CN108960492A - 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法 - Google Patents

一种基于pso-svr软测量模型的汽轮机排汽焓预测方法 Download PDF

Info

Publication number
CN108960492A
CN108960492A CN201810639117.2A CN201810639117A CN108960492A CN 108960492 A CN108960492 A CN 108960492A CN 201810639117 A CN201810639117 A CN 201810639117A CN 108960492 A CN108960492 A CN 108960492A
Authority
CN
China
Prior art keywords
exhaust enthalpy
pso
svr
soft
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810639117.2A
Other languages
English (en)
Inventor
顾立群
彭道刚
于龙云
李丹阳
郑莉
胡捷
邓敏慧
胡欢
李嘉
周彬
严冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Baoshan Iron and Steel Co Ltd
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd, Shanghai University of Electric Power filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201810639117.2A priority Critical patent/CN108960492A/zh
Publication of CN108960492A publication Critical patent/CN108960492A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种基于PSO‑SVR软测量模型的汽轮机排汽焓预测方法,该方法包括以下步骤:获取样本数据集;引入粒子群智能算法,构建基于支持向量机的融合型回归模型用于排汽焓预测,即PSO‑SVR排汽焓软测量模型;基于所述样本数据集对所述PSO‑SVR排汽焓软测量模型进行训练,求解获得最好的预测模型,并建立相应的排汽焓回归函数;基于所述排汽焓回归函数进行汽轮机排汽焓预测。与现有技术相比,本发明具有预测能力好、预测精度高等优点。

