CN108977456A - 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法 - Google Patents

含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法 Download PDF

Info

Publication number
CN108977456A
CN108977456A CN201810895097.5A CN201810895097A CN108977456A CN 108977456 A CN108977456 A CN 108977456A CN 201810895097 A CN201810895097 A CN 201810895097A CN 108977456 A CN108977456 A CN 108977456A
Authority
CN
China
Prior art keywords
nadph
cytochrome
reinder
reductase gene
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810895097.5A
Other languages
English (en)
Inventor
陈贤情
杨月
林泽山
王筱
夏文豪
蒿飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Xin Baylet Biotechnology Co Ltd
Original Assignee
Jiaxing Xin Baylet Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Xin Baylet Biotechnology Co Ltd filed Critical Jiaxing Xin Baylet Biotechnology Co Ltd
Priority to CN201810895097.5A priority Critical patent/CN108977456A/zh
Publication of CN108977456A publication Critical patent/CN108977456A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/0042NADPH-cytochrome P450 reductase (1.6.2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02004NADPH-hemoprotein reductase (1.6.2.4), i.e. NADP-cytochrome P450-reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于基因工程技术领域,具体地说,涉及含驯鹿NADPH‑细胞色素P450还原酶基因的重组载体及表达、分离纯化和活性测定的方法:1)根据从驯鹿的基因组上注释出的NADPH‑细胞色素P450还原酶基因和大肠杆菌密码子偏好性,得到优化后的驯鹿NADPH‑细胞色素P450还原酶基因序列,同理得到根据大肠杆菌密码子偏好性优化后的狍子和羊的NADPH‑细胞色素P450还原酶基因序列,用以作为对照;2)利用设计的引物,通过gibson连接方法,将优化后的驯鹿、狍子和羊25羟基维生素D‑1α羟化酶基因分别构建于大肠杆菌表达载体pET‑28a,获得重组载体。含驯鹿NADPH‑细胞色素P450还原酶基因的菌株表达获得酶的催化活性是羊的20倍,是狍子的5倍。

