CN108960334A - A kind of multi-sensor data Weighted Fusion method - Google Patents
A kind of multi-sensor data Weighted Fusion method Download PDFInfo
- Publication number
- CN108960334A CN108960334A CN201810765485.1A CN201810765485A CN108960334A CN 108960334 A CN108960334 A CN 108960334A CN 201810765485 A CN201810765485 A CN 201810765485A CN 108960334 A CN108960334 A CN 108960334A
- Authority
- CN
- China
- Prior art keywords
- data
- sensor
- fusion
- group
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于信息融合领域,特别是涉及一种传感器的数据融合。The invention belongs to the field of information fusion, in particular to a sensor data fusion.
背景技术Background technique
在分布式多传感器检测系统中,经常使用多个传感器对同一参数进行多次重复测量,通过数据融合的方法来提高系统的检测精度。关于数据融合的方法非常多,相比于贝叶斯决策以及神经网络等融合技术实际运用中主观随意性比较大以及建模的局限性,加权融合方法以其无需先验信息且融合精度比较高的优势得到广泛关注。然而现有技术中多传感器数据加权融合方法都是采用传感器原始测量数据进行传感器间的数据融合,并没有考虑对传感器原始测量数据进行滤波处理,导致融合后的数据可信度不高。因此,如何进一步提高数据融合后的可信度,是本领域技术人员急需要解决的技术问题。In a distributed multi-sensor detection system, multiple sensors are often used to measure the same parameter repeatedly, and the detection accuracy of the system is improved through data fusion. There are many methods for data fusion. Compared with the subjective arbitrariness and modeling limitations in the practical application of Bayesian decision-making and neural network and other fusion technologies, the weighted fusion method does not require prior information and has relatively high fusion accuracy. advantages have received widespread attention. However, the multi-sensor data weighted fusion methods in the prior art all use the original measurement data of the sensors for inter-sensor data fusion, and do not consider filtering the original measurement data of the sensors, resulting in low reliability of the fused data. Therefore, how to further improve the credibility after data fusion is a technical problem urgently needed to be solved by those skilled in the art.
发明内容Contents of the invention
本发明主要解决的技术问题是提供一种多传感器数据加权融合方法,解决现有技术中已有的分布式多传感器检测系统中数据融合方法可信度不高的技术问题。The technical problem mainly solved by the present invention is to provide a multi-sensor data weighted fusion method to solve the technical problem that the reliability of the data fusion method in the existing distributed multi-sensor detection system in the prior art is not high.
为解决上述技术问题,本发明采用的一个技术方案是:一种多传感器数据加权融合方法,包括步骤S1,对所述多个传感器中的每个传感器数据进行滤波修正,得到所述多个传感器的修正后数据;步骤S2,计算所述多个传感器中不同传感器间数据融合的传感器间融合权重;步骤S3,基于所述修正后数据和所述传感器间融合权重进行二次加权融合,以获取最终融合结果。In order to solve the above-mentioned technical problems, a technical solution adopted by the present invention is: a multi-sensor data weighted fusion method, including step S1, performing filter correction on each sensor data in the plurality of sensors to obtain the multi-sensor data The corrected data; step S2, calculate the inter-sensor fusion weight of the data fusion between different sensors among the multiple sensors; step S3, perform secondary weighted fusion based on the corrected data and the inter-sensor fusion weight, to obtain The final fusion result.
在本发明多传感器数据加权融合方法另一实施例中,对所述多个传感器中的每个传感器数据进行滤波修正,得到所述多个传感器的修正后数据包括:In another embodiment of the multi-sensor data weighted fusion method of the present invention, filter correction is performed on each sensor data of the plurality of sensors, and obtaining the corrected data of the plurality of sensors includes:
步骤S21,设定传感器数据为所述多个传感器中第i个传感器第j次的测量数据,其中1≤i≤N,N为所述多个传感器的个数,1≤j≤M,M为所述多个传感器中每个传感器的总测量次数;获取所述多个传感器中每个传感器的所有基本数据组其中B(i,j)表示第i个传感器的第j个基本组;Step S21, setting sensor data is the jth measurement data of the i-th sensor among the plurality of sensors, where 1≤i≤N, N is the number of the plurality of sensors, 1≤j≤M, and M is the number of the plurality of sensors total number of measurements per sensor; obtain all basic data sets for each of the plurality of sensors where B(i,j) represents the j-th basic group of the i-th sensor;
步骤S22,计算每个所述基本数据组B(i,j)的均值EB(i,j)和方差DB(i,j);Step S22, calculating mean value EB(i,j) and variance DB(i,j) of each said basic data set B(i,j);
步骤S23,计算所述基本数据组B(i,j)中每个元素在所述基本数据组B(i,j)中出现的一次组内概率PB(i,j)=[pb(i,1),pb(i,2),...,pb(i,j)];Step S23, calculating the intragroup probability PB(i, j)=[pb(i, j) of each element in the basic data set B(i, j) appearing in the basic data set B(i, j). 1),pb(i,2),...,pb(i,j)];
步骤S24,根据所述基本数据组B(i,j)和所述一次组内概率PB(i,j)对第i个传感器第j次的测量数据进行修正,得到所有传感器的修正后数据X=[X1,X2,...,XN],其中Xi=[xi(1),xi(2),…,xi(M)]为第i个传感器的修正后数据。Step S24, according to the basic data set B(i,j) and the primary intra-group probability PB(i,j) for the jth measurement data of the i-th sensor Make corrections to obtain the corrected data X=[X 1 ,X 2 ,...,X N ] of all sensors, where Xi i =[ xi (1), xi (2),..., xi (M )] is the corrected data of the i-th sensor.
在本发明多传感器数据加权融合方法另一实施例中,所述计算所述多个传感器中不同传感器间数据融合的传感器间融合权重包括:In another embodiment of the multi-sensor data weighted fusion method of the present invention, the calculation of inter-sensor fusion weights for data fusion between different sensors among the multiple sensors includes:
步骤S31,计算所述多个传感器中每个传感器的所述修正后数据的均值EXi和方差DXi;Step S31, calculating the mean value EX i and variance DX i of the corrected data of each sensor in the plurality of sensors;
步骤S32,计算不同传感器数据融合的传感器间融合权重W=[w1,w2,…,wN],其中表示第i个传感器的数据融合权重。Step S32, calculating inter-sensor fusion weight W=[w 1 ,w 2 ,…,w N ] for fusion of different sensor data, where Indicates the data fusion weight of the i-th sensor.
在本发明多传感器数据加权融合方法另一实施例中,所述基于所述修正后数据和所述传感器间融合权重进行二次加权融合,以获取最终融合结果包括:In another embodiment of the multi-sensor data weighted fusion method of the present invention, performing secondary weighted fusion based on the corrected data and the inter-sensor fusion weight to obtain a final fusion result includes:
步骤S41,将所述多个传感器的所述修正后数据和所述传感器间融合权重进行一次融合,得到一次融合数据组Z=[z1,z2,…,zM]=WXT;Step S41, performing a fusion of the corrected data of the plurality of sensors and the inter-sensor fusion weight to obtain a fusion data set Z=[z 1 ,z 2 ,...,z M ]=WX T ;
步骤S42,获取所述一次融合数据组Z的均值EZ和方差DZ;Step S42, obtaining the mean value EZ and variance DZ of the primary fusion data set Z;
步骤S43,计算所述一次融合数据组Z中每个元素在所述一次融合数据组Z中出现的二次组内概率PZ=[pz1,pz2,…,pzM];Step S43, calculating the secondary within-group probability PZ=[pz 1 ,pz 2 ,...,pz M ] of each element in the primary fusion data set Z appearing in the primary fusion data set Z;
步骤S44,将所述一次融合数据组Z和所述二次组内概率PZ进行二次数据融合,获得数据融合的最终融合结果Y=(PZ)ZT。Step S44, performing secondary data fusion on the primary fusion data set Z and the secondary intragroup probability PZ to obtain a final fusion result Y=(PZ)Z T .
