CN108953004B - 一种大推力火箭发动机侧向力试验预估方法 - Google Patents

一种大推力火箭发动机侧向力试验预估方法 Download PDF

Info

Publication number
CN108953004B
CN108953004B CN201810255313.XA CN201810255313A CN108953004B CN 108953004 B CN108953004 B CN 108953004B CN 201810255313 A CN201810255313 A CN 201810255313A CN 108953004 B CN108953004 B CN 108953004B
Authority
CN
China
Prior art keywords
chevron
foil gauge
latch plate
lateral force
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810255313.XA
Other languages
English (en)
Other versions
CN108953004A (zh
Inventor
刘洋
李大海
沈继彬
郭立
陈雨
董红兵
雷鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Propulsion Testing Technique Institute
Original Assignee
Xian Aerospace Propulsion Testing Technique Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Propulsion Testing Technique Institute filed Critical Xian Aerospace Propulsion Testing Technique Institute
Priority to CN201810255313.XA priority Critical patent/CN108953004B/zh
Publication of CN108953004A publication Critical patent/CN108953004A/zh
Application granted granted Critical
Publication of CN108953004B publication Critical patent/CN108953004B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)

Abstract

本发明涉及一种大推力火箭发动机侧向力试验预估方法。解决现有大推力液体火箭发动机的侧向力未知,且不能通过理论分析等方式确定侧向力的大致范围的问题。该方法包括:1)对山形弹簧板进行有限元仿真计算,2)利用山形弹簧板结构有限元仿真计算的结果,得到单个山形弹簧板拉压力F与应变ε之间的线性关系;得到山形弹簧板弯矩M与应变ε之间的线性关系,得到k1、k2;3)对山形弹簧板上的应变片粘贴位置进行选择;4)测量四块山形弹簧板上八个应变片的应变值,利用所获得的拉压力、弯矩与应变值的对应线性关系,得到山形弹簧板所受X、Y方向的拉压力及弯矩值;5)通过矢量求和的方式,确定侧向力的大小及方向。

