CN108959770B - 一种基于区间统计量的卫星推力器可靠性分析方法 - Google Patents

一种基于区间统计量的卫星推力器可靠性分析方法 Download PDF

Info

Publication number
CN108959770B
CN108959770B CN201810713438.2A CN201810713438A CN108959770B CN 108959770 B CN108959770 B CN 108959770B CN 201810713438 A CN201810713438 A CN 201810713438A CN 108959770 B CN108959770 B CN 108959770B
Authority
CN
China
Prior art keywords
confidence
reliability
gamma
given
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810713438.2A
Other languages
English (en)
Other versions
CN108959770A (zh
Inventor
张勇波
崔轶
王俊玲
黄裕梁
王治华
傅惠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201810713438.2A priority Critical patent/CN108959770B/zh
Publication of CN108959770A publication Critical patent/CN108959770A/zh
Application granted granted Critical
Publication of CN108959770B publication Critical patent/CN108959770B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开一种基于区间统计量的卫星推力器可靠性分析方法,通过结合先验信息和开发试验信息,充分挖掘失效时间和截尾时间之间的信息。本发明方法的有益效果是:通过结合先验信息和开发试验信息,充分挖掘失效时间和截尾时间之间的信息,显著提高了卫星推力器可靠性评估的精度。此外,本发明提供的方法是一种针对单个失效定时截尾数据的可靠性分析方法,有效解决了相关领域的难题。该方法易于计算,便于工程应用。

Description

一种基于区间统计量的卫星推力器可靠性分析方法
【技术领域】
本发明属于可靠性分析技术领域,具体涉及一种基于区间统计量的卫星推力器可靠性分析方法。
【背景技术】
卫星推力器是为卫星转移轨道和同步轨道运行期间姿态控制提供动力的重要设备,一旦失效将直接影响到整星的正常使用,这就要求它与卫星有着相同甚至更高的寿命。因此,对卫星推力器进行寿命预测和可靠性评估具有重要意义。
长久以来,可靠性被认为是航天系统的重要属性以及航天器设计与优化过程中的重要度量标准。近些年来,学者们对可靠性开展了大量研究。文献“卫星推力器可靠性评估和寿命预测[J].航空动力学报.2004,19(6):745-748”提出了一种卫星推力器无失效数据可靠性分析方法,该方法能够在高置信水平下给出卫星推力器可靠度和使用寿命的置信下限。文献“通信卫星推力器可靠性评估方法[J].航空动力学报.2011,26(11):2475-2479”提出了一种推力器极少失效数据可靠性评估和寿命预测方法,并建立了不同试验工况下试验信息的相互折算原则,有效解决了通信卫星推力器的高精度可靠性评估难题。根据传统的统计理论,可靠性试验应该具有足够大的样本量以体现分散性。然而,由于卫星推力器的制造和试验成本都非常高,导致工程中可承受的试验子样数量有限,同时受到研制周期紧迫的影响,其寿命试验往往无法长时间进行,试验结果多为无失效数据或极少失效数据。对于这种试验信息量非常有限的情况,可靠性分析难度较大,国内外对其可靠性评估方法的研究较少,给卫星推力器的可靠性评定工作带来许多困难。
【发明内容】
本发明的目的是提供一种基于区间统计量的卫星推力器可靠性分析方法,通过结合先验信息和开发试验信息,充分挖掘失效时间和截尾时间之间的信息,从而显著提高了卫星推力器可靠性评估的精度。此外,该方法是一种针对单个失效定时截尾数据的可靠性分析方法,填补了相关领域的空缺。
本发明一种基于区间统计量的卫星推力器可靠性分析方法,它包含以下四个步骤:
步骤一:给定n个样本进行定时截尾寿命试验,截尾时间为t0。假设只有一个样本在截尾时间前失效,失效时间未知,给定置信度为γ。
步骤二:判断形状参数α是否已知,若已知,执行步骤三;否则,执行步骤四。
步骤三:对于给定的寿命t,可靠度R(t)的置信度为γ的单侧置信下限为
Figure BDA0001716954210000021
式中,f1-γ,4,2n表示F分布的分位点。
可靠度R(t)的置信度为γ的单侧置信上限为
Figure BDA0001716954210000022
式中,fγ,4,2n表示F分布的分位点。
对于给定的可靠度R,可靠寿命tR的置信度为γ的单侧置信下限为
Figure BDA0001716954210000023
可靠寿命tR的置信度为γ的单侧置信上限为
Figure BDA0001716954210000024
步骤四:若形状参数下限α0已知,则有
当给定的寿命t满足
t≤t0 (5)
时,可靠度R(t)的置信度为γ的单侧置信下限为
Figure BDA0001716954210000031
当给定的寿命t满足
t≥t0 (7)
时,可靠度R(t)的置信度为γ的单侧置信上限为
Figure BDA0001716954210000032
当给定的可靠度R满足
Figure BDA0001716954210000033
时,可靠寿命tR的置信度为γ的单侧置信下限为
Figure BDA0001716954210000034
当给定的可靠度R满足
Figure BDA0001716954210000035
时,可靠寿命tR的置信度为γ的单侧置信上限为
Figure BDA0001716954210000036
本发明一种基于区间统计量的卫星推力器可靠性分析方法的有益效果是:通过结合先验信息和开发试验信息,充分挖掘失效时间和截尾时间之间的信息,显著提高了卫星推力器可靠性评估的精度。此外,本发明提供的方法是一种针对单个失效定时截尾数据的可靠性分析方法,有效解决了相关领域的难题。该方法易于计算,便于工程应用。
【附图说明】
图1为本发明方法流程示意图。
图2为卫星推力器结构示意图。
图3为单个失效定时截尾寿命试验示意图。
【具体实施方式】
下面结合附图对本发明作详细说明。
本发明提出了一种基于区间统计量的卫星推力器可靠性分析方法,其流程图如图1所示,它包括以下四个步骤:
步骤一:给定n个样本进行定时截尾寿命试验,截尾时间为t0。假设只有一个样本在截尾时间前失效,失效时间未知,给定置信度为γ。
步骤二:判断形状参数α是否已知,若已知,执行步骤三;否则,执行步骤四。
步骤三:卫星推力器主要由电磁阀、喷注器、推力室(燃烧室和喷管)和热控装置构成,如图2所示。由各组件的结构状态和功能特点可知,热控装置仅仅会影响推力器的性能,不会导致整个推力器失效,而电磁阀、喷注器和推力室这三个组件任意一个发生失效都会导致整个推力器的失效。卫星推力器的失效模式包括:推力室内壁烧穿造成失效(涂层质量问题、混合比偏差造成燃烧室温度过高),电磁阀打不开或关不上造成失效(线圈短路或断路、活动部件失效),焊缝或密封面泄漏造成失效(工艺欠佳、材料原因)等。其中,推力室内壁烧穿是卫星推力器的主要失效模式。
卫星推力器的寿命试验结果多为无失效数据或极少失效数据。未失效数据常常是通过人为中止试验得到的,通常情况下,其中不包含寿命随机分布的正确信息。因此,无法根据未失效数据来确定卫星推力器的具体寿命分布模型。本发明从卫星推力器的失效机理入手,结合影响其寿命的主要组件的寿命分布模型,来确定卫星推力器寿命分布模型。
首先,由于卫星推力器中任何一个薄弱部位失效都将导致整个推力器的失效,这符合由“最弱环模型”推导出来的Weibull分布。大量的实践说明,对于由某一局部失效或故障导致全局机能停止运行的产品,其寿命均服从或近似服从Weibull分布。
其次,推力室的可靠性是影响卫星推力器可靠性的主要因素。而推力室的可靠性主要取决于其涂层的可靠性,因此推力室涂层的寿命分布是卫星推力器寿命分布的决定性因素。对推力室涂层寿命试验数据进行寿命分布检验发现,涂层在不同试验条件下的寿命对Weibull分布都可以通过检验。