本发明的有益效果是:本发明公开了一种用于分布式多传感器检测系统的多传感器数据加权融合方法,该方法首先对每个传感器的实际测量数据进行滤波修正,提高单传感器测量数据的可信度,其次基于修正后数据获取传感器间的数据融合权重,提高数据融合权重分配的合理性,最后利用修正数据和基于修正数据获取的传感器间数据融合权重进行多传感器数据的加权融合,因此,利用本发明的数据加权融合方法得到的分布式多传感器融合结果更接近实际情况,可信度更高。The beneficial effects of the present invention are: the present invention discloses a multi-sensor data weighted fusion method for a distributed multi-sensor detection system, the method first performs filter correction on the actual measurement data of each sensor, and improves the accuracy of the single-sensor measurement data. Credibility, secondly based on the corrected data to obtain the data fusion weight between sensors, improve the rationality of the data fusion weight distribution, and finally use the corrected data and the inter-sensor data fusion weight based on the corrected data to carry out weighted fusion of multi-sensor data, so , the distributed multi-sensor fusion result obtained by using the data weighted fusion method of the present invention is closer to the actual situation and has higher reliability.
附图说明Description of drawings
图1是本发明多传感器数据加权融合方法的一实施例的流程图;Fig. 1 is the flow chart of an embodiment of multi-sensor data weighted fusion method of the present invention;
图2是本发明对传感器数据进行滤波修正的方法的一实施例的流程图;Fig. 2 is a flowchart of an embodiment of the method for filtering and correcting sensor data in the present invention;
图3是本发明计算多个传感器中不同传感器间数据融合的传感器间融合权重的方法的一实施例的流程图;Fig. 3 is a flowchart of an embodiment of the method for calculating inter-sensor fusion weights for data fusion between different sensors among multiple sensors in the present invention;
图4是本发明对多传感器数据进行二次加权融合的方法的一实施例的流程图;Fig. 4 is the flow chart of an embodiment of the method for twice weighted fusion of multi-sensor data in the present invention;
图5是本发明多传感器数据加权融合方法的另一实施例的流程图。Fig. 5 is a flow chart of another embodiment of the multi-sensor data weighted fusion method of the present invention.
具体实施方式Detailed ways
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。In order to facilitate the understanding of the present invention, the present invention will be described in more detail below in conjunction with the accompanying drawings and specific embodiments. Preferred embodiments of the invention are shown in the accompanying drawings. However, the present invention can be implemented in many different forms and is not limited to the embodiments described in this specification. On the contrary, these embodiments are provided to make the understanding of the disclosure of the present invention more thorough and comprehensive.
需要说明的是,除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。It should be noted that, unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by those skilled in the technical field of the present invention. Terms used in the description of the present invention are only for the purpose of describing specific embodiments, and are not used to limit the present invention.
图1是本发明多传感器数据加权融合方法的一实施例的流程图。在图1中,所述方法包括:Fig. 1 is a flow chart of an embodiment of the multi-sensor data weighted fusion method of the present invention. In Figure 1, the method includes:
步骤S1,对所述多个传感器中的每个传感器数据进行滤波修正,得到所述多个传感器的修正后数据。在该步骤中,基于某一个传感器的测量数据,分别对该传感器的所有测量数据进行修正,得到该传感器所有测量的修正后数据,以此类推,得到所有传感器的修正后数据。Step S1, filter and correct each sensor data in the plurality of sensors to obtain corrected data of the plurality of sensors. In this step, based on the measurement data of a certain sensor, all the measurement data of the sensor are respectively corrected to obtain the corrected data of all the measurements of the sensor, and so on to obtain the corrected data of all the sensors.
步骤S2,计算所述多个传感器中不同传感器间数据融合的传感器间融合权重。在该步骤中,基于步骤1得到的所有传感器的修正后数据,计算不同传感器间数据融合的权重。Step S2, calculating inter-sensor fusion weights for data fusion between different sensors among the plurality of sensors. In this step, based on the corrected data of all sensors obtained in step 1, the weight of data fusion between different sensors is calculated.
步骤S3,基于所述修正后数据和所述传感器间融合权重进行二次加权融合,以获取最终融合结果。在该步骤中,基于步骤S1得到的所有传感器的修正后数据和步骤S2得到的不同传感器间数据融合的传感器间融合权重,进行数据的二次融合,获得最终融合结果。Step S3, performing quadratic weighted fusion based on the corrected data and the inter-sensor fusion weights to obtain a final fusion result. In this step, based on the corrected data of all sensors obtained in step S1 and the inter-sensor fusion weights obtained in step S2 for data fusion between different sensors, the secondary fusion of data is performed to obtain the final fusion result.
从上述内容可知,本发明的数据加权融合方法,其首先对每个传感器的实际测量数据进行滤波修正,提高单传感器测量数据的可信度,其次基于修正后数据获取传感器间的数据融合权重,提高数据融合权重分配的合理性,最后利用修正数据和基于修正数据获取的传感器间数据融合权重进行多传感器数据的加权融合,因此,利用本发明的数据加权融合方法得到的多传感器融合结果更接近实际情况,可信度更高。It can be seen from the above that the data weighted fusion method of the present invention first filters and corrects the actual measurement data of each sensor to improve the reliability of the single sensor measurement data, and secondly obtains the data fusion weight between sensors based on the corrected data, Improve the rationality of data fusion weight distribution, and finally use the correction data and the inter-sensor data fusion weights based on the correction data to carry out weighted fusion of multi-sensor data. Therefore, the multi-sensor fusion results obtained by using the data weighted fusion method of the present invention are closer to In reality, the credibility is higher.