Description

一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法
技术领域
本发明涉及一种汽轮机排汽焓预测方法,尤其是涉及一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法。
背景技术
截至到2017年10月,我国电厂发电量51944亿千瓦时,同比增长6.0%,增速比上年同期提高2.1百分点。其中,全国规模以上火电厂发电量37993亿千瓦时,同比增长5.4%,增速较上年同期提高3.6个百分点。火力发电依然是我国主要的发电形式,然而,随着经济进入新常态,面对资源和环境的双重约束,火电行业面临的形式越来越严峻,这意味着火力发电技术的转型升级迫在眉睫,必须进入清洁高效的发展阶段,才能适应时代与社会的发展。
汽轮机在性能测试以及运行监测等过程中,有必要求出或者预测出排汽焓数值,方可更为精确地控制汽轮机的运转。不过,目前并未有成熟而精确的排汽焓计算方法。实际上,在汽轮机结构中,其排汽口主要位于湿蒸汽区域,而对于该区域中的湿度测控方法相对缺乏,难以通过该区域中的压力以及温度等数值来求出排汽焓。所以,在该种背景之下,如何找到与之相对应的精确求解方法成为了当前实践界以及学术界中的重点与难点问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法。
本发明的目的可以通过以下技术方案来实现:
一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法,该方法包括以下步骤:
获取样本数据集;
引入粒子群智能算法,构建基于支持向量机的融合型回归模型用于排汽焓预测,即PSO-SVR排汽焓软测量模型;
基于所述样本数据集对所述PSO-SVR排汽焓软测量模型进行训练,求解获得最好的预测模型,并建立相应的排汽焓回归函数;
基于所述排汽焓回归函数进行汽轮机排汽焓预测。
进一步地,所述PSO-SVR软测量模型的建立具体为:
利用粒子群智能算法寻找支持向量回归的最优参数组[ε,c,σ],将该最优参数组代入支持向量回归获得PSO-SVR软测量模型,其中,ε为不敏感损失变量,c为惩罚参数,σ为径向基核系数变量。
进一步地,所述利用粒子群智能算法寻找支持向量回归的最优参数组具体步骤为:
a)设置粒子群初始值,每个粒子代表一个参数组;
b)根据样本数据集计算每个粒子的适应度值,评估整个粒子群,采用的适应度函数定义为:
式中,yi分别代表支持向量回归的实际输出和目标输出,n表示样本个数;
c)判断是否满足终止条件,若是,则输出最优粒子,从而获得最优参数组,若否,则执行步骤d);
d)更新粒子,返回步骤b)。
进一步地,所述获取样本数据集具体为:
采集汽轮机历史数据,对所述汽轮机历史数据进行预处理,形成样本数据集。
进一步地,所述汽轮机历史数据包括现场运行的不同负荷下的主蒸汽流量、发电量、主蒸汽焓和1-6段抽汽焓。
进一步地,所述预处理包括数据平滑、去除趋势性和归一化。
与现有技术相比,本发明基于PSO-SVR进行汽轮机排汽焓软测量建模,除了使用常规支持向量机预测,还利用粒子群算法对其进行优化,寻找出最优的参数组合,使常规模型精确性和泛化能力更好,有效提高排汽焓的预测精度,该软测量建模为常规建模与智能方法的结合,对火电厂具有重要的意义。
附图说明
图1为本发明的流程示意图;
图2为本发明汽轮机排汽焓软测量建模框图;
图3为实施例中双隐层RBF过程神经网络、标准SVR和PSO-SVR三种模型的最终训练相对误差曲线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
SVR(Support vector machine for regression,支持向量回归)的基本思想是给定一个输入样本x,通过一个适当的非线性映射把样本数据从低维特征空间映射到高维特征空间,在高维特征空间进行线性预测。在SVR中,其预测精度主要由ε(不敏感损失变量)、σ(径向基核系数变量)以及c(惩罚参数)等决定。所以,要想获得更为优化的SVR,应找到最佳的参数组合。本发明利用PSO(Particle swarm optimisation,粒子群算法)对SVR进行优化改进,并利用改进后的PSO-SVR进行基于样本数据的汽轮机排汽焓数值预测。本发明使用软测量建模,对可观变量做出检测、转换以及计算等处理,随后获取到该变量相对应的估计值,然后构建测试中的变量,再用易于测试或者可测试的方式获取到各过程变量间存在的关系,随后将其结果输出,将其标定为输出变量或者状态变量相对应的估计值。
如图1所示,本发明提供一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法,该方法首先获得设定的辅助变量的测量值,将辅助变量的测量值作为经训练的PSO-SVR汽轮机排汽焓软测量模型的输入矢量,从而预测获得汽轮机的排汽焓,如图2所示;PSO-SVR汽轮机排汽焓软测量模型的训练具体为:采用SVR算法建立汽轮机排汽焓测量模型;利用PSO算法优化汽轮机排汽焓测量模型的参数组合,获得最优参数组合;获得训练数据,训练数据包括多组辅助变量测量值及对应的汽轮机排汽焓测量值;利用训练数据对具有最优参数组合的汽轮机排汽焓测量模型进行训练。
具体地,上述方法包括以下步骤:
1)采集汽轮机历史数据,对所述汽轮机历史数据进行预处理,选出表征系统特性的样本数据集作为输入矢量,形成样本数据集。所述汽轮机历史数据包括现场运行的不同负荷下的主蒸汽流量、发电量、主蒸汽焓和1-6段抽汽焓等,这些历史数据可以通过现场运行的自动化装置(DCS系统)采集。所述预处理包括数据平滑、去除趋势性和归一化等。
2)引入粒子群智能算法,构建基于支持向量机的融合型回归模型,即PSO-SVR软测量模型,提高了汽轮机排汽焓的预测精确度。
所述PSO-SVR软测量模型的建立具体为:利用粒子群智能算法寻找支持向量回归的最优参数组[ε,c,σ],将该最优参数组代入支持向量回归获得PSO-SVR软测量模型,其中,ε为不敏感损失变量,c为惩罚参数,σ为径向基核系数变量。
所述利用粒子群智能算法寻找支持向量回归的最优参数组具体步骤为:
a)设置粒子群初始值,即对粒子群式子中的wmax、wmin、m以及t等变量做出初始化处理;其中wmax为最大权重因子、wmin为最小权重因子、m为群体规模、t为最大迭代次数。
b)每个粒子代表一个参数组,根据样本数据集计算每个粒子的适应度值,评估整个粒子群,采用的适应度函数定义为:
式中,yi分别代表支持向量回归的实际输出和目标输出,n表示样本个数;
c)判断是否满足终止条件,若是,则输出最优粒子,从而获得最优参数组,若否,则执行步骤d);
d)更新粒子,返回步骤b)。
上述终止条件如下:其一是其权重输入值高于a)中的wmax值。其二是权重输入值低于a)中的wmin值。值得一提的是,若检测到适应度的误差值低于相对应的设定精度,也可出现终止处理。若均未出现以上论述的情况,则退回到评估粒子群持续运算。
3)基于所述样本数据集对所述PSO-SVR软测量模型进行训练,求解获得最好的预测模型,并建立相应的回归函数。
4)基于所述回归函数进行汽轮机排汽焓预测。
实施例
为验证建模方法的有效性,本实施例取1台300MW的机组中以下负荷条件下的数据:最大负荷、额定负荷、85%、70%、60%、50%、40%,并对历史数据进行归一化处理如表1、2所示。
表1历史数据输入输出样本
表2规范后的输入输出样本
本实施例取6种负荷条件下的数据作为本系统中的训练样本。50%负荷作为预测样本。本实施例以MATLAB为实验平台,硬件配置为2.4GHZ CPU,8GB内存,操作系统为Windows 10 64位,构建和训练PSO-SVR软测量预测模型,然后经训练样本的规范化等过程,最终得到最佳相关参数组合。最终参数设置如下:局部搜索能力c1=1.5,全局搜索能力c2=1.7,惯性权重因子w=1,种群最大数量为20,最大进化数量为100。最终训练得到的最佳参数为:ε=0.01,c=68.36,σ=989.59。并将最佳参数带入PSO-SVR软测量模型中进行排汽焓预测。基于对计算结果的统计与整理,同时将训练数据不同负荷定为样本点1-6,获取到了表3中的所有数据。从该表中不难得到,所构建的优化预测模型在准确性以及效果等方面呈现出较为明显的优势。图3反映了双隐层RBF过程神经网络、标准SVR和PSO-SVR三种模型的最终训练相对误差曲线图。
表3训练数据样本
为进一步量化分析PSO-SVR软测量模型的效果,分别计算了描述3种预测的模型拟合程度的决定系数R2值:
式中,s为样本个数;Ed(d=1,2,...,s)为第d个的累计排气焓的真实值;(d=1,2,...,s)为第d个的累计排汽焓的预测值,计算结果如表4所示。
表4各预测模型的拟合程度
此外,为校验所构建模型中的泛化能力,将50%符合条件下的数据作为参考样本,然后获取到经标准SVR以及双隐层RBF过程神经网络等算法处理后的结果,并对比这三类模型结果之间的差异,得到了表5中的所有数据。
表5 50%负荷工况时三种排汽焓预测数据误差表
从以上的数据可以看出,在具有相同的训练数据的前提下,PSO-SVR软测量模型的绝对误差值和相对误差值都最小,同时拟合程度R2值最大,达到了0.9921,较标准SVR提升了约0.05;说明PSO算法对标准SVR的参数有明显优化作用,拟合程度最好。PSO-SVR软测量模型的相对误差也较双隐层RBF神经网络和标准SVR小,这说明该软测量模型对排汽焓的预测精度更高,应用能力及泛化能力也更强。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (3)