Description

含驯鹿NADPH-细胞色素P450还原酶基因的重组载体构建及表 达、分离纯化方法
技术领域
本发明属于基因工程技术领域,具体地说,涉及含驯鹿NADPH-细胞色素P450还原酶基因的重组载体及编码蛋白表达、分离纯化和活性测定的方法。
背景技术
NADPH-细胞色素P450还原酶(NADPH-cytochrome P450reductase,CPR)是一种以FAD和FMN作为辅基的细胞微粒体复合黄素蛋白,可以催化氧化型细胞色素C生成还原型细胞色素C(见附图1),在人体主要分布于肝脏,分子量约78KD,是肝微粒体混合功能氧化酶-细胞色素P450酶系的重要组分。细胞色素P450(cytochrome P450或CYP450,简称CYP450)代表着一个很大的可自身氧化的亚铁血红素蛋白家族,属于单氧酶的一类,因其在450纳米有特异吸收峰而得名。因其在内源性(如类固醇、类花生酸物质和脂肪酸)和外源性的化学物质(包括药物、植物毒素、致癌物质和环境污染物等)尤其在昆虫对杀虫剂的抗性机制以及选择毒性中,昆虫对寄主植物的适应性等方面和环境有害化学物质的氧化代谢方面起着重要的作用,而受到广泛的重视。此外,推测它能导致线粒体功能紊乱、细胞凋亡,还可能参与了一些疾病的发生,比如帕金森综合症。
现今,NADPH-细胞色素P450还原酶的研究也逐渐受到生物医学领域的重视。CPR是哺乳动物体内具有重要生理作用的辅酶,它不但是细胞色素P450、血红素加氧酶和角鲨烯单加氧酶的电子供体,而且还能为7-胆固醇脱氢酶还原酶、细胞色素b5以及其他催化固醇合成、脂肪酸去饱和及延伸途径的酶蛋白提供电子。它可以催化底物的单电子还原,使带有不配对电子的底物自由基与分子氧结合,产生活性氧,这就是黄素蛋白酶催化的氧化还原循环。在这一循环中需要消耗NADPH,其氧化速率可以反映细胞色素P-450重组酶系对底物的代谢情况。另外,在肿瘤细胞中转入CPR基因,有助于提高抗肿瘤药物的药物细胞毒作用。CPR不仅对某些有害物质有一定的代谢作用,而且是细胞色素P450酶系电子传递链上一个关键的酶。
总之,作为机体代谢系统的一个重要酶类,对NADPH-细胞色素P450还原酶的研究一方面可以在一定程度上解决耐药性的问题,因其对某些有害物质的代谢作用,也可用于疾病的防御与治疗等有助于对药物代谢途径的正确分析,包括诱导、抑制,以及药物之间的相互作用;另一方面,作为重要的供氢酶,在生物转化工程、肿瘤治疗及生物制氢研究中CPR也将发挥重要作用,甚至意义还远不止如此。驯鹿的NADPH-细胞色素P450还原酶催化活性比较高,然目前为止并未见报道。
本发明旨在提供一种涉及含驯鹿NADPH-细胞色素P450还原酶基因的重组载体及编码蛋白表达、分离纯化和活性测定的方法。
发明内容
本发明旨在提供一种涉及含驯鹿NADPH-细胞色素P450还原酶基因的重组载体及编码蛋白表达、分离纯化和活性测定的方法。
本发明解决其技术问题采用的技术方案如下:
1)根据从驯鹿的基因组上注释出的NADPH-细胞色素P450还原酶基因和大肠杆菌密码子偏好性,得到优化后的驯鹿NADPH-细胞色素P450还原酶核酸序列,同时,得到根据大肠杆菌密码子偏好性优化后的狍子和羊的NADPH-细胞色素P450还原酶,用以作为驯鹿NADPH-细胞色素P450还原酶的对照;
2)利用设计的引物,通过gibson连接方法,将优化后的驯鹿、狍子和羊NADPH-细胞色素P450还原酶基因、ADX和ADR分别构建于大肠杆菌表达载体pET-28a,质粒的核酸验证结果见附图4,获得表达质粒如图1、2和3所示;
3)将表达质粒分别转入大肠杆菌高效表达菌株BL21(DE3)中,将载有表达质粒的菌株在2YT培养基中培养,经过IPTG诱导表达,菌体收集,高压破碎,之后过镍离子柱纯化,得到目的蛋白,跑SDS-PAGE蛋白胶电泳,验证其大小,见附图5,在人工合成体系中作反应,检测其活性还原型细胞色素C的生成速率,然后利用蛋白测定试剂盒检测其蛋白浓度,计算NADPH-细胞色素P450还原酶蛋白活性;
4)检测结果显示,含驯鹿NADPH-细胞色素P450还原酶基因的菌株表达获得酶的催化活性是含羊NADPH-细胞色素P450还原酶基因的菌株表达获得酶的20倍,是含狍子NADPH-细胞色素P450还原酶基因的菌株表达获得酶的5倍(见附图6)。
附图说明
图1为驯鹿的NADPH-细胞色素P450还原酶质粒图谱;
图2为狍子的NADPH-细胞色素P450还原酶质粒图谱;
图3为羊的NADPH-细胞色素P450还原酶质粒图谱;
图4为本发明中构建好的质粒核酸验证结果;
图5为本发明实施过程中的SDS-PAGE电泳图;
图6为本发明实施过程中的NADPH-细胞色素P450还原酶活性对比结果。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1质粒构建过程:
根据gibson技术的要求设计好本发明中需要的引物(引物的5F端带有20-40bp左右同源臂),将根据大肠杆菌密码子偏好优化后的基因和pET-28a载体分别利用PCR技术线性化,然后将线性化后的基因和载体加入到gibson体系中,孵育,连接,转化大肠杆菌DH5α,进行质粒扩增,挑取单克隆,验证,留阳性克隆备用。
实施例2表达载体转化过程:
将上述阳性克隆提取质粒,取200ng该质粒,与50μL商业大肠杆菌感受态BL21(DE3)混合均匀,冰上孵育30min,然后42℃热击45S,再在冰上放置2min,然后加入300μL的LB培养基,37℃复苏1h,后涂布于有卡那霉素抗性(pET28a质粒为卡那抗性)的LB固体平板培养基中。过夜培养,挑取单克隆验证,阳性克隆留取备用。
实施例3蛋白的表达纯化:
