CN108964743B - 基于大型高频卫星系统的eirp平面近场测试方法 - Google Patents

基于大型高频卫星系统的eirp平面近场测试方法 Download PDF

Info

Publication number
CN108964743B
CN108964743B CN201810683977.6A CN201810683977A CN108964743B CN 108964743 B CN108964743 B CN 108964743B CN 201810683977 A CN201810683977 A CN 201810683977A CN 108964743 B CN108964743 B CN 108964743B
Authority
CN
China
Prior art keywords
satellite
transmitter
ground
antenna
eirp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810683977.6A
Other languages
English (en)
Other versions
CN108964743A (zh
Inventor
宋玉亭
范迎春
游月辉
陈华
赵庆广
张伟夫
郁海勇
徐侃
王瀚霆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201810683977.6A priority Critical patent/CN108964743B/zh
Publication of CN108964743A publication Critical patent/CN108964743A/zh
Application granted granted Critical
Publication of CN108964743B publication Critical patent/CN108964743B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18517Transmission equipment in earth stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种基于大型高频卫星系统的EIRP平面近场测试方法,包括以下步骤:步骤一,地面标定激励源信号功率;步骤二,根据测试频段调节接收探头与发射天线的距离;步骤三,卫星加电后,数管分系统、发射机加电正常工作;步骤四,将地面激励源接入地面对应频段的标准天线,用接收探头完成对标准天线的扫描;步骤五,根据卫星天线扫描结果和标准增益天线扫描结果,结合回退功率,计算EIRP。本发明有效解决了天线尺寸大、频率高的卫星系统对远场测试场地的高要求以及外场环境对卫星系统带来的威胁,在平面缩场内即可完成测试,同时避免了测试对发射机可能产生的危害,可以有效解决卫星系统整星级EIRP测试。