图2是本发明对传感器数据进行滤波修正的方法的一实施例的流程图。在图2中,所述方法包括:Fig. 2 is a flowchart of an embodiment of the method for filtering and correcting sensor data according to the present invention. In Figure 2, the method includes:
步骤S21,设定传感器数据为所述多个传感器中第i个传感器第j次的测量数据,其中1≤i≤N,N为所述多个传感器的个数,1≤j≤M,M为所述多个传感器中每个传感器的总测量次数;获取所述多个传感器中每个传感器的所有基本数据组其中B(i,j)表示第i个传感器的第j个基本组;Step S21, setting sensor data is the jth measurement data of the i-th sensor among the plurality of sensors, where 1≤i≤N, N is the number of the plurality of sensors, 1≤j≤M, and M is the number of the plurality of sensors total number of measurements per sensor; obtain all basic data sets for each of the plurality of sensors where B(i,j) represents the j-th basic group of the i-th sensor;
步骤S22,计算每个所述基本数据组B(i,j)的均值EB(i,j)和方差DB(i,j);Step S22, calculating mean value EB(i,j) and variance DB(i,j) of each said basic data set B(i,j);
步骤S23,计算所述基本数据组B(i,j)中每个元素在所述基本数据组B(i,j)中出现的一次组内概率PB(i,j)=[pb(i,1),pb(i,2),...,pb(i,j)];Step S23, calculating the intragroup probability PB(i, j)=[pb(i, j) of each element in the basic data set B(i, j) appearing in the basic data set B(i, j). 1),pb(i,2),...,pb(i,j)];
步骤S24,根据所述基本数据组B(i,j)和所述一次组内概率PB(i,j)对第i个传感器第j次的测量数据进行修正,得到所有传感器的修正后数据X=[X1,X2,...,XN],其中Xi=[xi(1),xi(2),…,xi(M)]为第i个传感器的修正后数据。Step S24, according to the basic data set B(i,j) and the primary intra-group probability PB(i,j) for the jth measurement data of the i-th sensor Make corrections to obtain the corrected data X=[X 1 ,X 2 ,...,X N ] of all sensors, where Xi i =[ xi (1), xi (2),..., xi (M )] is the corrected data of the i-th sensor.
具体地,在本发明中,设某分布式检测系统中有N部相互独立的传感器对某待测对象参数进行测量,其量测方程为:Specifically, in the present invention, it is assumed that there are N mutually independent sensors in a distributed detection system to measure the parameters of a certain object to be measured, and the measurement equation is:
式(1)中,为第i部传感器第k次的参数测量值,xi为参数的真实值,δi(k)为第i部传感器第k次的测量噪声,其服从均值为零、方差为的高斯分布,即其中k≥1。In formula (1), is the parameter measurement value of the i-th sensor for the kth time, x i is the real value of the parameter, δ i (k) is the measurement noise of the i-th sensor for the k-th time, and its mean value is zero and the variance is The Gaussian distribution of where k≥1.
且由式(1)可知,该传感器的测量数据服从均值为xi、方差为的高斯分布,即 And it can be seen from formula (1) that the measurement data of the sensor obeys the mean value of xi and the variance of The Gaussian distribution of
对于第i部传感器第k次的测量数据将第k次之前以及第k次该传感器的k个测量数据作为一组数据进行统计分析。For the k-th measurement data of the i-th sensor The k measurement data of the sensor before the kth time and the kth time Statistical analysis was performed as a set of data.
依据概率密度函数的概念可知,第i部传感器第j次测量数据与待测参数真实值xi以及测量噪声标准差σi存在以下关系:According to the concept of probability density function, it can be known that the jth measurement data of the i-th sensor There is the following relationship with the real value x i of the parameter to be measured and the standard deviation σ i of the measurement noise:
依据极大似然估计理论可得第i部传感器第k次之前以及第k次该传感器的k个测量数据的均值和标准差的极大似然估计为:According to the maximum likelihood estimation theory, the k measurement data of the i-th sensor before the kth time and the kth time of the sensor can be obtained The maximum likelihood estimate of the mean and standard deviation of is:
考虑到k是一个有限的数值,将σi的极大似然估计修改为:Considering that k is a finite value, the maximum likelihood estimation of σ i is modified as:
然后,计算第i部传感器第k次之前以及第k次该传感器的k个测量数据中每个测量数据在本组内所有测量数据中出现的概率。Then, calculate the k measurement data of the i-th sensor before the kth time and the kth time of the sensor The probability that each measurement data in the group appears in all the measurement data in this group.
依据正态分布概率密度函数,当k>1时,第i部传感器第j(1≤j≤k)次测量值出现的机率为:According to the probability density function of normal distribution, when k>1, the jth (1≤j≤k) measured value of sensor i The probability of occurrence is:
式中,分别为第i部传感器第k次之前以及第k次该传感器的k个量测值的均值和标准差。In the formula, are the k measured values of the i-th sensor before the kth time and the kth time of the sensor mean and standard deviation of .
则第i部传感器第j次测量数据在本组内所有测量数据中出现的概率为:Then the j-th measurement data of the i-th sensor The probability of occurrence in all measurement data in this group is:
最后,对第i部传感器第k次的测量数据进行修正,并重复上述步骤,直至将第i部传感器所有测量数据以及所有传感器的测量数据都进行修正。Finally, the k-th measurement data of the i-th sensor is corrected, and the above steps are repeated until all the measurement data of the i-th sensor and the measurement data of all sensors are corrected.
图3是本发明计算多个传感器中不同传感器间数据融合的传感器间融合权重的方法的一实施例的流程图。在图3中,该方法包括:FIG. 3 is a flow chart of an embodiment of the method for calculating inter-sensor fusion weights for data fusion between different sensors among multiple sensors according to the present invention. In Figure 3, the method includes:
步骤S31,计算所述多个传感器中每个传感器的所述修正后数据的均值EXi和方差DXi;Step S31, calculating the mean value EX i and variance DX i of the corrected data of each sensor in the plurality of sensors;
步骤S32,计算不同传感器数据融合的传感器间融合权重W=[w1,w2,…,wN],其中表示第i个传感器的数据融合权重。Step S32, calculating inter-sensor fusion weight W=[w 1 ,w 2 ,…,w N ] for fusion of different sensor data, where Indicates the data fusion weight of the i-th sensor.
具体地,假设第i部传感器在规定时间内共获取M个测量数据(M>1),经过上述步骤之后,修正值为则第i部传感器M个修正数据的均值和方差为:Specifically, it is assumed that the i-th sensor acquires a total of M measurement data within the specified time (M>1), after the above steps, the correction value is Then the mean and variance of the M corrected data of the i-th sensor are:
依据加权融合思想,如果第i部传感器的数据为Xi,其权值为ωi,则所有N部传感器加权融合的结果为:According to the idea of weighted fusion, if the data of the i- th sensor is Xi and its weight is ω i , then the result of weighted fusion of all N sensors is:
令则Zi服从标准正态分布,式(9)中融合结果可表示为:make Then Z i obeys the standard normal distribution, and the fusion result in formula (9) can be expressed as:
从式(10)可以看出融合结果Y服从均值方差的正态分布。利用最小二乘法可得,当时,融合结果Y的方差最小 It can be seen from formula (10) that the fusion result Y obeys the mean variance normal distribution of . Using the method of least squares, when When , the variance of the fusion result Y is the smallest
图4是本发明对多传感器数据进行二次加权融合的方法的一实施例的流程图,该方法包括:Fig. 4 is a flow chart of an embodiment of the method for twice-weighted fusion of multi-sensor data in the present invention, the method comprising:
步骤S41,将所述多个传感器的所述修正后数据和所述传感器间融合权重进行一次融合,得到一次融合数据组Z=[z1,z2,…,zM]=WXT;Step S41, performing a fusion of the corrected data of the plurality of sensors and the inter-sensor fusion weight to obtain a fusion data set Z=[z 1 ,z 2 ,...,z M ]=WX T ;
步骤S42,获取所述一次融合数据组Z的均值EZ和方差DZ;Step S42, obtaining the mean value EZ and variance DZ of the primary fusion data set Z;
步骤S43,计算所述一次融合数据组Z中每个元素在所述一次融合数据Z中出现的二次组内概率PZ=[pz1,pz2,…,pzM];Step S43, calculating the secondary within-group probability PZ=[pz 1 ,pz 2 ,...,pz M ] of each element in the primary fusion data set Z appearing in the primary fusion data Z;
步骤S44,将所述一次融合数据组Z和所述二次组内概率PZ进行二次数据融合,获得数据融合的最终融合结果Y=(PZ)ZT。Step S44, performing secondary data fusion on the primary fusion data set Z and the secondary intragroup probability PZ to obtain a final fusion result Y=(PZ)Z T .