1)种子液培养:挑取上述包含目的质粒的BL21(DE3)菌株,接种于含5mL LB液体培养基(Kan+,100μg/mL)的小试管中,37℃、220rpm过夜培养,作为种子液。
2)转接:将种子液按1%接种量转入800mL 2YT液体培养基(Kan+,100μg/mL)中,37℃、220rpm,摇床培养(约4-6h)至OD 600约为0.6-0.8。
3)诱导:降低摇床温度至16℃,待培养的菌液温度降低后,加入异丙基硫代半乳糖苷(Isopropylthio-β-D-galactoside,IPTG)至终浓度0.5mM,诱导表达14-16h。
4)收菌:表达完成后,将上述培养菌液收集到瓶中,将离心机预冷到4℃,6000rpm,离心30min。
5)清洗:去除上清,加入30mL蛋白缓冲液(磷酸盐缓冲液或三乙醇胺缓冲液),用旋涡振荡器重悬菌体。将重悬的菌体再次离心6000rpm,10min。倒掉上清,加入30mL蛋白缓冲液,用旋涡振荡器将菌体重悬(不能有固体颗粒状),倒入50mL离心管中,-80℃冰箱保存。
6)破菌:将上述收集好的菌液采用高压低温破碎仪在压力1200bar,4℃条件下进行破菌3-4次,使细胞充分裂解,从而将表达的目的蛋白释放并溶于蛋白缓冲液中。
7)离心:将破碎好的菌液于预冷好4℃的离心机中8000rpm,离心50min,取离心后的沉淀、上清,制样,并收集上清液;
8)纯化及浓缩:上清液经0.45μm微孔滤膜抽滤,进行镍亲和层析纯化,具体步骤如下:
(1)柱平衡:先用蒸馏水洗2个柱体积,再用20mM咪唑蛋白缓冲液平衡Ni亲和层析柱1个柱体积。
(2)上样:将上清按0.5mL/min流速缓慢经过Ni亲和层析柱,再重复一次。
(3)洗脱杂蛋白:采用蛋白缓冲液冲洗1个柱体积,再用50mL含50mM咪唑的蛋白缓冲液去洗脱结合较强的杂蛋白,取前几滴流穿样品,制样。
(4)洗脱目的蛋白:分别用20mL含100mM,200mM,300mM咪唑蛋白缓冲液将目的蛋白洗脱下来,分别取前几滴流穿样品,制样,12%SDS-PAGE检测。
(5)浓缩换液:将收集到的目的蛋白用50mL Amicon超滤管(30kDa,Millipore公司)离心浓缩(4℃、3400r/min),浓缩至1mL。再加10mL蛋白缓冲液,再浓缩至1mL,重复该过程1次,确保除去蛋白中的咪唑,得到纯化的目的蛋白,备用。
9)蛋白浓度测定。蛋白浓度测定采用Pierce BCA Protein Assay Kit(ThermoFisher Scientific)。首先利用蛋白在280nm有吸光值进行蛋白浓度的初步测定,然后根据初测的值将蛋白浓度稀释到0.5-1mg/mL。将BCA Protein Assay Kit中试剂A与试剂B按50∶1的比例配置好做反应液。取200uL反应液放置在酶标板中,在反应液中加入25μL稀释后的蛋白,用枪吹吸混匀后放置在37℃下,反应30min。将酶标板放入酶标仪中测定562nm吸光值,并按照蛋白标准曲线进行数据处理,即可得到蛋白浓度Cpr。蛋白溶液存于-80℃冰箱,备用。
实施例4蛋白的活性检测:
驯鹿的NADPH-细胞色素P450还原酶有着较高的催化活性,可以催化氧化型细胞色素C生成还原型细胞色素C,还原型细胞色素C在550nm出有特征吸收峰,通过分光光度计测定550nm吸光度的增加速率,来计算NADPH细胞色素还原酶的活性。
1)先将磷酸盐缓冲液在37℃水浴锅中保温,预热30min。
2)空白组:取1mL玻璃比色皿,依次加入蒸馏水50μL,磷酸盐缓冲液900μL,氧化型细胞色素C 50μL,10μL NADPH溶液,迅速混匀后,于550nm处,每10S测定的吸光值,测定5min,取斜率最大的2min内的吸光值,最小记为A1,最大记为A2。△0=A2-A1
3)测定组:取1mL玻璃比色皿,依次加入蛋白溶液50μL,磷酸盐缓冲液900μL,氧化型细胞色素C 50μL,10μL NADPH溶液,迅速混匀后,于550nm处,每10S测定的吸光值,测定5min,取斜率最大的2min内的吸光值,最小记为B1,最大记为B2。△1=B2-B1。
4)计算公式:
酶活性单位定义:37℃中,每毫克蛋白每分钟催化产生1nmol还原型细胞色素C为1个酶活单位。计算公式如下:
NADPH-细胞色素P450还原酶活性(nmol/min/mg prot)=(△1-△0)÷e÷d×V总÷(Cpr×V样)÷T=526×(△1-△0)÷Cpr
e:还原型细胞色素C摩尔消光系数,19100L/mol/cm=0.0191L/μmol/cm;d:比色皿光径,1cm;V总:反应体系总体积,1.01mL=0.00101L;Cpr:蛋白溶液的蛋白浓度,mg/mL。V样:加入反应中上清液的体积50μL=0.05mL;T:反应时间2min。
5)实施例中用到的溶液:
(1)磷酸盐缓冲液:称取13.9g磷酸氢二钾和2.69g磷酸二氢钾,溶于900mL蒸馏水中,再用蒸馏水定容至1L。
(2)氧化型细胞色素C溶液:1.77g氧化型细胞色素C溶于100mL水中,制备成20mM的母液,工作浓度为1mM。
(3)NADPH溶液:7.4g NADPH溶于100mL水中,制备成100mM的母液,工作浓度为1mM。
所述仅为本发明的较佳实施例,并不用以限制本发明,凡是在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应在本发明的保护范围之列。
序列表
<110> 嘉兴欣贝莱生物科技有限公司
<120> 含驯鹿NADPH-细胞色素P450还原酶基因的重组载体构建及表达、分离纯化方法
<130> 2018
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2040
<212> DNA
<213> 驯鹿(Rangifertarandus)
