎不会影响垂直极化(x极化)波。这表明改变臂长ly,可以单独对水平极化波相位调控,并不会影响垂直极化波(x极化波)。由于单元结构的对称性,通过改变臂长lx的长度可以对x极化波相位调控。基于单元结构的电磁各向异性,意味着通过控制臂长ly(lx),可以分别对y极化(x极化)波相位调控。The polarization-controllable vortex wave metamaterial reflectarray uses anisotropic unit structure to independently control and design the phase distribution of horizontally polarized waves (x-polarized waves) and vertically polarized waves (y-polarized waves). . Adjusting the arm length ly of the horizontal I-shape, the phase distribution of reflected waves with different polarizations is shown in Fig. 3 and Fig. 4. It can be seen from Figure 3 that the phase of the horizontally polarized (y-polarized) reflected wave can be regulated by changing the arm length l y . The reflected phase of the unit changes linearly in a wide frequency band, and the phase change range should satisfy 360° as much as possible. °, where the phase change is at 270°. Meanwhile, it can be seen from Fig. 4 that the change of the arm length l y hardly affects the vertically polarized (x-polarized) waves. This shows that changing the arm length ly can independently adjust the phase of the horizontally polarized wave without affecting the vertically polarized wave (x-polarized wave). Due to the symmetry of the unit structure, the phase of the x-polarized wave can be adjusted by changing the length of the arm length l x . The electromagnetic anisotropy based on the unit structure means that the phase of the y-polarized ( x-polarized) waves can be adjusted separately by controlling the arm length ly (l x ) .
为了实现轨道角动量波束极化的调控,应分别对x极化波,y极化波相位设计。根据远场方向图叠加原理,可以计算出相应的相位补偿信息。在平面波入射情况,假定入射波的极化沿着45°方向,如图1所示的v方向,垂直入射到超材料反射阵表面,入射电磁波可以分解为具有相同强度和相位的水平极化波、垂直极化波。此时,为了产生轨道角动量波束,应该在对x极化波相位补偿OAM相位。OAM相位在与传播方向垂直的截面内呈螺旋分布,因此OAM波束也被称为涡旋波束。轨道角动量拓扑荷数的正负决定OAM涡旋的方向,OAM拓扑荷数的大小决定相位沿着周向变化的快慢。当水平极化波、垂直极化波具有相同的OAM拓扑荷数时,通过调控水平极化波与垂直极化波初始补偿相位实现对OAM极化调控。当x极化波与y极化波初始相位差为0°,90°,180°,270°时,对应的OAM反射波极化分别为v极化、右旋圆极化、与入射波交叉的线极化、左旋圆极化。当45°极化的点源入射到超材料反射阵时,这里近似把入射当作球面波,此时还应考虑点源的相位补偿。In order to realize the control of the polarization of the orbital angular momentum beam, the phases of the x-polarized wave and y-polarized wave should be designed respectively. According to the superposition principle of the far-field pattern, the corresponding phase compensation information can be calculated. In the case of plane wave incidence, it is assumed that the polarization of the incident wave is along the 45° direction, such as the v direction shown in Figure 1, and is perpendicular to the surface of the metamaterial reflector array, and the incident electromagnetic wave can be decomposed into horizontally polarized waves with the same intensity and phase , Vertically polarized waves. At this time, in order to generate the orbital angular momentum beam, the OAM phase should be compensated for the phase of the x-polarized wave. The OAM phase is helically distributed in a section perpendicular to the propagation direction, so the OAM beam is also called a vortex beam. The positive or negative of the orbital angular momentum topological charge determines the direction of the OAM vortex, and the size of the OAM topological charge determines the speed of the phase change along the circumferential direction. When the horizontally polarized wave and the vertically polarized wave have the same OAM topological charge, the OAM polarization can be regulated by adjusting the initial compensation phase of the horizontally polarized wave and the vertically polarized wave. When the initial phase difference between the x-polarized wave and the y-polarized wave is 0°, 90°, 180°, and 270°, the corresponding OAM reflected wave polarizations are v-polarized, right-handed circularly polarized, and crossed with the incident wave linear polarization and left-handed circular polarization. When a 45° polarized point source is incident on the metamaterial reflectarray, the incident is approximately regarded as a spherical wave, and the phase compensation of the point source should also be considered.