1.一种基于PSO-SVR软测量模型的汽轮机排汽焓预测方法,其特征在于,该方法包括以下步骤:
获取样本数据集;
引入粒子群智能算法,构建基于支持向量机的融合型回归模型用于排汽焓预测,即PSO-SVR排汽焓软测量模型;
基于所述样本数据集对所述PSO-SVR排汽焓软测量模型进行训练,求解获得最好的预测模型,并建立相应的排汽焓回归函数;
基于所述排汽焓回归函数进行汽轮机排汽焓预测。
2.根据权利要求1所述的基于PSO-SVR软测量模型的汽轮机排汽焓预测方法,其特征在于,所述利用粒子群智能算法寻找支持向量回归的最优参数组具体步骤为:
a)设置粒子群初始值,每个粒子代表一个参数组;
b)根据样本数据集计算每个粒子的适应度值,评估整个粒子群,采用的适应度函数定义为:
式中,yi分别代表支持向量回归的实际输出和目标输出,n表示样本个数;
c)判断是否满足终止条件,若是,则输出最优粒子,从而获得最优参数组,若否,则执行步骤d);
d)更新粒子,返回步骤b)。
3.根据权利要求1所述的基于PSO-SVR软测量模型的汽轮机排汽焓预测方法,其特征在于,所述获取样本数据集具体为:
采集汽轮机历史数据,对所述汽轮机历史数据进行数据平滑、去除趋势性和归一化预处理,形成样本数据集。
CN201810639117.2A 2018-06-20 2018-06-20 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法 Pending CN108960492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810639117.2A CN108960492A (zh) 2018-06-20 2018-06-20 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810639117.2A CN108960492A (zh) 2018-06-20 2018-06-20 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法

Publications (1)

Publication Number Publication Date
CN108960492A true CN108960492A (zh) 2018-12-07

Family

ID=64490694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810639117.2A Pending CN108960492A (zh) 2018-06-20 2018-06-20 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法

Country Status (1)

Country Link
CN (1) CN108960492A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521001A (zh) * 2018-11-19 2019-03-26 华南理工大学 一种基于PSO和ε-SVR的飞灰含碳量测量方法
CN109973159A (zh) * 2019-04-03 2019-07-05 内蒙古国华呼伦贝尔发电有限公司 确定汽轮机低压缸流量的方法和装置及机器可读存储介质
CN111461397A (zh) * 2020-02-26 2020-07-28 山东浪潮通软信息科技有限公司 一种基于改进支持向量回归机的预算预测方法及设备、介质
CN113076632A (zh) * 2021-03-24 2021-07-06 中冶华天工程技术有限公司 饱和蒸汽发电机组汽轮机排汽焓软测量方法
CN113503750A (zh) * 2021-06-25 2021-10-15 太原理工大学 一种直接空冷机组最佳背压确定方法
CN113553760A (zh) * 2021-06-25 2021-10-26 太原理工大学 一种汽轮机末级排汽焓软测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308312A (zh) * 2013-04-26 2013-09-18 国家电网公司 一种确定小汽轮机排汽焓的方法
CN104048842A (zh) * 2014-05-29 2014-09-17 华中科技大学 一种基于软测量技术的汽轮机热耗率在线监测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308312A (zh) * 2013-04-26 2013-09-18 国家电网公司 一种确定小汽轮机排汽焓的方法
CN104048842A (zh) * 2014-05-29 2014-09-17 华中科技大学 一种基于软测量技术的汽轮机热耗率在线监测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
宫唤春等: "基于Elman神经网络的汽轮机排汽焓在线预测计算", 《热力透平》 *
李顺良等: "汽轮机排汽焓在线计算方法的研究及应用", 《东北电力技术》 *
浦健等: "基于PSO-Elman神经网络的汽轮机排汽焓在线预测计算", 《南京师范大学学报(工程技术版)》 *
米兰等: "基于支持向量回归机的汽轮机排汽焓预测研究", 《热能动力工程》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521001A (zh) * 2018-11-19 2019-03-26 华南理工大学 一种基于PSO和ε-SVR的飞灰含碳量测量方法
CN109973159A (zh) * 2019-04-03 2019-07-05 内蒙古国华呼伦贝尔发电有限公司 确定汽轮机低压缸流量的方法和装置及机器可读存储介质
CN111461397A (zh) * 2020-02-26 2020-07-28 山东浪潮通软信息科技有限公司 一种基于改进支持向量回归机的预算预测方法及设备、介质
CN113076632A (zh) * 2021-03-24 2021-07-06 中冶华天工程技术有限公司 饱和蒸汽发电机组汽轮机排汽焓软测量方法
CN113076632B (zh) * 2021-03-24 2024-01-12 中冶华天工程技术有限公司 饱和蒸汽发电机组汽轮机排汽焓软测量方法
CN113503750A (zh) * 2021-06-25 2021-10-15 太原理工大学 一种直接空冷机组最佳背压确定方法
CN113553760A (zh) * 2021-06-25 2021-10-26 太原理工大学 一种汽轮机末级排汽焓软测量方法

Similar Documents

Publication Publication Date Title
CN108960492A (zh) 一种基于pso-svr软测量模型的汽轮机排汽焓预测方法
CN110866592B (zh) 模型训练方法、装置、能效预测方法、装置和存储介质
CN104749999B (zh) 装配湿式冷却塔的汽轮发电机组冷端系统优化运行精确指导系统
CN110363334B (zh) 基于灰色神经网络模型的光伏并网的电网线损预测方法
CN106936627A (zh) 一种基于大数据分析挖掘的火电设备性能监测方法
CN110716512A (zh) 一种基于燃煤电站运行数据的环保装备性能预测方法
CN111190349A (zh) 船舶机舱设备状态监测及故障诊断方法、系统及介质
CN111628494A (zh) 一种基于逻辑回归法的低压配电网拓扑识别方法及系统
CN115822887A (zh) 风电机组的性能评估与能效诊断方法及系统
CN116629120A (zh) 一种干式电力变压器的散热评价方法及系统
WO2020117270A1 (en) Automated overclocking using a prediction model
CN115660232A (zh) 风电功率的超短期预测方法、装置及系统
CN113805138A (zh) 一种基于参数有向遍历的智能电表误差估计方法及装置
CN114742363A (zh) 风电机组的能效状态评价方法、系统及介质
CN111091223A (zh) 一种基于物联网智能感知技术的配变短期负荷预测方法
CN116865343B (zh) 分布式光伏配电网的无模型自适应控制方法、装置及介质
CN112765746B (zh) 基于多项式混沌的涡轮叶顶气热性能不确定性量化系统
CN104680010B (zh) 一种汽轮机组稳态运行数据筛选方法
Liu et al. Surface roughness prediction method of titanium alloy milling based on CDH platform
CN113486950A (zh) 一种智能管网漏水检测方法及系统
Xiaoyun et al. Short-Term wind power prediction of regions based on deep long short-term memory network and gaussian process regression
CN115526429A (zh) 风电功率预测误差解耦分析方法、处理器及存储介质
CN114971024A (zh) 风机状态预测方法及装置
CN112784435A (zh) 一种基于性能事件计数和温度的gpu实时功率建模方法
Regression A Design of Electricity Generating Station Power Prediction Unit with Low

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207

RJ01 Rejection of invention patent application after publication