<400> 1
atgaacatgg cagatagcaa tatggatgcc ggtacaaccg ttagcgaaac cgttgccgaa 60
gaagttagtc tgtttagtac cgcagatatg attctgttta gcctgattgt gggcgtgatg 120
acctattggt ttctgtttcg caaaaagaaa gaagaagttc cggagtttac taaaattcag 180
accaccacca gcagcgtgaa agatcgtagc tttgttgaaa aaatgaagaa aaccggccgc 240
aatattattg ttttctatgg tagccagacc ggcaccgccg aagaatttgc caatcgtctg 300
agcaaagatg cacatcgtta tggcatgcgc ggcatggcag ccgatccgga agaatatgat 360
ctggccgatc tgagtagcct gccggaagtg gaaaaagcac tggcagtgtt ttgtatggca 420
acctatggcg aaggtgaccc gaccgataat gcccaggatt tttatgattg gctgcaggaa 480
accgataccg atctgagcgg tgtgaaatat gccgtgtttg cactgggtaa taagacctat 540
gaacatttta atgccatggg taaatacgtg gataaacgcc tggaacagct gggcgcacag 600
cgtatttttg atctgggcct gggtgacgat gatggcaatc tggaagaaga ttttattacc 660
tggcgcgaac agttttggcc ggcagtgtgc gaacattttg gtgtggaagc aaccggcgaa 720
gaaagtagta ttcgccagta tgaactggtt gtgcataccg atatggatct ggcaaaagtg 780
tataccggcg aaatgggtcg tctgaaaagt tatgaaaatc agaaaccgcc gtttgatgcc 840
aaaaatccgt ttctggcagt tgttaccacc aatcgcaaac tgaatcaggg caccgaacgc 900
catctgatgc atctggaact ggatattagc gatagtaaaa ttcgttatga gagcggtgac 960
catgttgccg tttatccggc caatgatagc gccgttgtta atcagctggg tgaaattctg 1020
ggtgcagatc tggatgttat tatgagcctg aataatctgg atgaagaaag taataagaag 1080
catccgtttc cgtgtccgac cagttatcgc accgcactga cctattatct ggatattacc 1140
aatccgccgc gtaccaatgt gctgtatgaa ctggcacagt atgcaagcga accgaccgaa 1200
caggaacagc tgcgtaaaat ggcaagtagt agcggtgaag gcaaagaact gtatctgcgc 1260
tgggttctgg aagcacgtcg ccatattctg gccattctgc aggattatcc gagtctgcgc 1320
ccgccgattg atcatctgtg cgaactgctg ccgcgcctgc aggcccgtta ttatagcatt 1380
gcaagtagta gtaaagtgca tccgaatagc gtgcatattt gcgccgtggt tgttgaatat 1440
gaaaccaaaa ccagtcgcat taataagggt gttgccacca gttggctgcg cgcaaaagaa 1500
ccggcccgcg aaaatggcgg ccgtgcctta gttccgatgt ttgtgcgcaa aagccagttt 1560
cgtctgccgt ttaaaccgac caccccggtt gttatggttg gtccgggtac aggcgtggca 1620
ccgtttattg gttttattca ggaacgcgcc tggctgcgtc agcagggcaa agaagttggc 1680
gaaaccctgc tgtattatgg ttgtcgccgt agcgatgaag attatctgta tcgcgaagaa 1740
ctggccggtt ttcataaaga tggcaccctg acccagctga atgttgcctt tagtcgcgaa 1800
cagccgcaga aagtgtatgt gcagcatctg ctgaaaaaag ataaagaaca tctgtggaaa 1860
ctgattcatg aaggcggcgc acatatctat gtttgcggtg acgcccgtaa tatggcacgt 1920
gatgtgcaga atacctttta tgatattgtg gcagaacagg gtgcaatgga acatgcacag 1980
gcagtggatt atgtgaaaaa actgatgacc aaaggtcgtt atagtatgga tgtgtggagc 2040
<210> 1
<211> 2040
<212> DNA
<213> 狍子(Capreolus pygargus)
<400> 1
atgaacatgg ccgatagtaa tatggatgcc ggcaccaccg tgagcgaaac cgttgccgaa 60
gaagttagcc tgtttagcgc aaccgatatg attctgttta gcctgattgt tggtgtgatg 120
acctattggt ttctgtttcg taaaaagaaa gaggaagttc cggagtttac taaaattcag 180
accaccacca gcagtgttaa agatcgtagt tttgtggaaa aaatgaagaa aaccggccgt 240
aatattattg tgttttatgg cagccagacc ggtacagcag aagaatttgc caatcgtctg 300
agcaaagatg cccatcgcta tggtatgcgc ggtatggccg ccgatccgga agaatatgat 360
ctggccgatc tgagcagcct gccggaaatt gaaaaagcac tggcagtttt ctgtatggca 420
acctatggcg aaggcgatcc gaccgataat gcccaggatt tttatgattg gctgcaggaa 480
accgatgttg atctgagtgg cgtgaaatat gcagtttttg ccctgggcaa taagacctat 540
gaacatttta atgcaatggg taaatacgtg gataaacgcc tggaacagct gggcgcacag 600
cgcatttttg atctgggtct gggcgatgat gatggtaatc tggaagaaga ttttattacc 660
tggcgcgaac agttttggcc ggccgtgtgc gaacattttg gtgttgaagc caccggcgaa 720
gaaagcagca ttcgtcagta tgaactggtt gttcatgccg atatggatgt ggcaaaagtg 780
tataccggcg aaatgggtcg tctgaaaagc tatgaaaatc agaaaccgcc gtttgatgca 840
aaaaatccgt ttctggccgt ggttaccacc aatcgtaaac tgaatcaggg tacagaacgc 900
catctgatgc atctggaact ggatattagc gatagtaaaa ttcgctatga aagtggcgat 960
catgtggccg tgtatccggc caatgatagc gccctggtga atcagctggg cgaaattctg 1020
ggcgccgatc tggatgtgat tatgagtctg aataatctgg atgaagaaag caataagaag 1080
catccgtttc cgtgtccgac cagctatcgc accgccctga cctattatct ggatattacc 1140
aatccgccgc gcaccaatgt tctgtatgaa ctggcccagt atgccagcga accggccgaa 1200
caggaacagc tgcgcaaaat ggcaagtagc agtggtgaag gcaaagaact gtatctgcgt 1260
tgggtgctgg aagcccgccg tcatattctg gcaattctgc aggattgccc gagcctgcgt 1320
ccgccgattg atcatctgtg cgaactgctg ccgcgcctgc aggcacgtta ttatagtatt 1380
gcaagtagct caaaagtgca tccgaatagt gttcatattt gtgccgttgt ggtggaatat 1440
gaaaccaaaa ttggccgcat taataagggt gttgcaacca gttggctgcg cgcaaaagaa 1500
ccggcaggcg aaaatggtgg ccgtgccctg gttccgatgt ttgttcgcaa aagtcagttt 1560
cgcctgccgt ttaaaccgac caccccggtg gttatggttg gtccgggcac cggcgtggca 1620
ccgtttattg gctttattca ggaacgcgcc tggctgcgcc agcagggtaa agaagtgggt 1680
gaaaccctgc tgtattatgg ctgccgccgt agcgatgaag attatctgta tcgcgaagaa 1740
ctggccggct ttcataaaga tggtacactg acccagctga atgttgcctt tagccgcgaa 1800
cagccgcaga aagtttatgt gcagcatctg ctgaaaaaag ataaagaaca tctgtggaaa 1860
ctgattcatg aaggtggcgc ccatatctat gtgtgtggtg acgcacgcaa tatggcacgc 1920
gatgttcaga atacctttta tgatattgtg gcagaacagg gcgcaatgga acatgcccag 1980
gccgtggatt atgtgaaaaa actgatgacc aaaggtcgct atagcctgga tgtgtggagc 2040
<210> 1
<211> 2040
<212> DNA
<213> 羊(Capra hircus)
<400> 1
atgaacatgg gtgacagcaa tatggatacc ggcaccaccc tgccggaaac cgtggcagaa 60
gaagttagtc tgtttagcac caccgatatg attctgttta gcctgattgt gggtgtgatg 120
acctattggt ttctgtttcg taaaaagaaa gaggaagtgc cggagtttac taaaattcag 180
accaccacca gtagcgtgaa agatcgtagc tttgttgaaa aaatgaagaa aaccggtcgt 240
aatattatcg ttttctatgg tagccagacc ggtacagcag aagaatttgc caatcgcctg 300
agcaaagatg cacatcgcta tggtatgcgt ggcatggccg cagatccgga agaatatgat 360
ctggccgatc tgagcagcct gccggaaatt gaaaaagccc tggcagtttt ctgtatggca 420
acctatggtg aaggcgatcc gaccgataat gcacaggatt tttatgattg gctgcaggaa 480
accgatgtgg atctgagcgg cgtgaaatat gccgtttttg ccctgggtaa taagacctat 540
gaacatttta atgccatggg taaatacgtt gataaacgcc tggaacagct gggcgcacag 600
cgtatttttg atctgggtct gggcgatgat gatggcaatc tggaagaaga ttttattacc 660
tggcgtgaac agttttggcc ggccgtttgt gaacattttg gtgttgaagc aaccggtgaa 720
gaaagcagta ttcgtcagta tgaactgatg gttcataccg atatggatat ggccaaagtt 780
tataccggcg aaatgggtcg tctgaaaagc tatgaaaatc agaaaccgcc gtttgatgca 840
aaaaatccgt ttctggcagt ggttaccacc aatcgtaaac tgaatcaggg tacagaacgc 900
catctgatgc atctggaact ggatattagt gatagtaaaa ttcgctatga gagtggtgac 960
catgttgcag tgtatccggc caatgatagc gccctggtga atcagctggg tgaaattctg 1020
ggtgcagatc tggatgtgat tatgagtctg aataatctgg atgaagaaag taataagaag 1080
catccgtttc cgtgcccgac cagctatcgt accgcactga cctattatct ggatattacc 1140
aatccgccgc gcaccaatgt tctgtatgaa ctggcccagt atgcaagtga accggccgaa 1200
caggaacagc tgcgcaaaat ggcaagcagt agtggtgaag gtaaagaact gtatctgcgt 1260
tgggtgctgg aagcacgtcg ccatattctg gcaattctgc aggattatcc gagcctgcgt 1320
ccgccgattg atcatctgtg tgaactgctg ccgcgcctgc aggcccgcta ttatagtatt 1380
gccagcagca gcaaagtgca tccgaatagc gttcatattt gcgccgtggc cgttgaatat 1440
aaaaccaaaa ccggtcgcat taataagggc gttgccacca gctggctgcg cgcaaaagaa 1500
ccggccggcg aaaatggcgg tcgcgcactg gttccgatgt atgttcgcaa aagccagttt 1560
cgtctgccgt ttaaagccac caccccggtt attatggttg gtccgggtac aggtgttgca 1620
ccgtttattg gttttattca ggaacgcgca tggctgcgtc agcagggcaa agatgtgggt 1680
gaaaccctgc tgtattatgg ttgtcgccgt agcgatgaag attatctgta tcgtgaagaa 1740
ctggccggtt ttcataaaga tggcaccctg acccagctga atgttgcctt tagtcgcgaa 1800
cagccgcaga aagtgtatgt gcagcatctg ctgaaaaaag ataaagaaca tctgtgggaa 1860
ctgattcatg aaggcggcgc acatatctat gtttgcggcg atgcccgcaa tatggcccgt 1920
gatgtgcaga atacctttta tgatattgtg gcagaacagg gtgcaatgga acaggcacag 1980
gcagttgatt atgtgaaaaa actgatgacc aaaggtcgtt atagtctgga tgtgtggagt 2040