具体地,首先,利用传感器修正数据及不同传感器间数据融合的权重按照公式(11)进行加权融合。Specifically, firstly, weighted fusion is performed according to the formula (11) using the sensor correction data and the weights of data fusion between different sensors.
然后,将融合数据作为一组构成一次融合数据组,计算该数据组的均值、方差,以及该组内各元素进行数据融合的二次组内概率,然后进行加权融合获取数据融合的最终结果。其中,所述计算该组内各元素进行数据融合的二次组内概率的方法和计算某个传感器第M次测量数据修正时计算各个元素在组内出现概率的方法相同。Then, take the fusion data as a group to form a primary fusion data group, calculate the mean value and variance of the data group, and the secondary intra-group probability of each element in the group for data fusion, and then perform weighted fusion to obtain the final result of data fusion. Wherein, the method for calculating the secondary intra-group probability of each element in the group for data fusion is the same as the method for calculating the occurrence probability of each element in the group when calculating the Mth measurement data correction of a certain sensor.
具体地,本发明还公开了使用所述多传感器数据加权融合方法对恒温箱参数进行数据融合的一实施例。假设某分布式多传感器检测系统中3个热电偶传感器对恒温箱进行6次检测,其中,表1是各传感器对恒温箱的多个测量值。Specifically, the present invention also discloses an embodiment of using the multi-sensor data weighted fusion method to perform data fusion on thermostat parameters. Assume that in a distributed multi-sensor detection system, three thermocouple sensors detect the incubator six times. Among them, Table 1 shows the multiple measured values of each sensor on the incubator.
表1各传感器对恒温箱的6个测量值Table 1 The six measured values of each sensor on the incubator
(1)将不同传感器当前测量与历史测量数据作为一基本数据组,计算传感器该数据组的均值和方差。(1) Take the current measurement and historical measurement data of different sensors as a basic data group, and calculate the mean value and variance of the sensor data group.
对于传感器S1:For sensor S1:
由于第一次测量前没有测量数据,因此,传感器S1第一基本数据组的均值为其测量值899.5,方差为0;Since there is no measurement data before the first measurement, the mean value of the first basic data set of sensor S1 is 899.5 of its measurement value, and the variance is 0;
由于第二次测量前有第一次测量,将第一次与第二次测量值作为第二基本数据组,通过公式(3)和公式(4)可得,传感器S1第二基本数据组的均值为902.4,方差为16.82;Since there is the first measurement before the second measurement, the first and second measurement values are used as the second basic data set, and can be obtained through formula (3) and formula (4), the second basic data set of sensor S1 The mean is 902.4 and the variance is 16.82;
同理,可以计算出传感器S1第三、第四、第五以及第六基本数据组的均值和方差。表2是传感器S1六个基本数据组的均值和方差。Similarly, the mean and variance of the third, fourth, fifth and sixth basic data sets of the sensor S1 can be calculated. Table 2 is the mean and variance of the six basic data sets of sensor S1.
表2传感器S1六个基本数据组的均值和方差Table 2 The mean and variance of the six basic data sets of sensor S1
按照以上的步骤,可以计算出传感器S2和传感器S3第一至第六基本数据组的均值和方差。表3是传感器S2和传感器S3六个基本数据组的均值和方差。According to the above steps, the mean value and variance of the first to sixth basic data groups of the sensor S2 and the sensor S3 can be calculated. Table 3 is the mean value and variance of the six basic data groups of sensor S2 and sensor S3.
表3传感器S2和传感器S3六个基本数据组的均值和方差Table 3 The mean and variance of the six basic data sets of sensor S2 and sensor S3
(2)在步骤(1)的基础之上,计算该传感器相应基本数据组内每个测量数据在组内所有测量数据中出现的概率。(2) On the basis of step (1), calculate the probability that each measurement data in the corresponding basic data group of the sensor appears in all the measurement data in the group.
对于传感器S1:For sensor S1:
由于第一次测量前没有测量数据,第一基本数据组的方差为0,因此,第一次测量数据在第一基本数据组内所有测量数据中出现的概率为1;Since there is no measurement data before the first measurement, the variance of the first basic data set is 0, therefore, the probability that the first measurement data appears in all the measurement data in the first basic data set is 1;
由于第二次测量前有第一次测量,依据公式(5)及公式(6)可得,传感器S1第二基本数据组中第一次以及第二次测量数据在第二基本数据组内所有测量数据中出现的概率为 Since there is the first measurement before the second measurement, according to formula (5) and formula (6), the first and second measurement data in the second basic data set of sensor S1 are all in the second basic data set The probability of occurrence in the measured data is
同理,可以计算出传感器S1第三、第四、第五以及第六基本数据组中每个测量数据在相应组内所有测量数据中出现的概率,表4是传感器S1六个基本数据组中每个测量数据在相应组内所有数据中出现的概率。In the same way, the probability of each measurement data in the third, fourth, fifth and sixth basic data groups of sensor S1 appearing in all the measurement data in the corresponding group can be calculated. Table 4 is the six basic data groups of sensor S1. The probability that each measurement data occurs in all data in the corresponding group.
表4传感器S1六个基本数据组中每个测量数据在相应组内所有Table 4. Each measurement data in the six basic data groups of sensor S1 is all in the corresponding group
数据中出现的概率probability of occurrence in the data
按照以上的步骤,可以计算出传感器S2和传感器S3第一至第六基本数据组内每个测量数据在相应组内所有数据中出现的概率,其中表5是传感器S2六个基本数据组中每个测量数据在相应组内所有数据中出现的概率,表6是传感器S3六个基本数据组中每个测量数据在相应组内所有数据中出现的概率。According to the above steps, the probability of each measurement data in the first to sixth basic data groups of sensor S2 and sensor S3 appearing in all the data in the corresponding group can be calculated. The probability that each measurement data appears in all the data in the corresponding group, Table 6 shows the probability that each measurement data in the six basic data groups of sensor S3 appears in all the data in the corresponding group.
表5传感器S2六个基本数据组中每个测量数据在相应组内所有数据中出现的概率Table 5 The probability of each measurement data in the six basic data groups of sensor S2 appearing in all the data in the corresponding group
表6传感器S3六个基本数据组中每个测量数据在相应组内所有数据中出现的概率Table 6 The probability of each measurement data in the six basic data groups of sensor S3 appearing in all the data in the corresponding group
(3)在步骤(2)的基础之上,对该传感器基本数据组内的当前测量数据进行修正,并重复步骤1、2,直至对该所有传感器所有测量数据进行修正。(3) On the basis of step (2), correct the current measurement data in the basic data set of the sensor, and repeat steps 1 and 2 until all the measurement data of all the sensors are corrected.
对于传感器S1:For sensor S1:
依据公式(7)可得,第一次测量修正后的数据为899.5;第二次测量修正后的数据为899.5×0.5+905.3×0.5=902.4。According to the formula (7), the corrected data of the first measurement is 899.5; the corrected data of the second measurement is 899.5×0.5+905.3×0.5=902.4.