为此,考虑点源入射时,以工作中心频率为15GHz设计的超材料反射阵,根据相位补偿方法,分别对水平极化波、垂直极化波相位设计,由两个极化方向相位与工字形臂长几何关系,可以得到对应超材料反射阵俯视图如图5,图6所示。其中图5,M1超材料反射阵x极化波与y极化波初始相位差为90°,根据补偿理论,M1在V极化点源入射时会产生圆极化OAM。与此同时,对于M2反射阵,x极化波与y极化波初始相位差为180°,M2在V极化点源入射时会产生交叉线极化OAM。For this reason, when point source incident is considered, the metamaterial reflectarray designed with the working center frequency at 15 GHz, according to the phase compensation method, the phases of horizontally polarized waves and vertically polarized waves are designed respectively, and the phase of the two polarization directions and the working According to the geometric relationship of the glyph arm length, the top view of the corresponding metamaterial reflector array can be obtained, as shown in Fig. 5 and Fig. 6 . In Fig. 5, the initial phase difference between the x-polarized wave and the y-polarized wave of the M1 metamaterial reflector array is 90°. According to the compensation theory, M1 will generate circularly polarized OAM when the V-polarized point source is incident. At the same time, for the M2 reflector array, the initial phase difference between the x-polarized wave and the y-polarized wave is 180°, and M2 will generate cross-line polarized OAM when the V-polarized point source is incident.
根据阵面M1、M2的几何设计与材料构成,加工制备相应的反射阵M1,M2。并将得到的原理样件放入微波暗室中,进行近场测试,最后得到测试结果如图7所示。从图中可以看出幅度中间呈现相位奇点,相位绕着中心奇点呈螺旋分布,表明反射阵可以产生预期的OAM波束。从图7中可以看出M1反射波极化主要为圆极化,M2反射波为交叉极化。由于各向异性单元在宽频范围具有良好的线性度,表明可以在宽频范围内产生极化可控的OAM波束。According to the geometric design and material composition of the arrays M1, M2, the corresponding reflective arrays M1, M2 are processed. And put the obtained principle sample into the microwave anechoic chamber for near-field test, and finally get the test result as shown in Figure 7. It can be seen from the figure that there is a phase singularity in the middle of the amplitude, and the phase is spirally distributed around the central singularity, indicating that the reflectarray can generate the expected OAM beam. It can be seen from Fig. 7 that the M1 reflection wave polarization is mainly circular polarization, and the M2 reflection wave is cross polarization. Due to the good linearity of the anisotropic element over a wide frequency range, it is shown that polarization-controllable OAM beams can be generated over a wide frequency range.
如图1、2所示,令单元结构的周期为p,上层为两个正交的工字形金属图案,工字形线宽为w,工字形短臂长度为a,水平方向工字形、垂直方向工字形的臂长分别为lx,ly。中间层介质基板的厚度为h,下层为金属背板。下层金属背板与上层金属图案厚度均为t。根据反射阵的工作频率范围,对各向异性单元结构的几何尺寸优化。在本实施例中,主要针对14-16GHz范围轨道角动量波束生成与极化控制研究,因此优化的各参数具体设置如下:p=6mm,h=2mm,w=0.2mm,a=1.8mm,t=0.018mm。上述极化可控OAM超材料反射阵,可在14-16GHz宽频范围内生成OAM波束,同时实现对波束极化状态调控与设计。As shown in Figures 1 and 2, let the period of the unit structure be p, the upper layer is two orthogonal I-shaped metal patterns, the line width of the I-shaped is w, the length of the short arm of the I-shaped is a, the horizontal direction is I-shaped, and the vertical direction is I-shaped. The arm lengths of I-shape are lx, ly respectively. The thickness of the intermediate dielectric substrate is h, and the lower layer is a metal backplane. Both the thickness of the lower metal back plate and the upper metal pattern are t. According to the operating frequency range of the reflectarray, the geometric size of the anisotropic unit structure is optimized. In this embodiment, the research on orbital angular momentum beam generation and polarization control in the 14-16GHz range is mainly aimed at, so the optimized parameters are specifically set as follows: p=6mm, h=2mm, w=0.2mm, a=1.8mm, t = 0.018 mm. The above-mentioned polarization-controllable OAM metamaterial reflectarray can generate OAM beams in the wide frequency range of 14-16GHz, and at the same time realize the regulation and design of the polarization state of the beams.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810695054.2A CN108987935A (en) | 2018-06-29 | 2018-06-29 | A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810695054.2A CN108987935A (en) | 2018-06-29 | 2018-06-29 | A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108987935A true CN108987935A (en) | 2018-12-11 |
Family
ID=64538995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810695054.2A Pending CN108987935A (en) | 2018-06-29 | 2018-06-29 | A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108987935A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742553A (en) * | 2019-02-28 | 2019-05-10 | 齐齐哈尔大学 | A Dual-band Line-Circular Polarization Converter Based on Electromagnetic Induction Transparency Effect |
CN109888504A (en) * | 2019-03-26 | 2019-06-14 | 东南大学 | A transmissive basic unit and metamaterial with programmable non-reciprocal properties |
CN110380224A (en) * | 2019-07-25 | 2019-10-25 | 东南大学 | A kind of two bit of anisotropic emission formula is difunctional to encode super surface and its design method |
CN110568624A (en) * | 2019-08-15 | 2019-12-13 | 复旦大学 | Polarization conversion device based on the principle of angular dispersion |
CN111682320A (en) * | 2020-06-12 | 2020-09-18 | 中国矿业大学 | A vortex electromagnetic metasurface structure |
CN111697342A (en) * | 2020-06-19 | 2020-09-22 | 成都信息工程大学 | Transmission type artificial electromagnetic super-surface unit for generating orbital angular momentum-carrying beam |
CN112382857A (en) * | 2020-10-20 | 2021-02-19 | 西安电子科技大学 | Broadband reflection super-surface antenna for generating vortex wave based on 1bit phase encoding |
CN112525095A (en) * | 2020-11-25 | 2021-03-19 | 重庆大学 | Method for realizing super-surface biaxial strain sensing by utilizing polarization-phase-deformation relation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4102920A1 (en) * | 1990-01-31 | 1991-08-22 | Fraunhofer Ges Forschung | Vortex frequency measuring device - for vortex detachment flowmeter, with frequency sensor in vortex zone, and resistive layer with passage openings |
CN106646730A (en) * | 2016-11-23 | 2017-05-10 | 华南理工大学 | Vortex optical fiber for orbital angular momentum generation and tuning |
-
2018
- 2018-06-29 CN CN201810695054.2A patent/CN108987935A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4102920A1 (en) * | 1990-01-31 | 1991-08-22 | Fraunhofer Ges Forschung | Vortex frequency measuring device - for vortex detachment flowmeter, with frequency sensor in vortex zone, and resistive layer with passage openings |
CN106646730A (en) * | 2016-11-23 | 2017-05-10 | 华南理工大学 | Vortex optical fiber for orbital angular momentum generation and tuning |
Non-Patent Citations (3)
Title |
---|
JIN YANG ET AL.: "Anisotropic Metasurface for Orbital Angular Momentum Generation with Controlled Polarization", 《 2018 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP)》 * |
JIN YANG ET AL.: "Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface", 《APPLIED PHYSICS LETTERS》 * |
JIN YANG ET AL.: "Polarization-Controllable Orbital Angular Momentum Using Anisotropic Coding Metasurfaces", 《2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM)》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109742553A (en) * | 2019-02-28 | 2019-05-10 | 齐齐哈尔大学 | A Dual-band Line-Circular Polarization Converter Based on Electromagnetic Induction Transparency Effect |
CN109742553B (en) * | 2019-02-28 | 2020-07-31 | 齐齐哈尔大学 | Double-frequency-band linear-circular polarization converter based on electromagnetic induction transparent effect |
CN109888504A (en) * | 2019-03-26 | 2019-06-14 | 东南大学 | A transmissive basic unit and metamaterial with programmable non-reciprocal properties |
CN110380224A (en) * | 2019-07-25 | 2019-10-25 | 东南大学 | A kind of two bit of anisotropic emission formula is difunctional to encode super surface and its design method |
CN110568624A (en) * | 2019-08-15 | 2019-12-13 | 复旦大学 | Polarization conversion device based on the principle of angular dispersion |
CN110568624B (en) * | 2019-08-15 | 2021-06-04 | 复旦大学 | Polarization conversion device based on the principle of angular dispersion |
CN111682320A (en) * | 2020-06-12 | 2020-09-18 | 中国矿业大学 | A vortex electromagnetic metasurface structure |
CN111697342A (en) * | 2020-06-19 | 2020-09-22 | 成都信息工程大学 | Transmission type artificial electromagnetic super-surface unit for generating orbital angular momentum-carrying beam |
CN112382857A (en) * | 2020-10-20 | 2021-02-19 | 西安电子科技大学 | Broadband reflection super-surface antenna for generating vortex wave based on 1bit phase encoding |
CN112525095A (en) * | 2020-11-25 | 2021-03-19 | 重庆大学 | Method for realizing super-surface biaxial strain sensing by utilizing polarization-phase-deformation relation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108987935A (en) | A kind of vortex wave Meta Materials reflective array for polarizing controllable and its design method | |
Fan et al. | Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave | |
Yuan et al. | RCS reduction based on concave/convex-chessboard random parabolic-phased metasurface | |
CN110265789B (en) | An all-dielectric silicon terahertz vortex metasurface based on multi-order phase factors | |
Liu et al. | Conformal polarization conversion metasurface for omni-directional circular polarization antenna application | |
CN110034410B (en) | A versatile nonlinear metasurface | |
CN106887718B (en) | A kind of device generating orbital angular momentum wave beam based on super surface phased array antenna | |
CN109193168A (en) | A kind of vortex multi-beam Meta Materials reflective array for polarizing controllable and its design method | |
Li et al. | Wideband beam-forming metasurface with simultaneous phase and amplitude modulation | |
CN108598692A (en) | A kind of spatial domain phase-shifting unit and bimodulus vortex wave beam dual polarization phase-plate | |
Saraereh | Design and performance evaluation of oam-antennas: A comparative review | |
Lin et al. | Single-layer re-organizable all-dielectric meta-lens platform for arbitrary transmissive phase manipulation at millimeter-wave frequencies | |
Duan et al. | Low-scattering and dual-polarized reconfigurable reflectarray antenna based on absorptive and active coding metasurfaces | |
Lu et al. | Single-layer ultra-wideband multifunctional transmissive metasurface | |
Wu et al. | An Ultrathin, Fast‐Response, Large‐Scale Liquid‐Crystal‐Facilitated Multi‐Functional Reconfigurable Metasurface for Comprehensive Wavefront Modulation | |
Zhu et al. | Polarization-controlled multifunctional coding metasurface operating in transmission-reflection modes | |
Sun et al. | Achieving directive radiation and broadband microwave absorption by an anisotropic metasurface | |
CN117832861A (en) | A method for constructing a metasurface array with broadband spin-decoupled orbital angular momentum | |
Yu et al. | Real-time programmable coding metasurface antenna for multibeam switching and scanning | |
CN114744408B (en) | Optical-mechanical structural millimeter wave reflection beam controllable super-surface | |
Liu et al. | Dynamic controlling the bistatic RCS by programmable metasurface with continuous and independent manipulation of reflective phase and amplitude | |
CN114865330A (en) | A terahertz superlens antenna | |
Sharma et al. | Coarsely Discretized Huygens' Metasurface: Manipulating EM Waves with Simplicity | |
Bai et al. | Broadband coding metasurface for radar cross section reduction | |
Yu et al. | Shaping electromagnetic waves by using bianisotropic huygens’ metasurface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181211 |