Claims (4)

1.含驯鹿NADPH-细胞色素P450还原酶基因的重组载体,其特征在于,所述重组载体的构建方法如下:
1)根据从驯鹿的基因组上注释出的NADPH-细胞色素P450还原酶基因和大肠杆菌密码子偏好性,得到优化后的驯鹿NADPH-细胞色素P450还原酶基因序列,同理得到根据大肠杆菌密码子偏好性优化后的狍子和羊的NADPH-细胞色素P450还原酶基因序列,用以作为对照;
2)利用设计的引物,通过gibson连接方法,将优化后的驯鹿、狍子和羊NADPH-细胞色素P450还原酶基因分别构建于大肠杆菌表达载体pET-28a,获得重组载体。
2.含驯鹿NADPH-细胞色素P450还原酶基因的重组载体的编码蛋白表达、分离纯化方法,其特征在于,将重组载体分别转化入大肠杆菌高效表达菌株BL21中,在2YT培养基中培养,经过IPTG诱导表达,获得菌体,收集菌体,高压破碎,之后过镍离子柱纯化,得到NADPH-细胞色素P450还原酶蛋白。
3.根据权利要2所述含驯鹿NADPH-细胞色素P450还原酶基因的重组载体编码蛋白的表达、分离纯化方法,其特征在于,
转化操作具体为:提取阳性克隆质粒200ng,与50μL商业大肠杆菌感受态BL21混合均匀,冰上孵育30min,然后42℃热击45S,再在冰上放置2min,然后加入300uL的LB培养基,37℃复苏1h,后涂布于有卡那霉素抗性的LB固体平板培养基中,过夜培养,挑取单克隆验证,阳性克隆留取备用。
4.根据权利要2所述含驯鹿NADPH-细胞色素P450还原酶基因的重组载体编码蛋白的表达、分离纯化方法,其特征在于,具体步骤如下:
1)种子液培养:挑取包含目的质粒的BL21菌株,接种于含5mL LB液体培养基的小试管中,37℃、220rpm过夜培养,作为种子液;
2)转接:将种子液按1%接种量转入800mL 2YT液体培养基中,37℃、220rpm,摇床培养4-6h至OD 600约为0.6-0.8;
3)诱导:降低摇床温度至16℃,待培养的菌液温度降低后,加入异丙基硫代半乳糖苷至终浓度0.5mM,诱导表达14-16h;
4)收菌:表达完成后,将上述培养菌液收集到瓶中,将离心机预冷到4℃,6000rpm,离心30min;
5)清洗:去除上清液,加入30mL蛋白缓冲液,用旋涡振荡器重悬菌体,将重悬的菌体再次离心6000rpm,10min,倒掉上清,加入30mL蛋白缓冲液,用旋涡振荡器将菌体重悬,倒入50mL离心管中,-80℃冰箱保存;
6)破菌:将上述收集好的菌液采用高压低温破碎仪在压力1200bar,4℃条件下进行破菌3-4次,使细胞充分裂解,从而将表达的目的蛋白释放并溶于蛋白缓冲液中;
7)离心:将破碎好的菌液于预冷好4℃的离心机中8000rpm,离心50min,取离心后的沉淀、上清,制样,并收集上清液;
8)纯化及浓缩:上清液经0.45μm微孔滤膜抽滤,进行镍亲和层析纯化,具体步骤如下:
(1)柱平衡:先用蒸馏水洗2个柱体积,再用20mM咪唑蛋白缓冲液平衡Ni亲和层析柱1个柱体积;
(2)上样:将上清液按0.5mL/min流速缓慢经过Ni亲和层析柱,再重复一次;
(3)洗脱杂蛋白:采用蛋白缓冲液冲洗1个柱体积,再用50mL含50mM咪唑的蛋白缓冲液去洗脱结合较强的杂蛋白,取前几滴流穿样品,制样;
(4)洗脱目的蛋白:分别用20mL含100mM、200mM和300mM咪唑蛋白缓冲液将目的蛋白洗脱下来,分别取前几滴流穿样品,制样,12%SDS-PAGE检测;
(5)浓缩换液:将收集到的目的蛋白用50mL Amicon超滤管离心浓缩,浓缩至1mL,再加10mL蛋白缓冲液,再浓缩至1mL,重复该过程1次,确保除去蛋白中的咪唑,得到纯化的目的蛋白。
CN201810895097.5A 2018-08-08 2018-08-08 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法 Withdrawn CN108977456A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810895097.5A CN108977456A (zh) 2018-08-08 2018-08-08 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810895097.5A CN108977456A (zh) 2018-08-08 2018-08-08 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法

Publications (1)

Publication Number Publication Date
CN108977456A true CN108977456A (zh) 2018-12-11

Family

ID=64555292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810895097.5A Withdrawn CN108977456A (zh) 2018-08-08 2018-08-08 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法

Country Status (1)

Country Link
CN (1) CN108977456A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923183A (zh) * 2019-12-13 2020-03-27 江苏师范大学 产羊毛甾醇大肠杆菌菌株的构建方法
WO2021147857A1 (en) * 2020-01-20 2021-07-29 Wuxi Biologics (Shanghai) Co., Ltd A novel wash buffer solution for affinity chromatography
CN114934057A (zh) * 2022-06-27 2022-08-23 湖南道生生物科技有限公司 一种适于大肠杆菌高效表达的IsDNA序列、制备方法、重组表达质粒及工程菌

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923183A (zh) * 2019-12-13 2020-03-27 江苏师范大学 产羊毛甾醇大肠杆菌菌株的构建方法
WO2021147857A1 (en) * 2020-01-20 2021-07-29 Wuxi Biologics (Shanghai) Co., Ltd A novel wash buffer solution for affinity chromatography
CN114901671A (zh) * 2020-01-20 2022-08-12 上海药明生物技术有限公司 用于亲和层析的新的清洗缓冲溶液
CN114901671B (zh) * 2020-01-20 2024-02-20 上海药明生物技术有限公司 用于亲和层析的新的清洗缓冲溶液
CN114934057A (zh) * 2022-06-27 2022-08-23 湖南道生生物科技有限公司 一种适于大肠杆菌高效表达的IsDNA序列、制备方法、重组表达质粒及工程菌
CN114934057B (zh) * 2022-06-27 2023-11-24 道生生物(深圳)有限公司 一种适于大肠杆菌高效表达的IsDNA序列、制备方法、重组表达质粒及工程菌

Similar Documents

Publication Publication Date Title
Dahl et al. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum
Sriprang et al. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase
Shirkey et al. Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation
Opperman et al. A novel chromate reductase from Thermus scotoductus SA-01 related to old yellow enzyme
Farber et al. Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase.
Petit et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis
Howitt et al. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration
CN108977456A (zh) 含驯鹿nadph-细胞色素p450还原酶基因的重组载体构建及表达、分离纯化方法
Shao et al. Photosynthetic electron flow affects H 2 O 2 signaling by inactivation of catalase in Chlamydomonas reinhardtii
Gladyshev et al. Selenocysteine-containing thioredoxin reductase in C. elegans
Pratter et al. More than just a halogenase: modification of fatty acyl moieties by a trifunctional metal enzyme
Kahng et al. Genetic and functional analysis of the tbc operons for catabolism of alkyl-and chloroaromatic compounds in Burkholderia sp. strain JS150
Kroeger et al. A spectrophotometric assay for measuring acetyl–coenzyme A carboxylase
Mermod et al. Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress
Losey et al. The beta subunit of non-bifurcating NADH-dependent [FeFe]-hydrogenases differs from those of multimeric electron-bifurcating [FeFe]-hydrogenases
Sumi et al. Light response of Pseudomonas putida KT2440 mediated by class II LitR, a photosensor homolog
Wang et al. Biocatalytic synthesis of D-allulose using novel D-tagatose 3-epimerase from Christensenella minuta
Löffler et al. The iron-sulfur flavoprotein DsrL as NAD (P) H: acceptor oxidoreductase in oxidative and reductive dissimilatory sulfur metabolism
Geueke et al. Heterologous expression of Rhodococcus opacus L-amino acid oxidase in Streptomyces lividans
Marques et al. Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae
Pozdnyakova-Filatova et al. The naphthalene catabolic genes of Pseudomonas putida BS3701: additional regulatory control
CN112175918A (zh) 7α-羟基类固醇脱氢酶突变体St-2-2 △C10及其应用
Song et al. Biological synthesis of ursodeoxycholic acid
Choi et al. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306
Fan et al. High-yield production of catalytically active regulatory [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181211

WW01 Invention patent application withdrawn after publication