同理,可以计算出传感器S1第三次、第四次、第五次以及第六次测量修正后的数据,表7是传感器S1所有测量数据的修正后数据。Similarly, the corrected data of the third, fourth, fifth and sixth measurements of the sensor S1 can be calculated. Table 7 shows the corrected data of all the measurement data of the sensor S1.
表7传感器S1所有测量数据的修正后数据Table 7 Corrected data of all measured data of sensor S1
按照以上的步骤,可以计算出传感器S2和传感器S3每次测量的修正数据,表8传感器S2和传感器S3所有测量数据的修正后数据。According to the above steps, the corrected data for each measurement of the sensor S2 and the sensor S3 can be calculated, and the corrected data of all the measured data of the sensor S2 and the sensor S3 can be calculated in Table 8.
表8传感器S2和传感器S3所有测量数据的修正后数据Table 8 Corrected data of all measurement data of sensor S2 and sensor S3
(4)在步骤(3)的基础之上,计算不同传感器间数据融合的权重。(4) On the basis of step (3), calculate the weight of data fusion between different sensors.
依据公式(8),计算不同传感器所有修正数据的均值和方差,表9是不同传感器所有修正后数据的均值和方差。According to the formula (8), the mean and variance of all the corrected data of different sensors are calculated, and Table 9 shows the mean and variance of all the corrected data of different sensors.
表9不同传感器所有修正后数据的均值和方差Table 9 Mean and variance of all corrected data for different sensors
则传感器S1参与数据融合的传感器间融合权重为传感器S2参与数据融合的传感器间融合权重为传感器S3参与数据融合的传感器间融合权重为 Then the inter-sensor fusion weight of sensor S1 participating in data fusion is The inter-sensor fusion weight of sensor S2 participating in data fusion is The inter-sensor fusion weight of sensor S3 participating in data fusion is
(5)在步骤(4)的基础之上,利用传感器修正后数据及不同传感器间数据融合的传感器间融合权重进行加权融合。(5) On the basis of step (4), weighted fusion is performed by using the corrected sensor data and the inter-sensor fusion weights of data fusion between different sensors.
依据公式(11)可得融合数据组为:According to formula (11), the fusion data set can be obtained as:
(6)在步骤(5)的基础之上,计算融合数据组Y的均值、方差、以及该数据组Y内各元素进行数据融合的二次组内概率,然后进行加权融合获取数据融合的最终结果。(6) On the basis of step (5), calculate the mean value and variance of the fusion data group Y, and the secondary intra-group probability of each element in the data group Y for data fusion, and then perform weighted fusion to obtain the final data fusion result.
依据公式(3)和公式(4)可得融合数据组Y的均值为900.2982、方差为1.0241。According to formula (3) and formula (4), the mean value of the fusion data set Y is 900.2982 and the variance is 1.0241.
依据公式(5)和公式(6)可得数据Y中每个数据在所有数据中出现概率,表10是融合数据组Y中每个数据在组内所有数据中出现的二次组内概率,其中在计算融合数据组Y中每个数据在所有数据中出现的二次组内概率的方法和计算传感器S1、S2、S3中第6基本数据组中每个数据在组内出现的一次组内概率的方法一致。According to the formula (5) and formula (6), the probability of each data in the data Y appearing in all the data can be obtained. Table 10 shows the secondary intra-group probability of each data in the fusion data group Y appearing in all the data in the group. Among them, in the method of calculating the probability of each data appearing in all data in the fusion data group Y and calculating the probability of each data appearing in the group in the 6th basic data group in sensors S1, S2, S3 The probability approach is the same.
表10融合数据组中每个数据在组内所有数据中出现的二次组内概率Table 10 The secondary intra-group probability of each data in the fusion data group appearing in all the data in the group
依据公式(9)可得数据融合的最终结果为900.3587。According to formula (9), the final result of data fusion is 900.3587.
图5是本发明多传感器数据加权融合方法的另一实施例的流程图。在图5中,所述方法包括:Fig. 5 is a flow chart of another embodiment of the multi-sensor data weighted fusion method of the present invention. In Figure 5, the method includes:
步骤S51,将每个传感器当前测量数据和该当前测量数据之前的所有历史测量数据作为一个基本组,计算该传感器所述基本组测量数据的均值和方差。Step S51, taking the current measurement data of each sensor and all historical measurement data before the current measurement data as a basic group, and calculating the mean value and variance of the basic group measurement data of the sensor.
具体地,假设N部相互独立的传感器对某待测对象参数进行测量,其量测方程为:Specifically, assuming that N mutually independent sensors measure the parameters of an object to be measured, the measurement equation is:
式(12)中,为第i部传感器第k次获取的参数测量值,xi为参数的真实值,δi(k)为第i部传感器第k次的量测噪声,其服从均值为零、方差为的高斯分布,即其中k≥1。In formula (12), is the parameter measurement value obtained by the i-th sensor for the kth time, xi is the real value of the parameter, δ i (k) is the measurement noise of the i-th sensor for the k-th time, and its mean value is zero and the variance is The Gaussian distribution of where k≥1.
由式(12)可知,该传感器的测量值服从均值为xi、方差为的高斯分布,即 It can be seen from formula (12) that the measured value of the sensor obeys the mean value of x i and the variance of The Gaussian distribution of
对于第i部传感器第k次的测量值将第k次之前以及第k次该传感器的k个测量值作为一个基本数据组进行统计分析。For the k-th measurement value of the i-th sensor The k measured values of the sensor before the kth time and the kth time Statistical analysis was performed as a basic data set.
依据概率密度函数的概念可得,第i部传感器第j次测量数据与待测参数真实值xi以及测量噪声标准差σi存在以下关系:According to the concept of probability density function, it can be obtained that the j-th measurement data of the i-th sensor There is the following relationship with the real value x i of the parameter to be measured and the standard deviation σ i of the measurement noise:
依据极大似然估计理论可得第i部传感器第k次之前以及第k次该传感器的k个测量数据的均值和标准差的极大似然估计为:According to the maximum likelihood estimation theory, the k measurement data of the i-th sensor before the kth time and the kth time of the sensor can be obtained The maximum likelihood estimate of the mean and standard deviation of is:
考虑到k是一个有限的数值,将σi的极大似然估计修改为:Considering that k is a finite value, the maximum likelihood estimation of σ i is modified as:
步骤S52,计算该传感器所述基本组内每个测量数据在所述基本组内所有测量数据中出现的概率。Step S52, calculating the probability that each measurement data in the basic group of the sensor appears in all the measurement data in the basic group.
依据正态分布概率密度函数,当k>1时,第i部传感器第j(1≤j≤k)次测量值出现的机率为:According to the probability density function of normal distribution, when k>1, the jth (1≤j≤k) measured value of sensor i The probability of occurrence is:
式中,分别为第i部传感器第k次之前以及第k次该传感器的k个量测值的均值和方差。In the formula, are the k measured values of the i-th sensor before the kth time and the kth time of the sensor mean and variance of .
则第i部传感器第j次测量数据在本组内所有测量数据中出现的概率为:Then the j-th measurement data of the i-th sensor The probability of occurrence in all measurement data in this group is:
步骤S53,对该传感器本组内所述当前测量数据进行修正,得到该传感器当前测量修正后的数据。Step S53, correcting the current measurement data in the sensor group to obtain the corrected current measurement data of the sensor.