Description

基于大型高频卫星系统的EIRP平面近场测试方法
技术领域
本发明涉及一种测试方法,具体地,涉及一种基于大型高频卫星系统的EIRP平面近场测试方法。
背景技术
EIRP(等效全向辐射功率)是卫星系统发射能力的核心指标,它等于天线增益与发射机功率的乘积。
目前对卫星EIRP测量的常用方法是在分系统阶段,通过分别测量天线发射功率和发射机功率,再考虑连接电缆或波导的损耗,公式如下(1):
EIRP=Pt+Gt-L(1)
其中Pt为发射机输出功率(单位:dBm),Gt为天线增益(单位:dBi),L为连接电缆或波导损耗(单位:dB)。
该测试方法通常在分系统阶段进行,属于分段测试+理论计算,未包含卫星结构对天线增益值的影响以及电缆或波导连接环节引入的误差。
随着技术的发展,远场测试法逐渐进入工程应用,并开始用于实现整星EIRP测试。远场测试示意图见附图1,该方法首先要求测试距离R应满足远场测试距离条件,即R≥2D2/λ(D为待测天线最大尺寸,λ为工作波长)。图中标准天线通常采用标准增益喇叭或标准波导探头,其增益精确已知。远场直接法测量原理方法是:利用频谱分析仪测量出待测相控阵天线发射EIRP,经自由空间衰减,由标准天线接收的功率大小,利用自由空间传播方程确定EIRP的大小。公式如下(2):
EIRP=P-Gt+L+LP(2)
式中:P为频谱分析仪测量的信号功率电平(单位:dBm);EIRP为有源相控阵天线的发射EIRP(单位:dBm);Gt为标准天线增益(单位:dBi);L为标准天线和频谱分析仪之间射频电缆损耗(单位:dB);LP为自由空间传播损耗(单位:dB)
该方法主要问题在于外场测试需满足距离要求,小口径天线、低工作频率卫星系统较易实现,但对于大尺寸天线、高工作频率卫星系统而言,测试距离较远,对场地要求较高。以3m口径天线、工作频率为30GHz为例,测试距离R需不小于1.8km,而更远的距离也意味着更高的链路衰减,衰减太大将导致发射信号经远距离传输后无法正常接收。同时,外场试验中,卫星系统暴露在室外环境中,恶劣的气候条件、粉尘等对卫星系统的安全存在一定的威胁。
在远场测试方法上进一步改良,便衍生出了紧缩场测试。紧缩场通过特殊场地、设备实现对远场距离的等效,测试距离大大缩,由于在室内进行,对卫星安全的威胁也可以消除。但该方法往往对测试场地构建要求较高,且用于放置产品的二维转台要求待测产品重量较轻,通常为几百千克,因此仅适用于小型卫星系统。一般的卫星系统重量通常在1~3吨,无法在紧缩场中完成该项目测试。
对于卫星系统而言,通常EIRP作为研制总要求指标,对卫星的能力评估至关重要。所以,在整星阶段,如何进行整星EIRP测试,进而对卫星性能准确评估,成为亟待解决的问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于大型高频卫星系统的EIRP平面近场测试方法,其试验项目在整星阶段平面近场中进行,规避了分段测试存在的误差,同时有效解决了传统远场EIRP测试方法中远距离要求和外场对卫星系统存在的潜在风险。此外,平面近场测试无二维转台,可适应卫星系统的重量,所以可以实现对大多数卫星系统的整星EIRP测试。
根据本发明的一个方面,提供一种基于大型高频卫星系统的EIRP平面近场测试方法,其特征在于,包括以下步骤:
步骤一,地面标定激励源信号功率,根据星上发射机输入输出特性曲线及表格,设置激励信号功率为发射机输入饱和功率回退值(具体回退值可根据发射机自身实际特性曲线选择),地面激励源设置为关闭状态,正常接入星上发射机;
步骤二,根据测试频段调节接收探头与发射天线的距离,并将探头对准发射天线中心处;
步骤三,卫星加电后,数管分系统、发射机加电正常工作;当发射机稳定工作时,地面激励源设置为开状态,探头对辐射功率进行扫描接收,扫描完成后,卫星断电;
步骤四,将地面激励源接入地面对应频段的标准天线,用接收探头完成对标准天线的扫描;
步骤五,根据卫星天线扫描结果和标准增益天线扫描结果,结合回退功率,计算EIRP。
优选地,所述步骤一中发射机输入功率回退具体数值需根据相应发射机实际的特性曲线选择,但需确保回退功率足够小,不会因接收探头反射引起发射机的损伤。根据工程经验,通常可考虑输出功率为10W左右对应的发射机输入功率。
优选地,所述步骤五中EIRP计算方法如下:设标准增益天线采样电平为P1,卫星天线采样电平为P2,地面设备送至标准增益天线和卫星天线的激励电平为P,则测试所得EIRP为P2-P1+P。根据发射机输入输出特性曲线,计算获得激励信号回退对应的输出功率P0=10*LOG(P饱和/P回退)(P饱和和P回退单位为W),从而得到实际的EIRP为P2-P1+P+P0。
优选地,述步骤三包括以下步骤:
步骤三十一,开始,地面供电阵电流设置,接通地面供电阵,卫星加电;
步骤三十二,地面综合测试系统发送发射机加电指令,卫星正常响应,发射机加电正常;
步骤三十三,地面综合测试系统发送发射机上低压指令,四分钟后,发射机自动完成上高压;
步骤三十四,地面综合测试系统发送通道选通指令,射频链路打开;
步骤三十五,地面激励源发送激励信号,平面近场测试设备控制探头进行扫描;
步骤三十六,扫描结束后,地面激励源关闭,综合测试系统发送发射机断低压,间隔5秒后发送发射机关机,遥测确认指令响应正常;
步骤三十七,卫星断电,断开地面供电阵;
步骤三十八,结束。
优选地,所述步骤二中,接收探头与发射天线的距离R与天线工作频率有关,通常需满足3λ≤R≤10λ。
与现有技术相比,本发明具有如下的有益效果:针对于大尺寸天线、高工作频率卫星系统,本发明有效解决了传统远场测试方法中测试远距离、外场高风险的问题;平面近场对卫星重量无特殊要求,可以实现大中型卫星系统的EIRP测试,同时适用于小型卫星系统。因此,该方法的提出,适用于大多数的卫星系统,避免了外场试验带来的运输、设备准备等环节,可缩短卫星研制周期;规避了外场环境可能带来的测试风险;同时又实现了整星级EIRP指标的测试评估,对卫星系统研制具有重要的作用。此外,随着航天技术的进步,对于后续发展的天线更大、工作频率更高、重量更重的卫星系统,在外场测试、紧缩场测试无法完成整星EIRP测试时,本方法同样适用,因此具有重要的推广意义和实用价值。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为远场测试法示意图。
图2为平面近场测试法示意图。
图3为本发明的流程示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图2和图3所示,本发明基于大型高频卫星系统的EIRP平面近场测试方法包括以下步骤:
步骤一,地面标定激励源信号功率,根据星上发射机输入输出特性曲线及表格,设置激励信号功率为发射机输入饱和功率回退值,地面激励源设置为关闭状态,正常接入星上发射机;
本发明中使用的发射机为K频段,饱和输出功率为108W,在本次测试中功率回退至12W进行测试,由计算公式可知回退功率值P0为9.5dB。
步骤二,根据测试频段调节接收探头与发射天线的距离,并将探头对准发射天线中心处;
本发明中卫星系统工作频率为29~31GHz,实际中取接收探头与发射天线距离为5cm。
步骤三,卫星加电后,数管分系统、发射机加电正常工作。当发射机稳定工作时,地面激励源设置为开状态,探头对辐射功率进行扫描接收,获取采样电平P2,扫描完成后,卫星断电;
本发明中卫星系统不需全部设备参加,仅包括数管分系统、测控分系统、电源分系统等满足设备加电、指令发送解析的需求,同时需包含待测的发射机、天线及相应的连接电缆、波导,确保连接状态正常。
步骤四,将地面激励源接入地面对应频段的标准天线,用接收探头完成对标准天线的扫描,获取采样电平为P1;
步骤五,根据卫星天线扫描结果和标准增益天线扫描结果,结合回退功率,计算EIRP。
本发明中,EIRP计算方法如下:设对标准增益天线的采样电平为P1,对卫星天线采样电平为P2,地面设备送至标准增益天线和卫星天线的激励电平为P,则测试所得EIRP为P2-P1+P。根据发射机输入输出特性曲线,计算获得激励信号回退对应的输出功率P0=10*LOG(P饱和/P回退)(P饱和和P回退单位为W,本发明中P0为9.5dB),从而得到实际的EIRP为P2-P1+P+P0。
如图3所示,所述步骤三包括以下步骤:
步骤三十一,开始;
步骤三十二,地面供电阵电流设置,接通地面供电阵,卫星加电;
步骤三十三,地面综合测试系统发送发射机加电指令,卫星正常响应,发射机加电正常;
步骤三十四,地面综合测试系统发送发射机上低压指令,四分钟后,发射机自动完成上高压;
步骤三十五,地面综合测试系统发送通道选通指令,射频链路打开;
步骤三十六,地面激励源发送激励信号,平面近场测试设备控制探头进行扫描;
步骤三十七,扫描结束后,地面激励源关闭,综合测试系统发送发射机断低压,间隔5秒后发送发射机关机,遥测确认指令响应正常;
步骤三十八,卫星断电,断开地面供电阵;
步骤三十九,结束。
本发明有效解决了天线尺寸大、频率高的卫星系统对远场测试场地的高要求以及外场环境对卫星系统带来的威胁,在平面缩场内即可完成测试,同时避免了测试对发射机可能产生的危害,可以有效解决卫星系统整星级EIRP测试。
本发明首次在平面近场测试环境下,对大尺寸天线、高工作频率的卫星系统实现了整星级EIRP测试,有效解决了卫星系统整星级EIRP的测试,实现了对卫星系统该指标的准确测量及性能评估。本发明有效规避了平面近场测试对发射机带来的反射损伤,解决了针对于卫星系统的传统远场测试方法中测试远距离、外场高风险的问题,同时该场地对卫星重量无特殊要求,可以实现大多数卫星系统的整星EIRP测试,具有积极的推广意义。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (4)