综上所述,确定卫星推力器寿命分布模型为Weibull分布,即其在脉冲循环和稳态连续工作条件下的寿命都服从Weibull分布,寿命分布函数为
Figure BDA0001716954210000051
式中α>0,称为形状参数;β>0,称为尺度参数或特征寿命;t表示寿命。
现对n个样本进行定时截尾寿命试验,截尾时间为t0。假设只有一个样本在截尾时间前失效,失效时间未知(记为t1),如图3所示。
参考如下引自文献“区间统计量及其分布[J].机械强度.2005,27(6):752-757”的定义:
设T1<T2<...<Tn是来自分布F(t)的大小为n的样本的顺序统计量,若Ti *满足下式
Ti<Ti *<Ti+1 i=0,1,...,n (14)
则称Ti *为第i个区间统计量,其中T0=-∞,Tn+1=+∞。
设Ti *为第i个区间统计量,则称Pi *=F(Ti *)为第i个区间秩统计量,i=0,1,...,n。
因此,失效时间t1可以被视作第1个顺序统计量的观测值,而截尾时间t0可以被视作第1个区间统计量的观测值。
第i个区间秩统计量Pi *的置信度为γ的单侧置信上限为
Figure BDA0001716954210000052
式中,f1-γ,2(i+1),2(n-i+1)表示F分布的分位点。
第i个区间秩统计量Pi *的置信度为γ的单侧置信下限为
Figure BDA0001716954210000053
式中,fγ,2(i+1),2(n-i+1)表示F分布的分位点。
记截尾时间t0时的可靠度为
Figure BDA0001716954210000061
的置信度为γ的单侧置信下限为
Figure BDA0001716954210000062
Figure BDA0001716954210000063
的置信度为γ的单侧置信上限为
Figure BDA0001716954210000064
对于Weibull分布来说,
Figure BDA0001716954210000065
可表示为
Figure BDA0001716954210000066
因此,有
Figure BDA0001716954210000067
将式(17)和式(18)代入上式,有
Figure BDA0001716954210000068
Figure BDA0001716954210000069
因此,β的置信度为γ的单侧置信下限和上限分别为
Figure BDA00017169542100000610
相应地,可靠度R(t)的置信度为γ的单侧置信下限和上限分别为
Figure BDA00017169542100000611
Figure BDA00017169542100000612
对于Weibull分布来说,可靠寿命可表示为
tR=β(-ln R)1/α (26)
可靠寿命tR的置信度为γ的单侧置信下限和上限分别为
Figure BDA0001716954210000071
将式(23)代入上式,有
Figure BDA0001716954210000072
Figure BDA0001716954210000073
综上所述,有
对于给定的寿命t,可靠度R(t)的置信度为γ的单侧置信下限为
Figure BDA0001716954210000074
可靠度R(t)的置信度为γ的单侧置信上限为
Figure BDA0001716954210000075
对于给定的可靠度R,可靠寿命tR的置信度为γ的单侧置信下限为
Figure BDA0001716954210000076
可靠寿命tR的置信度为γ的单侧置信上限为
Figure BDA0001716954210000077
步骤四:在工程实际中,形状参数α通常是未知的,因此无法根据式(24)和式(25)求得可靠度置信下限和上限,但在许多情况下,可以知道α大于等于某一常数α0,即形状参数下限α0已知。可以证明,当给定的寿命t满足
t≤t0 (34)
时,可靠度R(t)的置信度为γ的单侧置信下限为
Figure BDA0001716954210000081
而当给定的寿命t满足
t≥t0 (36)
时,可靠度R(t)的置信度为γ的单侧置信上限为
Figure BDA0001716954210000082
同样,虽然在工程上形状参数α通常是未知的,但对于已知的常数α0(α≥α0),可以证明,当给定的可靠度R满足
Figure BDA0001716954210000083
时,可靠寿命tR的置信度为γ的单侧置信下限为
Figure BDA0001716954210000084
而当给定的可靠度R满足
Figure BDA0001716954210000085
时,可靠寿命tR的置信度为γ的单侧置信上限为
Figure BDA0001716954210000086
综上所述,若形状参数下限α0已知,则有
当给定的寿命t满足
t≤t0 (42)
时,可靠度R(t)的置信度为γ的单侧置信下限为
Figure BDA0001716954210000091
当给定的寿命t满足
t≥t0 (44)
时,可靠度R(t)的置信度为γ的单侧置信上限为
Figure BDA0001716954210000092
当给定的可靠度R满足
Figure BDA0001716954210000093
时,可靠寿命tR的置信度为γ的单侧置信下限为
Figure BDA0001716954210000094
当给定的可靠度R满足
Figure BDA0001716954210000095
时,可靠寿命tR的置信度为γ的单侧置信上限为
Figure BDA0001716954210000096
运用本发明提供的方法,对某卫星推力器进行可靠性评估得:同步轨道运行时,对应于脉冲循环工作45万次的可靠度为0.96809(置信度50%);转移轨道运行时,对应于稳态连续工作20小时的可靠度为0.97556(置信度50%)。

Claims (1)

1.一种基于区间统计量的卫星推力器可靠性分析方法,其特征在于:该方法包括以下四个步骤:
步骤一:给定n个样本进行定时截尾寿命试验,截尾时间为t0;假设只有一个样本在截尾时间前失效,失效时间未知,给定置信度为γ;
步骤二:判断Weibull分布中的形状参数α是否已知,若已知,执行步骤三;否则,执行步骤四;
步骤三:对于给定的寿命t,可靠度R(t)的置信度为γ的单侧置信下限为
Figure FDA0003351031070000011
式中,f1-γ,4,2n表示F分布的分位点;F分布为寿命分布函数;
可靠度R(t)的置信度为γ的单侧置信上限为
Figure FDA0003351031070000012
式中,fγ,4,2n表示F分布的分位点;
对于给定的可靠度R,可靠寿命tR的置信度为γ的单侧置信下限为
Figure FDA0003351031070000013
可靠寿命tR的置信度为γ的单侧置信上限为
Figure FDA0003351031070000014
步骤四:若形状参数下限α0已知,则有
当给定的寿命t满足
t≤t0 (5)
时,可靠度R(t)的置信度为γ的单侧置信下限为
Figure FDA0003351031070000021
当给定的寿命t满足
t≥t0 (7)
时,可靠度R(t)的置信度为γ的单侧置信上限为
Figure FDA0003351031070000022
当给定的可靠度R满足
Figure FDA0003351031070000023
时,可靠寿命tR的置信度为γ的单侧置信下限为
Figure FDA0003351031070000024
当给定的可靠度R满足
Figure FDA0003351031070000025
时,可靠寿命tR的置信度为γ的单侧置信上限为
Figure FDA0003351031070000026
CN201810713438.2A 2018-07-03 2018-07-03 一种基于区间统计量的卫星推力器可靠性分析方法 Active CN108959770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810713438.2A CN108959770B (zh) 2018-07-03 2018-07-03 一种基于区间统计量的卫星推力器可靠性分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810713438.2A CN108959770B (zh) 2018-07-03 2018-07-03 一种基于区间统计量的卫星推力器可靠性分析方法

Publications (2)

Publication Number Publication Date
CN108959770A CN108959770A (zh) 2018-12-07
CN108959770B true CN108959770B (zh) 2022-04-12

Family

ID=64485119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810713438.2A Active CN108959770B (zh) 2018-07-03 2018-07-03 一种基于区间统计量的卫星推力器可靠性分析方法

Country Status (1)

Country Link
CN (1) CN108959770B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580118B (zh) * 2022-03-25 2023-12-15 兰州空间技术物理研究所 一种离子推力器寿命及可靠性定量评估方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234093B2 (en) * 2006-12-22 2012-07-31 The Boeing Company Computational method for load enhancement factors
CN107743736B (zh) * 2010-04-29 2014-01-22 兰州空间技术物理研究所 混合厚膜dc-dc变换器加速寿命试验方法和可靠性评估方法
CN103995970A (zh) * 2014-05-26 2014-08-20 北京航空航天大学 一种离子推力器极小子样可靠性评估方法
CN104680005A (zh) * 2015-02-11 2015-06-03 北京航空航天大学 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN106896326A (zh) * 2017-03-08 2017-06-27 中国人民解放军91388部队 一种锂亚硫酰氯电池储存可靠性验证方法
CN107657145A (zh) * 2017-09-15 2018-02-02 电子科技大学 Weibull分布无失效数据可靠性指标估计方法
CN107966311A (zh) * 2017-11-24 2018-04-27 中国空间技术研究院 基于加速栅数据的极小子样离子推力器可靠度确定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100205108A1 (en) * 2009-02-11 2010-08-12 Mun Johnathan C Credit and market risk evaluation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234093B2 (en) * 2006-12-22 2012-07-31 The Boeing Company Computational method for load enhancement factors
CN107743736B (zh) * 2010-04-29 2014-01-22 兰州空间技术物理研究所 混合厚膜dc-dc变换器加速寿命试验方法和可靠性评估方法
CN103995970A (zh) * 2014-05-26 2014-08-20 北京航空航天大学 一种离子推力器极小子样可靠性评估方法
CN104680005A (zh) * 2015-02-11 2015-06-03 北京航空航天大学 基于加速因子可行域选择的非平行贮存寿命试验评估方法
CN106896326A (zh) * 2017-03-08 2017-06-27 中国人民解放军91388部队 一种锂亚硫酰氯电池储存可靠性验证方法
CN107657145A (zh) * 2017-09-15 2018-02-02 电子科技大学 Weibull分布无失效数据可靠性指标估计方法
CN107966311A (zh) * 2017-11-24 2018-04-27 中国空间技术研究院 基于加速栅数据的极小子样离子推力器可靠度确定方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Limited failure-censored life test for the Weibull distribution;Jong-Wuu Wu et al;《 IEEE Transactions on Reliability》;20010331;第50卷(第1期);全文 *
基于BAYES方法的固体火箭发动机可靠性评估;李静;《中国优秀硕士学位论文全文数据库电子期刊 工程科技II辑》;20100515;第2010年卷(第5期);全文 *
无失效数据的可靠性评估和寿命预测;傅惠民 等;《机械强度》;20041231;第26卷(第3期);全文 *
汽车零部件可靠性评估的小样本方法;陈乐心;《中国优秀硕士学位论文全文数据库电子期刊 工程科技II辑》;20090615;第2009年卷(第6期);全文 *
离子推力器极少数据可靠性评估方法;李军星 等;《航空动力学报》;20151031;第30卷(第10期);全文 *
通信卫星推力器可靠性评估方法;毛晓芳 等;《航空动力学报》;20111130;第26卷(第11期);全文 *

Also Published As

Publication number Publication date
CN108959770A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108959770B (zh) 一种基于区间统计量的卫星推力器可靠性分析方法
Wang Application and development prospect of digital twin technology in aerospace
CN110579962B (zh) 基于神经网络的涡扇发动机推力预测方法及控制器
Samara et al. Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model
CN106291602B (zh) 一种导航卫星的系统效能确定方法
CN106202776B (zh) 一种运载火箭结构机构产品可靠性评估方法
CN112489734A (zh) 一种内燃机替代燃料二甲醚燃烧反应机理模型的简化方法
CN112231948B (zh) 一种铝合金环件热振复合残余应力调控仿真方法
Manson Future directions for low cycle fatigue
CN113432816B (zh) 一种航空发动机转子联接刚度不均匀度测试与控制方法
CN108982206B (zh) 一种应变控制的拉-扭热机械疲劳试验方法
Gregory Computerized preliminary design at the early stages of vehicle definition
Prosser et al. Evaluation and Improvement of Robustness, Speed, and Accuracy of the COFFE CFD Solver
Harris et al. Civil turbofan propulsion system integration studies using powered testing techniques at ARA, Bedford
CN113408672B (zh) 一种用于飞行器模态试验的关键参数识别方法
CN109909413B (zh) 一种基于热加工图的锻模速度曲线迭代优化方法
Du et al. A prediction method of LEO satellite orbit control effect based on multiple regression analysis model
Yin et al. Research on Virtual Assembly Based on VR Technology [J]
Fang et al. Single-loop method for reliability-based design optimization of turbine blades with poor information
CN112631146B (zh) 基于串级rladrc的高空台飞行高度模拟控制方法
Sun et al. Cost-Effectiveness analysis model for civil aircraft flight tests
Zhang et al. A Reusable Software Architecture for Spacecraft Control System
Wu Nonlinear dynamic performance model of mixed-flow turbofan engine in steady state based on characteristic diagram correction
Garba et al. Evaluation of a cost-effective loads approach
CN115035963A (zh) 一种高温合金的蠕变曲线预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant