CN108955774A - 用于海水盐度和温度同时测量的反射式光纤传感器 - Google Patents
用于海水盐度和温度同时测量的反射式光纤传感器 Download PDFInfo
- Publication number
- CN108955774A CN108955774A CN201811029113.9A CN201811029113A CN108955774A CN 108955774 A CN108955774 A CN 108955774A CN 201811029113 A CN201811029113 A CN 201811029113A CN 108955774 A CN108955774 A CN 108955774A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- temperature
- type optical
- single mode
- mode optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 65
- 239000013535 sea water Substances 0.000 title claims abstract description 42
- 239000000835 fiber Substances 0.000 claims abstract description 28
- 239000012528 membrane Substances 0.000 claims abstract description 17
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 150000002367 halogens Chemical class 0.000 claims abstract description 9
- 238000003466 welding Methods 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 12
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 11
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 11
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims description 11
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical group C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims description 10
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 6
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 6
- 229920005573 silicon-containing polymer Polymers 0.000 claims description 6
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 22
- 230000035945 sensitivity Effects 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 238000009529 body temperature measurement Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 polydimethylsiloxanes Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000218195 Lauraceae Species 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 235000005212 Terminalia tomentosa Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
本发明属于光纤传感技术领域,公开了用于海水盐度和温度同时测量的反射式光纤传感器。该传感器包括卤素灯光源、Y型光纤、传感单元、光谱仪和上位机,卤素灯光源经Y型光纤的一分支与传感单元连接,传感单元经Y型光纤的另一分支与光谱仪连接,光谱仪与上位机连接,所述的传感单元由多模光纤和单模光纤级联而成,其中,多模光纤与单模光纤同轴熔接,单模光纤外表面及端面镀有金膜,金膜外周从熔接端始沿单模光纤轴向到单模光纤一半长度位置,镀有温度敏感膜。该发明不仅制备工艺简单、成本低、结构稳定,而且通过同时测量海水盐度和温度,可有效降低温度对海水盐度测量精度的影响。
Description
技术领域
本发明属于光纤传感技术领域,涉及一种用于海水盐度和温度同时测量的反射式光纤传感器。
背景技术
海水盐度和温度是最基本的海水状态方程参数,对气候模型来说至关重要,影响着海洋里的生物生存,对气候调节也有着特殊的作用,同时也对全球海洋环境变化、海洋军事活动、海洋交通运输、海洋生产力及渔业生产有重要影响[Nguyen L V,Vasiliev M,Alameh K.Three-wave fiber Fabry–Pérot interferometer for simultaneousmeasurement of temperature and water salinity of seawater[J].IEEEPhoton.Technol.Lett.,2011,23(7):450-452.]。光纤传感技术是一种将光作为载体,光纤作为介质,用来感知及传播外界环境变化的新型技术。当光波在光纤中传输时,体现光波的特征参量会随着外界环境的变化而发生相应的改变,通过观察光波的某一特征参量与外界变量的变化,可以得到与其对应的关系,实现对待测参量的测量[赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007,36-37]。
光纤传感器测量海水盐度通常采用测量海水折射率的方法,利用海水折射率与海水盐度的对应关系,实现海水盐度测量。光纤折射率传感器主要分为干涉型光纤传感器和SPR型光纤传感器。前者是根据光的干涉原理来测量折射率的变化[Sun G,Wei C.In-lineMach-Zehnder interferometric refractive index sensor based on concatenatingtwo single-mode fiber half-tapers[C]//Optical Communications and Networks(ICOCN),2017 16th International Conference on.IEEE,2017:1-3.],但是该类传感器折射率测量灵敏度偏低。而且其测量性能通常受到其他环境因素变化的干扰,一般情况下外界温度的变化会导致光的干涉光谱发生移动,进而对折射率的测量产生影响[卞继城,郎婷婷,孔文,金嘉俊.腰椎放大细芯光纤传感器实现折射率/温度同时测量的研究[J].光电子·激光,2016,(04):353-358.]。SPR型光纤传感器是近些年来众多学者研究的热点[Gupta B D,Kant R.Recent advances in surface plasmon resonance based fiberoptic chemical and biosensors utilizing bulk and nanostructures[J].Optics&Laser Technology,2018,101:144-161.]。该类传感器利用折射率变化导致SPR谐振波长发生移动的特性实现折射率的测量,并且相对于干涉型传感器灵敏度得到了提高。但这种传感器的测量信号同样受环境温度变化的影响。为了避免温度的干扰,在测量折射率的同时需要实现温度的测量。光纤测量温度的方法一般分为光纤结构测温和敏感膜材料测温,前者是利用光纤自身特性随温度变化来实现温度测量。2016年,Zhao Yong等人[Hu T,ZhaoY,Song A.Fiber optic SPR sensor for refractive index and temperaturemeasurement based on MMF-FBG-MMF structure[J].Sensors and Actuators B:Chemical,2016,237:521-525.]将FBG与多模光纤相结合实现了折射率和温度的同时测量。但这种结构的传感器的温度灵敏度过低,很难应用在实际测量。利用敏感膜材料来实现温度测量是一种近些年来被广泛研究的光纤测量温度的方法。2018年,WANG Y等人[Wang Y,Huang Q,Zhu W,et al.Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film[J].Optics Express,2018,26(2):1910-1917.]提出基于光子晶体光纤结构和PDMS的光纤温度传感器,测量灵敏度达到-1.51nm/℃,而且测量稳定性较好,但是这种传感器制作复杂,不能用于远距离传输。综上,基于光纤的折射率测量传感器目前仍存在受到温度干扰的问题。最为关键的是,当前的对于折射率和温度同时测量的传感器的性能仍没有达到理想的程度。
发明内容
本发明的目的在于克服目前基于光纤的海水盐度测量传感器受温度影响的不足之处,提出一种制备工艺简单、成本低、结构稳定的用于海水盐度和温度同时测量的反射式光纤传感器。
为了达到上述目的,本发明提出一种用于海水盐度和温度同时测量的反射式光纤传感器,包括卤素灯光源、Y型光纤、传感单元、光谱仪和上位机,卤素灯光源经Y型光纤的一分支与传感单元连接,传感单元经Y型光纤的另一分支与光谱仪连接,光谱仪与上位机连接,所述的传感单元由多模光纤和单模光纤级联而成,其中,多模光纤与单模光纤同轴熔接,单模光纤外表面及端面镀有金膜,金膜外周从熔接端始沿单模光纤轴向到单模光纤一半长度位置,镀有温度敏感膜。
卤素灯光源发出的光经Y型光纤传输至多模光纤后进入单模光纤中,在金膜上激发出表面等离子体共振。由于金膜外一半长度被温度敏感膜覆盖,输出光谱将会产生两个谐振波长不同的谐振谷,最后,经过单模光纤端面反射回来的光信号经由Y型光纤进入光谱仪,并将数据传输至上位机来观察输出图谱的变化;当海水盐度变化时,会改变金膜外介质的折射率,使盐度对应的谐振谷的谐振波长发生移动,当外界温度发生变化时,不仅会改变温度敏感膜的折射率进而使温度对应的谐振谷的谐振波长发生移动,还会使盐度对应的谐振谷的谐振波长发生移动,因此,利用双波长矩阵的方法,通过观测两个谐振谷谐振波长的移动量即可反推出海水盐度温度。
进一步地,上述单模光纤长度为8~12mm,金膜厚度为40nm~45nm。
进一步地,上述聚二甲基硅氧烷膜的制备采用聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡三种试剂混合制成,其中聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡的质量比为10:1:0.7。
从上述技术方案可以看出,本发明具有以下有益效果:
1)本发明提出的这种用于海水盐度和温度同时测量的反射式光纤传感器,继承了传统光纤传感器所具有的本质安全、抗电磁干扰、耐高温高压、耐腐蚀等优点;
2)本发明提出的这种用于海水盐度和温度同时测量的反射式光纤传感器,不仅制备工艺简单、成本低、结构稳定,而且通过同时测量海水盐度和温度,可有效降低温度对海水盐度测量精度的影响。
附图说明
图1为本发明提供的光纤传感器结构示意图。
图2为传感器海水盐度测量光谱曲线。
图3为传感器海水盐度测量灵敏度曲线。
图4为传感器海水温度测量光谱曲线。
图5为传感器海水温度测量灵敏度曲线。
图中:1卤素灯光源;2Y型光纤;21多模光纤;22单模光纤;23端面;24聚二甲基硅氧烷膜;25金膜;3传感单元;4光谱仪;5上位机。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明的具体结构、原理以及工作过程作进一步的详细说明。
如图1所示为本发明提出的一种用于海水盐度和温度同时测量的反射式光纤传感器。其工作过程为:卤素灯光源1发出的光首先经Y型光纤2传输至多模光纤21后进入单模光纤22,然后在单模光纤22端面处23反射回来进入Y型光纤2传输至光谱仪4进行光谱移动量的监测。其中,多模光纤21、单模光纤22之间通过熔接机进行熔接,单模光纤22的长度为10mm,并且单模光纤外镀有40nm金膜25,金膜25外距多模光纤21的一半长度区域镀有聚二甲基硅氧烷膜24,聚二甲基硅氧烷膜24的制备采用聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡三种试剂混合制成。其中聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡的质量比为10:1:0.7。
当光从多模光纤21传输到单模光纤22时,由于多模光纤21的纤芯直径与单模光纤22的纤芯直径差距较大,部分光会耦合进入包层中进行传输,这时在包层中传输的一部分光会泄漏到包层外的金膜25中,发生表面等离子体共振,使输出光谱产生能量损失导致输出光谱在特定波长处产生谐振谷,当外界折射率发生移动时,这个谐振谷的谐振波长会发生移动,进而实现海水盐度的测量,当金膜25外一半长度被聚二甲基硅氧烷膜24覆盖以后,金膜25外的介质一部分就变为了聚二甲基硅氧烷膜24,此时输出光谱就会产生两个谐振谷,分别对应海水盐度和温度的变化。聚二甲基硅氧烷膜24的折射率会随着温度的变化而变化,这就实现了海水盐度温度同时测量。本发明中,将聚二甲基硅氧烷膜24镀在金膜25一半长度外,当周围海水温度保持不变而海水盐度发生变化时,会导致海水的折射率发生变化,进而使得盐度对应的谐振谷的谐振波长λs发生移动,如图2所示。而当海水盐度保持不变而海水温度发生改变时,不仅会改变聚二甲基硅氧烷膜24的折射率进而使温度对应的谐振谷的谐振波长λT发生移动,还会使盐度对应的谐振谷的谐振波长λs发生移动,如图3所示。结合双波长矩阵方法,可得:
其中,Δλs、ΔλT分别为盐度对应谐振谷谐振波长的移动量和温度对应谐振谷谐振波长移动量的移动量;Δs、ΔT分别为海水盐度的变化量和海水温度的变化量。a为海水盐度变化时盐度对应谐振谷谐振波长的移动灵敏度系数;b、d分别为外界温度变化时盐度对应谐振谷谐振波长的移动灵敏度系数和温度对应谐振谷谐振波长的移动灵敏度系数。本发明中,当传感器探头的结构参数固定时,a、b、d均为固定值,传感器的海水盐度测量灵敏度和海水温度测量灵敏度曲线分别如图4和图5所示,此时传感器的双波长矩阵为:
因此,由式(2)可得,通过观察盐度对应谐振谷谐振波长的移动量和温度对应谐振谷谐振波长移动量即可反推出海水盐度和温度大小,不仅可解决温度对海水盐度测量的交叉敏感问题,还可以实现海水盐度和温度同时监测,为海水浓度的高精度测量提供了可能。
Claims (4)
1.用于海水盐度和温度同时测量的反射式光纤传感器,包括卤素灯光源(1)、Y型光纤(2)、传感单元(3)、光谱仪(4)和上位机(5),卤素灯光源(1)经Y型光纤(2)的一分支与传感单元(3)连接,传感单元(3)经Y型光纤(2)的另一分支与光谱仪(4)连接,光谱仪(4)与上位机(5)连接,其特征在于:所述的传感单元(3)由多模光纤(21)和单模光纤(22)级联而成,其中,多模光纤(21)与单模光纤(22)同轴熔接,单模光纤外表面及端面(23)镀有金膜,金膜外周从熔接端始沿单模光纤轴向到单模光纤一半长度位置,镀有温度敏感膜。
2.根据权利要求1所述的用于海水盐度和温度同时测量的反射式光纤传感器,其特征在于,单模光纤长度为8~12mm,金膜厚度为40nm~45nm。
3.根据权利要求1或2所述的用于海水盐度和温度同时测量的反射式光纤传感器,其特征在于,温度敏感膜为聚二甲基硅氧烷膜。
4.根据权利要求3所述的用于海水盐度和温度同时测量的反射式光纤传感器,其特征在于,聚二甲基硅氧烷膜的制备采用聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡三种试剂混合制成,其中聚二甲基硅氧烷、正硅酸乙酯和二月桂酸二丁基锡的质量比为10:1:0.7。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811029113.9A CN108955774A (zh) | 2018-09-05 | 2018-09-05 | 用于海水盐度和温度同时测量的反射式光纤传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811029113.9A CN108955774A (zh) | 2018-09-05 | 2018-09-05 | 用于海水盐度和温度同时测量的反射式光纤传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108955774A true CN108955774A (zh) | 2018-12-07 |
Family
ID=64475794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811029113.9A Pending CN108955774A (zh) | 2018-09-05 | 2018-09-05 | 用于海水盐度和温度同时测量的反射式光纤传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108955774A (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109557055A (zh) * | 2018-12-09 | 2019-04-02 | 东北大学 | 一种新型硝酸盐检测传感器探头及其制备方法 |
CN109764976A (zh) * | 2019-03-08 | 2019-05-17 | 东北大学 | 一种同时测量海水温盐深的光纤传感器 |
CN110108669A (zh) * | 2019-05-16 | 2019-08-09 | 东北大学 | 一种同时测量海水盐度和温度的双spr效应光纤传感器及其方法 |
CN110108384A (zh) * | 2019-05-16 | 2019-08-09 | 东北大学 | 基于空芯光纤表面等离子共振的在纤式温度传感器及检测方法 |
CN110864742A (zh) * | 2019-12-02 | 2020-03-06 | 中国人民解放军国防科技大学 | 基于微纳光纤耦合器干涉仪的全光纤温盐深传感器 |
CN112284567A (zh) * | 2020-10-19 | 2021-01-29 | 东北大学 | 测量海水温盐的级联孤子自频移全光纤传感系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758027A (zh) * | 2005-10-27 | 2006-04-12 | 上海交通大学 | 测量气液体温度、吸收、浓度、组分和折射率变化的方法 |
CN105092536A (zh) * | 2015-08-19 | 2015-11-25 | 武汉理工大学 | 一种多模-单模结构光纤表面等离子体共振传感器及其检测方法 |
CN106525776A (zh) * | 2016-12-14 | 2017-03-22 | 中国计量大学 | 一种基于纤芯不匹配光纤的表面等离子体共振氢气传感器 |
CN207318351U (zh) * | 2017-09-28 | 2018-05-04 | 浙江师范大学 | 基于spr传感器的溶液浓度检测系统 |
-
2018
- 2018-09-05 CN CN201811029113.9A patent/CN108955774A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758027A (zh) * | 2005-10-27 | 2006-04-12 | 上海交通大学 | 测量气液体温度、吸收、浓度、组分和折射率变化的方法 |
CN105092536A (zh) * | 2015-08-19 | 2015-11-25 | 武汉理工大学 | 一种多模-单模结构光纤表面等离子体共振传感器及其检测方法 |
CN106525776A (zh) * | 2016-12-14 | 2017-03-22 | 中国计量大学 | 一种基于纤芯不匹配光纤的表面等离子体共振氢气传感器 |
CN207318351U (zh) * | 2017-09-28 | 2018-05-04 | 浙江师范大学 | 基于spr传感器的溶液浓度检测系统 |
Non-Patent Citations (3)
Title |
---|
曾捷 等: "准分布式光纤表面等离子体波传感器", 《中国激光》 * |
曾捷 等: "用于温度测试的光学SPR传感器特性研究", 《仪器仪表学报》 * |
陈哲: "多模-单模结构光纤表面等离子体共振传感器", 《万方学位论文库》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109557055A (zh) * | 2018-12-09 | 2019-04-02 | 东北大学 | 一种新型硝酸盐检测传感器探头及其制备方法 |
CN109764976A (zh) * | 2019-03-08 | 2019-05-17 | 东北大学 | 一种同时测量海水温盐深的光纤传感器 |
CN110108669A (zh) * | 2019-05-16 | 2019-08-09 | 东北大学 | 一种同时测量海水盐度和温度的双spr效应光纤传感器及其方法 |
CN110108384A (zh) * | 2019-05-16 | 2019-08-09 | 东北大学 | 基于空芯光纤表面等离子共振的在纤式温度传感器及检测方法 |
CN110864742A (zh) * | 2019-12-02 | 2020-03-06 | 中国人民解放军国防科技大学 | 基于微纳光纤耦合器干涉仪的全光纤温盐深传感器 |
CN110864742B (zh) * | 2019-12-02 | 2021-11-12 | 中国人民解放军国防科技大学 | 基于微纳光纤耦合器干涉仪的全光纤温盐深传感器 |
CN112284567A (zh) * | 2020-10-19 | 2021-01-29 | 东北大学 | 测量海水温盐的级联孤子自频移全光纤传感系统及方法 |
CN112284567B (zh) * | 2020-10-19 | 2021-09-21 | 东北大学 | 测量海水温盐的级联孤子自频移全光纤传感系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | High-sensitivity SPR temperature sensor based on hollow-core fiber | |
CN108955774A (zh) | 用于海水盐度和温度同时测量的反射式光纤传感器 | |
Wang et al. | Advances in optical fiber sensors based on multimode interference (MMI): a review | |
Zhao et al. | Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements | |
Tan et al. | Carbon-nanotube-deposited long period fiber grating for continuous refractive index sensor applications | |
Wang et al. | High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler | |
Gouveia et al. | Fabry–Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement | |
CN107101951A (zh) | 一种用于氢气浓度和温度同时测量的光纤传感器 | |
CN103852191B (zh) | 一种折射率不敏感的光纤温度传感器 | |
Li et al. | Numerical analysis of dual-parameter optical fiber sensor with large measurement range based on surface plasmon resonance | |
Lu et al. | Simultaneous measurement of seawater temperature and pressure with polydimethylsiloxane packaged optical microfiber coupler combined Sagnac loop | |
Tong et al. | Surface plasmon resonance optical fiber sensor for relative humidity detection without temperature crosstalk | |
CN110108669A (zh) | 一种同时测量海水盐度和温度的双spr效应光纤传感器及其方法 | |
Li et al. | Simultaneous measurement of RI and temperature based on a composite interferometer | |
Fernandez-Valdivielso et al. | Experimental study of a thermochromic material based optical fiber sensor for monitoring the temperature of the water in several applications | |
CN105806414A (zh) | 光纤温湿度传感器、温湿度传感系统及温湿度解调方法 | |
Brientin et al. | Numerical and experimental study of a multimode optical fiber sensor based on Fresnel reflection at the fiber tip for refractive index measurement | |
Liao et al. | Dual-path Mach—Zehnder interferometers with unequal geometrical path length for ultrasensitive refractive index sensing | |
Chauhan et al. | Hydrothermally grown ZnO nanorods based optical fiber sensor for salinity detection | |
Zhai et al. | Study on high sensitivity measurement of seawater temperature based on bow tie fiber | |
Tong et al. | An optical fiber sensor for salinity and temperature simultaneous detection based on dual SPR effect | |
Lin et al. | Optical fiber sensor for temperature and salinity based on femtosecond laser-inscribed semi-open cavity and waveguide | |
Xue et al. | High sensitivity composite FP cavity fiber optic sensor based on MEMS for temperature and salinity measurement of seawater | |
Wang et al. | Side-opened suspended core fiber-based surface plasmon resonance sensor | |
CN108981956A (zh) | 黄铜管封装型光纤spr温度传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181207 |