1.一种基于大型高频卫星系统的EIRP平面近场测试方法,其特征在于,包括以下步骤:
步骤一,地面标定激励源信号功率,根据星上发射机输入输出特性曲线及表格,设置激励信号功率为发射机输入饱和功率回退值,地面激励源设置为关闭状态,正常接入星上发射机;
步骤二,根据测试频段调节接收探头与发射天线的距离,并将探头对准发射天线中心处;
步骤三,卫星加电后,数管分系统、发射机加电正常工作;当发射机稳定工作时,地面激励源设置为开状态,探头对辐射功率进行扫描接收,扫描完成后,卫星断电;
步骤四,将地面激励源接入地面对应频段的标准天线,用接收探头完成对标准天线的扫描;
步骤五,根据卫星天线扫描结果和标准增益天线扫描结果,结合回退功率,计算EIRP;
所述步骤五中EIRP计算方法如下:设标准增益天线采样电平为P1,卫星天线采样电平为P2,地面设备送至标准增益天线和卫星天线的激励电平为P,则测试所得EIRP为P2-P1+P;根据发射机输入输出特性曲线,计算获得激励信号回退对应的输出功率P0=10*LOG(P饱和/P回退),从而得到实际的EIRP为P2-P1+P+P0。
2.根据权利要求1所述的基于大型高频卫星系统的EIRP平面近场测试方法,其特征在于,所述步骤一中发射机输入功率回退具体数值需根据相应发射机实际的特性曲线选择,但需确保回退功率足够小,不会因接收探头反射引起发射机的损伤。
3.根据权利要求1所述的基于大型高频卫星系统的EIRP平面近场测试方法,其特征在于,述步骤三包括以下步骤:
步骤三十一,开始,地面供电阵电流设置,接通地面供电阵,卫星加电;
步骤三十二,地面综合测试系统发送发射机加电指令,卫星正常响应,发射机加电正常;
步骤三十三,地面综合测试系统发送发射机上低压指令,四分钟后,发射机自动完成上高压;
步骤三十四,地面综合测试系统发送通道选通指令,射频链路打开;
步骤三十五,地面激励源发送激励信号,平面近场测试设备控制探头进行扫描;
步骤三十六,扫描结束后,地面激励源关闭,综合测试系统发送发射机断低压,间隔5秒后发送发射机关机,遥测确认指令响应正常;
步骤三十七,卫星断电,断开地面供电阵;
步骤三十八,结束。
4.根据权利要求1所述的基于大型高频卫星系统的EIRP平面近场测试方法,其特征在于,所述步骤二中,接收探头与发射天线的距离R与天线工作频率有关,需满足3λ≤R≤10λ,其中λ表示波长。
CN201810683977.6A 2018-06-28 2018-06-28 基于大型高频卫星系统的eirp平面近场测试方法 Active CN108964743B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810683977.6A CN108964743B (zh) 2018-06-28 2018-06-28 基于大型高频卫星系统的eirp平面近场测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810683977.6A CN108964743B (zh) 2018-06-28 2018-06-28 基于大型高频卫星系统的eirp平面近场测试方法

Publications (2)

Publication Number Publication Date
CN108964743A CN108964743A (zh) 2018-12-07
CN108964743B true CN108964743B (zh) 2021-05-21

Family

ID=64487628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810683977.6A Active CN108964743B (zh) 2018-06-28 2018-06-28 基于大型高频卫星系统的eirp平面近场测试方法

Country Status (1)

Country Link
CN (1) CN108964743B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027975A1 (en) * 2000-09-28 2002-04-04 The Boeing Company Return link design for psd limited mobile satellite communication systems
CN102571226A (zh) * 2011-08-25 2012-07-11 中国电子科技集团公司第十研究所 双站共视比对测试地面站eirp值的方法
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置
CN104735447A (zh) * 2015-04-01 2015-06-24 国家无线电监测中心 开阔地面环境下模拟电视台站发射功率辐射测试方法
CN106093918A (zh) * 2016-08-23 2016-11-09 中国电子科技集团公司第四十研究所 扫描架动态测试的触发脉冲输出位置误差矫正系统及方法
CN107733515A (zh) * 2017-08-31 2018-02-23 北京空间飞行器总体设计部 一种在轨复杂环境下卫星通信链路分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374161B2 (en) * 2013-11-21 2016-06-21 Comtech Ef Data Corp. System and method for satellite link budget analysis (LBA) optimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027975A1 (en) * 2000-09-28 2002-04-04 The Boeing Company Return link design for psd limited mobile satellite communication systems
CN102571226A (zh) * 2011-08-25 2012-07-11 中国电子科技集团公司第十研究所 双站共视比对测试地面站eirp值的方法
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置
CN104735447A (zh) * 2015-04-01 2015-06-24 国家无线电监测中心 开阔地面环境下模拟电视台站发射功率辐射测试方法
CN106093918A (zh) * 2016-08-23 2016-11-09 中国电子科技集团公司第四十研究所 扫描架动态测试的触发脉冲输出位置误差矫正系统及方法
CN107733515A (zh) * 2017-08-31 2018-02-23 北京空间飞行器总体设计部 一种在轨复杂环境下卫星通信链路分析方法

Also Published As

Publication number Publication date
CN108964743A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN103547933B (zh) 用于对电缆网络中的故障进行定位的系统和设备
US7672640B2 (en) Multichannel absorberless near field measurement system
US8502546B2 (en) Multichannel absorberless near field measurement system
CN107015218B (zh) 一种三坐标低空小目标雷达
Newell et al. Gain and power parameter measurements using planar near-field techniques
CN100498352C (zh) 天线辐射特性实验装置
CN105158768A (zh) 一种波导缝隙阵列天线校正装置及校正方法
CN110794429B (zh) 无人机gps模块bci电磁效应等效替代试验系统和方法
CN108964743B (zh) 基于大型高频卫星系统的eirp平面近场测试方法
CN102944797A (zh) 一种天线耦合度测量方法
US5502394A (en) Compact, portable device for measuring the reflection coefficient of a structure exposed to microwave radiation
WO2007112546A1 (en) Multichannel absorberless near field measurement system
Glimm et al. A single-antenna method for traceable antenna gain measurement
CN109142907B (zh) 卫星整星辐射发射专用测试方法
CN113346949B (zh) 基于光管模拟距离和发散角的激光通信测试装置及方法
CN113162710B (zh) 通信链路质量测试装置及测试方法
CN116032383A (zh) 一种针对多阵元相控阵发射系统辐射功率的检测方法
CN218995658U (zh) 一种基于多旋翼无人机舰载雷达侦察设备的标校装置
CN104618044A (zh) 利用太阳作为射电源测量车载遥测设备g/t值的方法
CN102540155A (zh) 雷达综合辐射功率检测方法
CN115047257A (zh) 一种基于球面近场测量的天线自动化测量系统
CN102565770A (zh) 雷达综合接收灵敏度逆向检测方法
Limbach et al. DLR compact test range facility
US11408992B2 (en) Altimeter testing device and methods
KR20180122928A (ko) 전자파 반사단면적 측정 및 영상화 방법 및 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant