CN108985311A - 一种高光谱遥感数据的降维方法及系统 - Google Patents
一种高光谱遥感数据的降维方法及系统 Download PDFInfo
- Publication number
- CN108985311A CN108985311A CN201810430362.2A CN201810430362A CN108985311A CN 108985311 A CN108985311 A CN 108985311A CN 201810430362 A CN201810430362 A CN 201810430362A CN 108985311 A CN108985311 A CN 108985311A
- Authority
- CN
- China
- Prior art keywords
- correlation coefficient
- remote sensing
- data
- sensing data
- hyperspectral remote
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009467 reduction Effects 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001228 spectrum Methods 0.000 title abstract description 6
- 230000003595 spectral effect Effects 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 18
- 230000009466 transformation Effects 0.000 claims description 14
- 230000001131 transforming effect Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 13
- 238000004590 computer program Methods 0.000 description 7
- 238000000513 principal component analysis Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810430362.2A CN108985311A (zh) | 2018-05-08 | 2018-05-08 | 一种高光谱遥感数据的降维方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810430362.2A CN108985311A (zh) | 2018-05-08 | 2018-05-08 | 一种高光谱遥感数据的降维方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108985311A true CN108985311A (zh) | 2018-12-11 |
Family
ID=64542497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810430362.2A Pending CN108985311A (zh) | 2018-05-08 | 2018-05-08 | 一种高光谱遥感数据的降维方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108985311A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111122447A (zh) * | 2019-11-25 | 2020-05-08 | 北华航天工业学院 | 一种无人机多光谱波段纠正方法 |
CN113281270A (zh) * | 2021-04-26 | 2021-08-20 | 中国自然资源航空物探遥感中心 | 一种高光谱波段选择方法、装置、设备及存储介质 |
CN114743057A (zh) * | 2022-05-05 | 2022-07-12 | 交通运输通信信息集团有限公司 | 一种基于波段子集的高光谱图像特征提取方法、系统与设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916440A (zh) * | 2010-08-09 | 2010-12-15 | 哈尔滨工程大学 | 基于数字图像形态学理论的高光谱异常检测方法 |
CN102879099A (zh) * | 2012-08-08 | 2013-01-16 | 北京建筑工程学院 | 一种基于高光谱成像的壁画信息提取方法 |
CN103679703A (zh) * | 2013-11-25 | 2014-03-26 | 河海大学 | 一种基于共形几何代数的高光谱遥感影像降维方法 |
-
2018
- 2018-05-08 CN CN201810430362.2A patent/CN108985311A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916440A (zh) * | 2010-08-09 | 2010-12-15 | 哈尔滨工程大学 | 基于数字图像形态学理论的高光谱异常检测方法 |
CN102879099A (zh) * | 2012-08-08 | 2013-01-16 | 北京建筑工程学院 | 一种基于高光谱成像的壁画信息提取方法 |
CN103679703A (zh) * | 2013-11-25 | 2014-03-26 | 河海大学 | 一种基于共形几何代数的高光谱遥感影像降维方法 |
Non-Patent Citations (1)
Title |
---|
陈瀚孜: "高光谱图像融合算法研究", 信息科技, 15 June 2010 (2010-06-15), pages 17 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111122447A (zh) * | 2019-11-25 | 2020-05-08 | 北华航天工业学院 | 一种无人机多光谱波段纠正方法 |
CN111122447B (zh) * | 2019-11-25 | 2022-03-25 | 北华航天工业学院 | 一种无人机多光谱波段纠正方法 |
CN113281270A (zh) * | 2021-04-26 | 2021-08-20 | 中国自然资源航空物探遥感中心 | 一种高光谱波段选择方法、装置、设备及存储介质 |
CN113281270B (zh) * | 2021-04-26 | 2023-06-23 | 中国自然资源航空物探遥感中心 | 一种高光谱波段选择方法、装置、设备及存储介质 |
CN114743057A (zh) * | 2022-05-05 | 2022-07-12 | 交通运输通信信息集团有限公司 | 一种基于波段子集的高光谱图像特征提取方法、系统与设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Extracting apple tree crown information from remote imagery using deep learning | |
CN108491849B (zh) | 基于三维稠密连接卷积神经网络的高光谱图像分类方法 | |
CN105574534B (zh) | 基于稀疏子空间聚类和低秩表示的显著性目标检测方法 | |
US20210089827A1 (en) | Feature representation device, feature representation method, and program | |
CN101477529B (zh) | 一种三维对象的检索方法和装置 | |
Huang et al. | Local binary patterns and superpixel-based multiple kernels for hyperspectral image classification | |
US20140226906A1 (en) | Image matching method and apparatus | |
KR101618996B1 (ko) | 호모그래피를 추정하기 위한 샘플링 방법 및 영상 처리 장치 | |
CN104978582B (zh) | 基于轮廓弦角特征的遮挡目标识别方法 | |
CN111126385A (zh) | 一种可变形活体小目标的深度学习智能识别方法 | |
CN113344103B (zh) | 基于超图卷积神经网络的高光谱遥感图像地物分类方法 | |
CN110458192A (zh) | 基于视觉显著性的高光谱遥感图像分类方法及系统 | |
CN113420640A (zh) | 红树林高光谱图像分类方法、装置、电子设备及存储介质 | |
CN108985311A (zh) | 一种高光谱遥感数据的降维方法及系统 | |
CN103390170A (zh) | 一种基于多光谱遥感图像纹理元的地物类型纹理分类方法 | |
CN106682675A (zh) | 一种面向高光谱图像的空谱联合特征提取方法 | |
CN114419406A (zh) | 图像变化检测方法、训练方法、装置和计算机设备 | |
Deng et al. | Citrus disease recognition based on weighted scalable vocabulary tree | |
Lefèvre et al. | Hyperspectral image classification from multiscale description with constrained connectivity and metric learning | |
CN102722732A (zh) | 一种基于数据二阶统计量建模的图像集合匹配方法 | |
Pham et al. | Spectral graph wavelet based nonrigid image registration | |
CN109492652B (zh) | 一种基于有序视觉特征单词库模型的相似图像判断方法 | |
Li et al. | Spectral–spatial prototype learning-based nearest neighbor classifier for hyperspectral images | |
CN104143191A (zh) | 一种基于纹理元的遥感图像变化检测方法 | |
CN106650629A (zh) | 一种基于核稀疏表示的快速遥感目标检测识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant after: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Applicant after: STATE GRID CORPORATION OF CHINA Applicant after: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences Applicant after: STATE GRID SHANXI ELECTRIC POWER Co. Address before: 100192 Beijing city Haidian District Qinghe small Camp Road No. 15 Applicant before: CHINA ELECTRIC POWER RESEARCH INSTITUTE Co.,Ltd. Country or region before: China Applicant before: State Grid Corporation of China Applicant before: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences Applicant before: STATE GRID SHANXI ELECTRIC POWER Co. |
|
CB02 | Change of applicant information |