在上述步骤的基础之上,对第i部传感器第k次的测量数据进行修正。On the basis of the above steps, the k-th measurement data of the i-th sensor is corrected.
步骤S54,计算不同传感器间所述当前测量修正后数据的传感器间融合权重。Step S54, calculating inter-sensor fusion weights of the current measurement and corrected data among different sensors.
将第i部传感器第k次之前以及第k次的k个修正值作为一组,依据公式(14)和公式(15)可得第i部传感器第k次之前以及第k次的k个修正值的均值和方差为:The k correction values of the i-th sensor before the k-th time and the k-th time As a group, according to formula (14) and formula (15), the mean value and variance of the k correction values of the i-th sensor before the kth time and the kth time can be obtained as:
依据加权融合思想,如果第i部传感器的数据为Xi,其权值为ωi,则所有N部传感器加权融合的结果为:According to the idea of weighted fusion, if the data of the i- th sensor is Xi and its weight is ω i , then the result of weighted fusion of all N sensors is:
令则Zi服从标准正态分布,式(20)中融合结果可表示为:make Then Z i obeys the standard normal distribution, and the fusion result in formula (20) can be expressed as:
从式(21)可以看出融合结果Y服从均值方差的正态分布。利用最小二乘法可得,当时,融合结果Y的方差最小 It can be seen from formula (21) that the fusion result Y obeys the mean variance normal distribution of . Using the method of least squares, when When , the variance of the fusion result Y is the smallest
步骤S55,基于不同传感器的所述当前测量修正后的数据和所述传感器间融合权重进行加权融合,得到当前测量修正后的融合数据。Step S55 , performing weighted fusion based on the corrected current measurement data of different sensors and the inter-sensor fusion weights to obtain corrected current measurement fusion data.
利用传感器第k次测量的修正后数据及不同传感器间第k次数据融合的权重进行第k次的加权融合。The k-th weighted fusion is performed by using the corrected data measured by the sensor for the k-th time and the weight of the k-th data fusion between different sensors.
步骤S56,判断传感器的所有测量数据是否全部修正完,若不是,则将传感器的下一个未修正测量数据作为当前测量,执行步骤S51;否则执行步骤S57。Step S56, judge whether all the measurement data of the sensor have been corrected, if not, take the next uncorrected measurement data of the sensor as the current measurement, and execute step S51; otherwise, execute step S57.
步骤S57,将所有测量修正后数据的融合数据组合为一次融合数据组,计算所述一次融合数据组中每个数据在所述一次融合数据组内所有数据中出现的二次组内概率,基于所述一次融合数据组和所述二次组内概率,进行二次加权融合,得到数据融合的最终结果。Step S57, combine the fusion data of all measured and corrected data into a primary fusion data set, and calculate the secondary intra-group probability of each data in the primary fusion data set appearing in all the data in the primary fusion data set, based on The primary fusion data group and the secondary intra-group probability are subjected to secondary weighted fusion to obtain a final result of data fusion.
从上述内容可知,本发明的多传感器数据加权融合方法,其首先对每个传感器的实际测量数据进行滤波修正,提高单传感器测量数据的可信度,其次基于修正后数据获取传感器间的数据融合权重,提高数据融合权重分配的合理性,最后利用修正数据和基于修正数据获取的传感器间数据融合权重进行多传感器数据的加权融合,因此,利用本发明的数据加权融合方法得到的多传感器融合结果更接近实际情况,可信度更高。It can be seen from the above that the multi-sensor data weighted fusion method of the present invention first filters and corrects the actual measurement data of each sensor to improve the reliability of the single-sensor measurement data, and secondly obtains data fusion between sensors based on the corrected data. Weight, improve the rationality of data fusion weight distribution, and finally use the correction data and the inter-sensor data fusion weight obtained based on the correction data to carry out weighted fusion of multi-sensor data. Therefore, the multi-sensor fusion result obtained by using the data weighted fusion method of the present invention The closer to the actual situation, the higher the credibility.
具体地,本发明还公开了使用所述多传感器数据加权融合方法对恒温箱参数进行数据融合的一实施例。假设某分布式多传感器检测系统中3个热电偶传感器对恒温箱进行6次检测,所述表1是各传感器对恒温箱的6个测量值。则使用本发明多传感器数据加权融合方法包括:Specifically, the present invention also discloses an embodiment of using the multi-sensor data weighted fusion method to perform data fusion on thermostat parameters. Assuming that in a distributed multi-sensor detection system, three thermocouple sensors detect the incubator six times, the table 1 is the six measured values of each sensor on the incubator. Then use the multi-sensor data weighted fusion method of the present invention to include:
(1)将不同传感器当前测量数据与历史测量数据作为一个基本数据组,计算传感器该基本数据组的均值和方差。(1) Take the current measurement data and historical measurement data of different sensors as a basic data group, and calculate the mean value and variance of the basic data group of the sensors.
对于第一次测量:For the first measurement:
由于第一次测量前没有测量数据,因此,传感器S1第一基本数据组的均值为其测量值899.5,方差为0;传感器S2第一基本数据组的均值为其测量值898.3000,方差为0;传感器S3第一基本数据组的均值为其测量值896.7000,方差为0;此时,依据公式(22),可得第一次测量的融合值为898.1667。Since there is no measurement data before the first measurement, the mean value of the first basic data set of sensor S1 is its measured value 899.5, and the variance is 0; the mean value of the first basic data set of sensor S2 is its measured value 898.3000, and its variance is 0; The mean of the first basic data set of sensor S3 is its measured value 896.7000, and the variance is 0; at this time, according to formula (22), the fusion value of the first measurement can be obtained as 898.1667.
对于第二次测量:For the second measurement:
由于第二次测量前有第一次测量,将第一次与第二次测量数据作为第二基本数据组,依据公式(14)和公式(15)可得,传感器S1第二基本数据组的均值为902.4、方差为16.82,传感器S2第二基本数据组的均值为887.1000、方差为250.8800,传感器S3第二基本数据组的均值为901.7500、方差为51.0050。Since there is the first measurement before the second measurement, the first and second measurement data are taken as the second basic data set, and according to formula (14) and formula (15), the second basic data set of sensor S1 The mean value is 902.4 and the variance is 16.82. The mean value of the second basic data set of sensor S2 is 887.1000 and the variance is 250.8800. The mean value of the second basic data set of sensor S3 is 901.7500 and the variance is 51.0050.
(2)在步骤(1)的基础之上,计算该传感器所述基本组内某一测量数据在所述基本组内所有测量数据中出现的概率。(2) On the basis of step (1), calculate the probability that a certain measurement data in the basic group of the sensor appears in all the measurement data in the basic group.
依据公式(16)和公式(17)可得传感器S1第一次以及第二次测量值在第二基本数据组内所有数据中出现的概率分别是和传感器S2第一次以及第二次测量值在第二基本数据组内所有数据中出现的概率分别是0.5和0.5,传感器S3第一次以及第二次测量值在第二基本数据组内所有数据中出现的概率分别是0.5和0.5。According to formula (16) and formula (17), the probabilities of the first and second measurement values of sensor S1 appearing in all the data in the second basic data set are respectively and The probabilities of the first and second measurement values of sensor S2 appearing in all data in the second basic data set are 0.5 and 0.5 respectively, and the first and second measurement values of sensor S3 are in all data in the second basic data set The probabilities of appearing in are 0.5 and 0.5, respectively.
(3)在步骤(2)的基础之上,对该传感器所述基本组内的当前测量数据进行修正。(3) On the basis of step (2), correct the current measurement data in the basic group of the sensor.
依据公式(18)可得传感器S1第二次测量数据的修正值是899.5×0.5+905.3×0.5=902.4,传感器S2第二次测量数据的修正值是887.1000,传感器S3第二次测量数据的修正值是901.7500。According to formula (18), it can be obtained that the correction value of the second measurement data of sensor S1 is 899.5×0.5+905.3×0.5=902.4, the correction value of the second measurement data of sensor S2 is 887.1000, and the correction value of the second measurement data of sensor S3 The value is 901.7500.
(4)在步骤(3)的基础之上,计算不同传感器间所述当前测量修正后数据的融合权重。(4) On the basis of step (3), calculate the fusion weight of the current measurement corrected data among different sensors.
依据式(20)可得传感器S1第二次测量修正后数据的融合权重是0.7159,传感器S2第二次测量修正后数据的融合权重是0.0480,传感器S3第二次测量修正后数据的融合权重是0.2361。According to formula (20), it can be obtained that the fusion weight of sensor S1's second measurement and correction data is 0.7159, the fusion weight of sensor S2's second measurement and correction data is 0.0480, and the fusion weight of sensor S3's second measurement and correction data is 0.2361.
(5)在步骤(4)的基础之上,基于不同传感器的所述当前测量修正后的数据和所述融合权重进行加权融合,得到当前测量修正后的一次融合数据。(5) On the basis of step (4), perform weighted fusion based on the corrected data of the current measurement of different sensors and the fusion weight to obtain the primary fusion data after correction of the current measurement.
依据公式(22)可得三部传感器第二次测量修正后数据的融合结果为:According to the formula (22), the fusion result of the corrected data of the second measurement of the three sensors can be obtained as follows:
y(2)=0.7159×902.4+0.048×887.1+0.2361×901.75=901.5122y(2)=0.7159×902.4+0.048×887.1+0.2361×901.75=901.5122
(6)重复步骤1、2、3、4、5,直至完成不同传感器所有观测数据的融合。(6) Repeat steps 1, 2, 3, 4, and 5 until the fusion of all observation data from different sensors is completed.
按照上述步骤1、2、3、4、5的计算过程,可得三部传感器第三次、第四次、第五次以及第六次测量修正后数据的融合结果,表11是所有传感器间6次测量修正后的融合数据。According to the calculation process of the above steps 1, 2, 3, 4, and 5, the fusion results of the corrected data of the third, fourth, fifth, and sixth measurements of the three sensors can be obtained. Fusion data after correction of 6 measurements.
表11所有传感器间6次测量修正后的融合数据Table 11 Fusion data after correction of 6 measurements among all sensors
(7)在步骤(6)的基础之上,将所有测量修正后的融合数据作为一次融合数据组,计算所述一次融合数据组内每个数据在组内所有数据中出现的二次组内概率,基于所述一次融合数据组和所述组内每个数据在组内所有数据中出现的二次组内概率,进行二次加权融合,得到数据融合的最终结果。(7) On the basis of step (6), use all the fusion data after measurement correction as a primary fusion data set, and calculate the secondary group in which each data in the primary fusion data set appears in all the data in the group Probability, based on the primary fusion data group and the secondary intragroup probability of each data in the group appearing in all the data in the group, perform secondary weighted fusion to obtain the final result of data fusion.
依据公式(14)和公式(15)可得所述所有测量修正后一次融合数据组的均值为900.1677、方差为1.3754。According to formula (14) and formula (15), it can be obtained that the mean value of the first fusion data set after all the measurement corrections is 900.1677, and the variance is 1.3754.
依据公式(16)和公式(17)可得所述一次融合数据组中每个数据在组内所有数据中出现的二次组内概率,表12为一次融合数据组中每个数据在组内所有数据中出现的二次组内概率。其中在计算所述一次融合数据组中每个数据在所述组内出现概率的计算方法和计算传感器S1、S2、S3中第6基本数据组内每个数据在组内所有数据中出现的概率的方法一致。According to formula (16) and formula (17), the secondary intra-group probability that each data in the first fusion data group appears in all data in the group can be obtained, and table 12 is that each data in the first fusion data group is in the group The quadratic within-group probability of occurrence in all data. Wherein in calculating the calculation method of the probability of each data appearing in the group in the primary fusion data group and calculating the probability of each data appearing in all the data in the group in the 6th basic data group in the sensors S1, S2, S3 method is consistent.
表12一次融合数据组中每个数据在组内所有数据中出现的二次组内概率Table 12 The secondary intra-group probability of each data in the primary fusion data group appearing in all the data in the group
依据公式(18)可得最终融合数据为900.3372。According to formula (18), the final fusion data can be obtained as 900.3372.
综上可知,本发明公开了一种多传感器数据加权融合方法,其首先对每个传感器的实际测量数据进行滤波修正,提高单传感器测量数据的可信度,其次基于修正后数据获取传感器间的数据融合权重,提高数据融合权重分配的合理性,最后利用修正数据和基于修正数据获取的传感器间数据融合权重进行多传感器数据的加权融合,因此,利用本发明的数据加权融合方法得到的多传感器融合结果更接近实际情况,可信度更高。In summary, the present invention discloses a multi-sensor data weighted fusion method, which first filters and corrects the actual measurement data of each sensor to improve the reliability of the single-sensor measurement data, and secondly obtains the inter-sensor relationship based on the corrected data. Data fusion weight, improve the rationality of data fusion weight distribution, and finally use the correction data and the inter-sensor data fusion weight obtained based on the correction data to perform weighted fusion of multi-sensor data. Therefore, the multi-sensor data obtained by using the data weighted fusion method of the present invention The fusion result is closer to the actual situation and has higher reliability.
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均包括在本发明的专利保护范围内。The above are only embodiments of the present invention, and are not intended to limit the patent scope of the present invention. All equivalent structural transformations made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields, are included in this patent. inventions within the scope of patent protection.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765485.1A CN108960334B (en) | 2018-07-12 | 2018-07-12 | Multi-sensor data weighting fusion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765485.1A CN108960334B (en) | 2018-07-12 | 2018-07-12 | Multi-sensor data weighting fusion method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108960334A true CN108960334A (en) | 2018-12-07 |
CN108960334B CN108960334B (en) | 2021-09-14 |
Family
ID=64483166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810765485.1A Expired - Fee Related CN108960334B (en) | 2018-07-12 | 2018-07-12 | Multi-sensor data weighting fusion method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108960334B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110298409A (en) * | 2019-07-03 | 2019-10-01 | 广东电网有限责任公司 | Multi-source data fusion method towards electric power wearable device |
CN110362779A (en) * | 2019-06-11 | 2019-10-22 | 南京江岛环境科技研究院有限公司 | A kind of multiple dimensioned environmental data fusion method |
CN111123406A (en) * | 2019-12-25 | 2020-05-08 | 哈尔滨工大雷信科技有限公司 | Handheld meteorological instrument temperature data fitting method |
CN112003891A (en) * | 2020-07-16 | 2020-11-27 | 山东省网联智能车辆产业技术研究院有限公司 | Multi-sensing data fusion method for intelligent networked vehicle controller |
CN113011479A (en) * | 2021-03-05 | 2021-06-22 | 北京中医药大学 | Multi-source information fusion method for intelligent manufacturing |
CN113038411A (en) * | 2021-03-09 | 2021-06-25 | 电子科技大学 | Multi-sensor joint detection method based on decision-level and signal-level data fusion |
CN114139112A (en) * | 2021-12-07 | 2022-03-04 | 群周科技(上海)有限公司 | Sensing data optimization method based on autonomous UAV application |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030191610A1 (en) * | 2002-03-26 | 2003-10-09 | Hai-Wen Chen | Method and system for multi-sensor data fusion using a modified dempster-shafer theory |
CN101441718A (en) * | 2008-12-19 | 2009-05-27 | 福建三元达通讯股份有限公司 | Sensor information fuse device and method |
CN102056192A (en) * | 2010-11-09 | 2011-05-11 | 广东石油化工学院 | WSN (wireless sensor network) intra-network data fusion method based on kernel density estimation and non-parameter belief propagation |
CN102156476A (en) * | 2011-04-14 | 2011-08-17 | 山东大学 | Intelligent space and nurse robot multi-sensor system and information fusion method of intelligent space and nurse robot multi-sensor system |
CN103776654A (en) * | 2014-02-21 | 2014-05-07 | 黑龙江省科学院自动化研究所 | Method for diagnosing faults of multi-sensor information fusion |
CN106815591A (en) * | 2015-11-29 | 2017-06-09 | 西南技术物理研究所 | The raising method of multisensor syste data fusion precision |
CN106840179A (en) * | 2017-03-07 | 2017-06-13 | 中国科学院合肥物质科学研究院 | A kind of intelligent vehicle localization method based on multi-sensor information fusion |
CN107273692A (en) * | 2017-06-21 | 2017-10-20 | 电子科技大学 | A kind of theoretical distributed fusion method of the random set of sensor senses limited ability |
-
2018
- 2018-07-12 CN CN201810765485.1A patent/CN108960334B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030191610A1 (en) * | 2002-03-26 | 2003-10-09 | Hai-Wen Chen | Method and system for multi-sensor data fusion using a modified dempster-shafer theory |
CN101441718A (en) * | 2008-12-19 | 2009-05-27 | 福建三元达通讯股份有限公司 | Sensor information fuse device and method |
CN102056192A (en) * | 2010-11-09 | 2011-05-11 | 广东石油化工学院 | WSN (wireless sensor network) intra-network data fusion method based on kernel density estimation and non-parameter belief propagation |
CN102156476A (en) * | 2011-04-14 | 2011-08-17 | 山东大学 | Intelligent space and nurse robot multi-sensor system and information fusion method of intelligent space and nurse robot multi-sensor system |
CN103776654A (en) * | 2014-02-21 | 2014-05-07 | 黑龙江省科学院自动化研究所 | Method for diagnosing faults of multi-sensor information fusion |
CN106815591A (en) * | 2015-11-29 | 2017-06-09 | 西南技术物理研究所 | The raising method of multisensor syste data fusion precision |
CN106840179A (en) * | 2017-03-07 | 2017-06-13 | 中国科学院合肥物质科学研究院 | A kind of intelligent vehicle localization method based on multi-sensor information fusion |
CN107273692A (en) * | 2017-06-21 | 2017-10-20 | 电子科技大学 | A kind of theoretical distributed fusion method of the random set of sensor senses limited ability |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110362779A (en) * | 2019-06-11 | 2019-10-22 | 南京江岛环境科技研究院有限公司 | A kind of multiple dimensioned environmental data fusion method |
CN110298409A (en) * | 2019-07-03 | 2019-10-01 | 广东电网有限责任公司 | Multi-source data fusion method towards electric power wearable device |
CN111123406A (en) * | 2019-12-25 | 2020-05-08 | 哈尔滨工大雷信科技有限公司 | Handheld meteorological instrument temperature data fitting method |
CN112003891A (en) * | 2020-07-16 | 2020-11-27 | 山东省网联智能车辆产业技术研究院有限公司 | Multi-sensing data fusion method for intelligent networked vehicle controller |
CN113011479A (en) * | 2021-03-05 | 2021-06-22 | 北京中医药大学 | Multi-source information fusion method for intelligent manufacturing |
CN113038411A (en) * | 2021-03-09 | 2021-06-25 | 电子科技大学 | Multi-sensor joint detection method based on decision-level and signal-level data fusion |
CN113038411B (en) * | 2021-03-09 | 2022-04-12 | 电子科技大学 | Multi-sensor joint detection method based on decision-level and signal-level data fusion |
CN114139112A (en) * | 2021-12-07 | 2022-03-04 | 群周科技(上海)有限公司 | Sensing data optimization method based on autonomous UAV application |
Also Published As
Publication number | Publication date |
---|---|
CN108960334B (en) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108960334A (en) | A kind of multi-sensor data Weighted Fusion method | |
CN108985373B (en) | Multi-sensor data weighting fusion method | |
CN102393881B (en) | A kind of high-precision detecting method of real-time many sensing temperatures data fusion | |
CN107679566A (en) | A kind of Bayesian network parameters learning method for merging expert's priori | |
CN111445010B (en) | Distribution network voltage trend early warning method based on evidence theory fusion quantum network | |
CN114567288B (en) | Distribution collaborative nonlinear system state estimation method based on variable decibels | |
CN108303672B (en) | WLAN indoor positioning error correction method and system based on position fingerprint | |
CN110879927B (en) | A Field Modeling Method of Sea Clutter Amplitude Statistical Distribution for Sea Target Detection | |
CN108632764B (en) | A Multi-sensor Selective Measurement Data Fusion Estimation Method | |
CN107832789B (en) | Feature weighting K nearest neighbor fault diagnosis method based on average influence value data transformation | |
CN110852451B (en) | A Recursive Kernel Adaptive Filtering Method Based on Kernel Function | |
CN114970309B (en) | A thermal power equipment status early warning evaluation method | |
CN105115573A (en) | Correction method and device for flood flow forecasting | |
CN106156790B (en) | A Distributed Collaborative Algorithm and Data Fusion Mechanism for Sensor Networks | |
CN116088303B (en) | A Time-varying Recursive Estimation Method for Uncertain Complex Dynamic Network State | |
CN103152820B (en) | A kind of wireless sensor network acoustic target iteration localization method | |
CN110376290A (en) | Acoustic emission source locating method based on multidimensional Density Estimator | |
CN111412391B (en) | Pipe network leakage detection method and system | |
CN112215495B (en) | A calculation method of pollution source contribution degree based on long short-term memory neural network | |
CN108120452B (en) | Filtering method for dynamic data of MEMS gyroscope | |
CN112818495A (en) | Novel dynamic correction method for pipeline pressure drop measurement and calculation algorithm parameters | |
CN108446506B (en) | A Modeling Method of Uncertain System Based on Interval Feedback Neural Network | |
CN111814976A (en) | A method and system for relearning fault error of air conditioning system sensor | |
CN110210724B (en) | Water supply network node water demand checking method capable of coupling multiple prior probability distributions simultaneously | |
CN110146084B (en) | Distributed collaborative navigation filtering method for multi-satellite formation system facing satellite failure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210914 |