Description

一种大推力火箭发动机侧向力试验预估方法
技术领域
本发明涉及火箭发动机试验领域,具体涉及一种大推力火箭发动机侧向力试验预估方法。
背景技术
由于火箭发动机自身结构、燃气流动作用等原因,会在发动机主推力的基础上,产生一定的侧向力,该侧向力会对火箭的运行轨迹产生影响,鉴于以上原因,需要测量发动机点火时侧向力的大小。
现有发动机侧向力测量主要通过在发动机试车时,加装三向推力测量系统实现,该方法在测量发动机轴向推力的同时,能够测量发动机侧向推力的大小,例如:郑健,周长省,刘锐.固体火箭发动机六分力试验台应用综述[J].江苏航空.2010增刊:5-8;采用该方法可实现发动机侧向力的精确测量,但其解耦过程复杂,同时在购买及安装传感器前,需要确定传感器的量程能否满足试验测量的要求。
此外,也可采用将轴向推力传感器直接换成三向力传感器的方式来实现侧向力测量,例如:苗德华,田临林.新型三向力传感器弹性元件的设计[J].力学与实践.1996.18(6):23-25;但是此种方式采用的三向力传感器结构复杂,造价较高;同时在购买及安装传感器前,同样需要确定传感器的量程能否试验测量的要求。
以上两种方法均可实现小推力发动机侧向力的精确测量,精确测量前已经通过理论分析等方式,确定了侧向力的大致范围,因此可通过分析结果对传感器的量程进行选择,同时对测力支架的结构进行设计;但是,大推力液体火箭发动机的侧向力是未知的,不能通过理论分析等方式确定侧向力的大致范围,因此需要通过有效的手段,确定发动机侧向力的测量范围,以方便进行传感器的选择及支撑结构的设计,即需要一种发动机侧向力的预估方法。
发明内容
本发明目的是解决现有大推力液体火箭发动机的侧向力未知,且不能通过理论分析等方式确定侧向力大致范围的问题,提供了一种大推力液体火箭发动机侧向力的试验预估方法,该方法能够采用较为简单的手段,实现大推力液体火箭发动机侧向力的试验预估,利用该方法获得的发动机侧向力试验预估值,能够为发动机三向力精确测量系统中,侧向力传感器的选型及支撑结构的设计,提供指导依据,且该发明不需要改变试车台原有结构。
本发明的技术方案是:
一种大推力火箭发动机侧向力试验预估方法,包括以下步骤:
1)对山形弹簧板在受拉压及弯曲条件下的应变进行有限元仿真计算,确定山形弹簧板在受到正向拉压时,其表面应变的分布情况;确定山形弹簧板在受到弯矩作用时,其表面应变的分布情况;
2)利用山形弹簧板结构有限元仿真计算的结果,得到单个山形弹簧板在承受正向拉压力时,拉压力与应变ε之间的线性关系;得到单个山形弹簧板在承受弯矩时,弯矩与应变ε之间的线性关系,得到k1、k2
F=k1ε (1)
M=k2ε (2)
式中:F为山形弹簧板所受的拉压力,单位为N;M为山形弹簧板所受的弯矩,单位为Nm,ε为应变片所测得的应变值,单位为μm/m;k1、k2为利用仿真结果推导获得的线性比例系数;
3)根据步骤1)得到的应变分布情况,对山形弹簧板上的应变片粘贴位置进行选择;
3.1)将四块山形弹簧板均布在试车台动架及试车台定架之间,所述山形弹簧板侧板与试车台定架连接,所述山形弹簧板中心板与试车台动架连接;
3.2)在四块山形弹簧板安装八个应变片,其中四个应变片安装在山形弹簧板中心板上表面分叉处,粘贴方向与分叉方向一致;四个应变片安装在山形弹簧板侧板底部表面且靠近分叉处,粘贴方向与厚度方向一致;
4)在发动机试验过程中,测量四块山形弹簧板上八个应变片的应变值,利用所获得的拉压力、弯矩与应变值的对应线性关系,得到各山形弹簧板所受X、Y方向的拉压力及弯矩值,确定X、Y方向的侧向力Fx、Fy
5)利用计算得到发动机侧向力X、Y方向的分力,并通过矢量求和的方式,确定侧向力的大小及方向;
式中:Fc为发动机侧向力。
进一步地,步骤3.2)具体为:在四块山形弹簧板安装八个应变片,其中第一应变片、第二应变片、第三应变片、第四应变片安装在山形弹簧板中心板上表面分叉处,粘贴方向与分叉方向一致;第五应变片、第六应变片、第七应变片、第八应变片安装在山形弹簧板侧板底部表面且靠近分叉处,粘贴方向与厚度方向一致;第一应变片和第五应变片安装在同一山形弹簧板上,第二应变片和第六应变片安装在同一山形弹簧板上,第三应变片和第七应变片安装在同一山形弹簧板上,第四应变片和第八应变片安装在同一山形弹簧板上。
进一步地,步骤4)具体包括以下步骤:
4.1)测得第六应变片和第八应变片的应变值ε6、ε8,通过式(5)、(6),得到力矩M2、M4的大小,测得第一应变片和第三应变片的应变值ε1、ε3,通过(3)和式(4),得到发动机受到的X方向力,确定侧向力在X方向的分量Fx
[Fx-(F1-F3)]×2m=M2+M4 (3)
F1-F3=k113) (4)
M2=k2ε6 (5)
M4=k2ε8 (6)
式中:M2为粘贴有第六应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M4为粘贴有第八应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F1为粘贴有第一应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F3为粘贴有第三应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
4.2)测得第五应变片和第七应变片的应变值ε5、ε7,通过式(9)、(10),得到力矩M1、M3的大小,测得第二应变片和第四应变片的应变值ε2、ε4,通过式(7)和(8),得到发动机受到的Y方向力,确定侧向力在Y方向的分量Fy
[Fy-(F2-F4)]×2m=M1+M3 (7)
F2-F4=k124) (8)
M3=k2ε5 (9)
M1=k2ε7 (10)
式中:M1为粘贴有第七应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M3为粘贴有第五应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F2为粘贴有第二应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F4为粘贴有第四应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N。
本发明的优点为:
1.本发明结合现有发动机试验台的实际特点,对发动机侧向力的大小进行评估,该测量装置完全依据原试验台结构和测量通道,不加装其他测力装置,结构简单,组建方便,该方法测量结果与最终利用应变片测得的实测值之间的偏差可控制在15%以内。
2.本发明方法能够采用较为简单的手段,实现大推力液体火箭发动机侧向力的试验预估,利用该方法获得的发动机侧向力试验预估值,能够为发动机三向力精确测量系统中侧向力传感器的选型及支撑结构的设计,提供指导依据,且该发明不需要改变试车台原有结构。
附图说明
图1为本发明方法流程图;
图2为本发明山形弹簧板安装结构侧视图;
图3为本发明山形弹簧板安装结构俯视图;
图4为本发明山形弹簧板结构图;
图5为本发明应变片粘贴位置示意图;
图6为本发明四块山形弹簧板的受力分析图。
附图说明:1-定架,2-动架,3-发动机,4-山形弹簧板,41-山形弹簧板中心板,42-山形弹簧板侧板,51-第一应变片,52-第二应变片,53-第三应变片,54-第四应变片,55-第五应变片,56-第六应变片,57-第七应变片,58-第八应变片。
具体实施方式
下面结合说明书附图对本发明的技术方案进行清楚、完整地描述。
本发明利用120t发动机试车台现有测量结构的实际特点,通过对山形弹簧板上的各项应变进行测量、仿真计算及理论计算,估算出参加试车时,发动机产生的侧向力大小及方向;本发明方法具体为通过测量液体火箭发动机试车台上四块山形弹簧板上不同位置的应变值,获得发动机侧向推力的大小,山形弹簧板4与动架2及定架1间的连接形式如图2、图3所示,山形弹簧板结构形式如图4所示;其中山形弹簧板侧板42通过12个螺栓孔与试车台定架1连接,山形弹簧板中心板41通过10个螺栓孔与试车台动架2连接,发动机点火试车时,动架2受发动机3轴向推力的影响向上运动,定架1不动,导致山形弹簧板中心板41向上运动,产生变形。
本发明发动机试验过程中产生的侧向力主要通过周向分布的四个弹性约束件(山形弹簧板)加以约束。因此,需通过测量山形弹簧板对发动机提供的约束反力,即可确定发动机的侧向力大小。由于发动机侧向力的具体方向不固定,因此采用首先测量X、Y方向的侧向力,然后用矢量叠加的方式确定发动机总的侧向力:方法包括以下步骤:1)利用有限元仿真技术手段,确定山形弹簧板在各向受力条件下产生的应变大小;2)对四块山形弹簧板组成的受力结构进行力系分解及力平衡分析;3)依据四块山形弹簧板不同位置应变片的测量值大小,结合仿真分析结果及力平衡分析,反向推导出发动机侧向力的大小。
如图1所示,本发明的大推力火箭发动机侧向力试验预估方法,具体包括以下步骤:
1)对山形弹簧板在受拉压及弯曲条件下的应变进行有限元仿真计算,确定单个山形弹簧板在受到正向拉压时,其表面应变较大区域的分布情况;同时,确定单个山形弹簧板在受到弯矩作用时,其表面应变较大区域的分布情况;
2)利用山形弹簧板结构有限元仿真计算的结果,推导出单个山形弹簧板在承受正向拉压力时,拉压力与应变ε之间的线性关系;推导出单个山形弹簧板在承受弯矩时,弯矩与应变ε之间的线性关系:
F=k1ε (1)
M=k2ε (2)
式中:F为山形弹簧板所受的拉压力,单位为N;M为山形弹簧板所受的弯矩,单位为Nm,ε为应变片所测得的应变值,单位为μm/m;k1、k2为利用仿真结果推导获得的线性比例系数;
3)根据步骤1)得到的应变分布情况,对山形弹簧板上应变片的粘贴位置进行选择,选择的原则是:测量正向拉压产生应变值的应变片,其应变值大小不受山形弹簧板所受弯矩值大小的影响;测量弯矩产生应变值的应变片,其应变值大小不受山形弹簧板所受正向拉压力大小的影响;
3.1)如图2、图3所示,将四块山形弹簧板4均布在试车台动架2及试车台定架1之间,山形弹簧板侧板42与试车台定架1连接,山形弹簧板中心板41与试车台动架2连接;
3.2)四块山形弹簧板上应变片粘贴位置及对应关系如图5所示,在四块山形弹簧板安装八个应变片,其中第一应变片51、第二应变片52、第三应变片53、第四应变片54用于对山形弹簧板受正向拉压时产生的应变值进行测量,安装在山形弹簧板中心板41上表面分叉处,粘贴方向与分叉方向一致;第五应变片55、第六应变片56、第七应变片57、第八应变片58用于对各山形弹簧板受弯矩时产生的应变值进行测量,安装在山形弹簧板侧板底部表面且靠近分叉处,粘贴方向与厚度方向一致;第一应变片51和第五应变片55安装在同一山形弹簧板上,第二应变片52和第六应变片56安装在同一山形弹簧板上,第三应变片53和第七应变片57安装在同一山形弹簧板上,第四应变片54和第八应变片58安装在同一山形弹簧板上;其中第一应变片51、第二应变片52、第三应变片53、第四应变片54用于测量山形弹簧板上的正向拉压应变;第五应变片55、第六应变片56、第七应变片57、第八应变片58用于测量山形弹簧板受弯曲时,产生的弯曲应变;
4)测量在发动机3试验过程中,四块山形弹簧板上八个应变片的应变测量值,利用所获得的拉压力、弯矩与应变值的对应线性关系,反推出各山形弹簧板所受的X、Y方向的拉压力及弯矩值;X方向为四块山形弹簧板中,两个相对设置的山形弹簧板中心点的连线方向,Y方向与X方向正交垂直,XY所构成的平面与发动机喷管轴线垂直;
4.1)在实际测量时,第一应变片、第二应变片、第三应变片、第四应变片的安装点均由于山形弹簧板向上弯曲而产生挤压变形,应变应为负值,但由于侧向力的作用,可能导致第一应变片的安装点处受压而第五应变片的安装处受拉,实际测量得到的应变值将不同,通过计算两者的差值,可抵消掉山形弹簧板向上弯曲对应变测量的影响,应为侧向力所引起的应变,可通过该应变确定山形弹簧板拉伸所承受的侧向力;
测得第六应变片和第八应变片的应变值ε6、ε8,通过式(5)、(6),得到力矩M2、M4的大小,测得第一应变片和第三应变片的应变值ε1、ε3,通过(3)和式(4),得到发动机受到的X方向力,确定侧向力在X方向的分量Fx
在X方向有:
[Fx-(F1-F3)]×2m=M2+M4 (3)
F1-F3=k113) (4)
M2=k2ε6 (5)
M4=k2ε8 (6)
式中:M2为粘贴有第六应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M4为粘贴有第八应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F1为粘贴有第一应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F3为粘贴有第三应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
4.2)测得第五应变片和第七应变片的应变值ε5、ε7,通过式(9)、(10),得到力矩M1、M3的大小,测得第二应变片和第四应变片的应变值ε2、ε4,通过式(8)和(7),得到发动机受到的Y方向力,确定侧向力在Y方向的分量Fy
[Fy-(F2-F4)]×2m=M1+M3 (7)
F2-F4=k124) (8)
M3=k2ε5 (9)
M1=k2ε7 (10)
式中:M1为粘贴有第七应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M3为粘贴有第五应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F2为粘贴有第二应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F4为粘贴有第四应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
5)利用计算得到发动机侧向力X、Y方向的分力,利用下式计算得到发动机侧向力X、Y方向的分力,并通过矢量求和的方式,确定侧向力的大小及方向;
式中:Fc为发动机侧向力,单位为N,同方向上两对应弹簧板之间的距离为4m。
本发明实际测量实例如下:
利用所粘贴的应变片,在两次发动机热试车过程中,对山形弹簧板上对应点的应变进行了实际测量;表1为XX-006次试车测量得到的各点应变值。
表1 XX-006次试车各点应变最大值
应变原始数据显示,受振动影响,在试车过程中测量得到的山形弹簧板应变值变化幅度较大,应变片51、52、53、54测得压应力,应变片55、56、57、58测得拉应力,且ε1-ε3、ε2-ε4的计算结果也均为正值;
将山形弹簧板拉压、弯曲变形时的受力进行叠加,可计算发动机侧向力的总和。
表3 XX-006次试车确定的各项力最大值
受力方向 X+向 Y+向
各向力最大值(N) 7500 8500
从推导结果来看,两次试车确定的各项力最大值的大小和方向基本一致,即均沿X轴和Y轴的正向,预估得到的发动机侧向力合力约为11.3kN,力的方向与X轴夹角约为40°。

Claims (3)

1.一种大推力火箭发动机侧向力试验预估方法,其特征在于,包括以下步骤:
1)对山形弹簧板在受拉压及弯曲条件下的应变进行有限元仿真计算,确定山形弹簧板在受到正向拉压时,其表面应变的分布情况;确定山形弹簧板在受到弯矩作用时,其表面应变的分布情况;
2)利用山形弹簧板有限元仿真计算的结果,得到单个山形弹簧板在承受正向拉压力时,拉压力与应变ε之间的线性关系;得到单个山形弹簧板在承受弯矩时,弯矩与应变ε之间的线性关系,得到k1、k2
F=k1ε (1)
M=k2ε (2)
式中:F为山形弹簧板所受的拉压力,单位为N;M为山形弹簧板所受的弯矩,单位为Nm,ε为应变片所测得的应变值,单位为μm/m;k1、k2为利用仿真结果推导获得的线性比例系数;
3)根据步骤1)得到的应变分布情况,对山形弹簧板上的应变片粘贴位置进行选择;
3.1)将四块山形弹簧板均匀设置在试车台动架及试车台定架之间,山形弹簧板侧板与试车台定架连接,山形弹簧板中心板与试车台动架连接;
3.2)在四块山形弹簧板安装八个应变片,其中四个应变片安装在山形弹簧板中心板上表面分叉处,粘贴方向与分叉方向一致;四个应变片安装在山形弹簧板侧板底部表面且靠近分叉处,粘贴方向与厚度方向一致;
4)在发动机试验过程中,测量四块山形弹簧板上八个应变片的应变值,利用所获得的拉压力、弯矩与应变值的对应线性关系,得到各山形弹簧板所受X、Y方向的拉压力及弯矩值,确定X、Y方向的侧向力Fx、Fy
5)利用计算得到发动机侧向力X、Y方向的分力,并通过矢量求和的方式,确定侧向力的大小及方向;
式中:Fc为发动机侧向力。
2.根据权利要求1所述的大推力火箭发动机侧向力试验预估方法,其特征在于,步骤3.2)具体为:在四块山形弹簧板安装八个应变片,其中第一应变片、第二应变片、第三应变片、第四应变片安装在山形弹簧板中心板上表面分叉处,粘贴方向与分叉方向一致;第五应变片、第六应变片、第七应变片、第八应变片安装在山形弹簧板侧板底部表面且靠近分叉处,粘贴方向与厚度方向一致;第一应变片和第五应变片安装在同一山形弹簧板上,第二应变片和第六应变片安装在同一山形弹簧板上,第三应变片和第七应变片安装在同一山形弹簧板上,第四应变片和第八应变片安装在同一山形弹簧板上。
3.根据权利要求2所述的大推力火箭发动机侧向力试验预估方法,其特征在于,步骤4)具体包括以下步骤:
4.1)测得第六应变片和第八应变片的应变值ε6、ε8,通过式(5)、(6),得到力矩M2、M4的大小,测得第一应变片和第三应变片的应变值ε1、ε3,通过式 (3)和式(4),得到发动机受到的X方向力,确定侧向力在X方向的分量Fx
[Fx-(F1-F3)]×2m=M2+M4 (3)
F1-F3=k113) (4)
M2=k2ε6 (5)
M4=k2ε8 (6)
式中:M2为粘贴有第六应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M4为粘贴有第八应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F1为粘贴有第一应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F3为粘贴有第三应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
4.2)测得第五应变片和第七应变片的应变值ε5、ε7,通过式(9)、(10),得到力矩M1、M3的大小,测得第二应变片和第四应变片的应变值ε2、ε4,通过式(7)和(8),得到发动机受到的Y方向力,确定侧向力在Y方向的分量Fy
[Fy-(F2-F4)]×2m=M1+M3 (7)
F2-F4=k124) (8)
M3=k2ε5 (9)
M1=k2ε7 (10)
式中:M1为粘贴有第七应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
M3为粘贴有第五应变片的山形弹簧板受扭转而产生的弯矩,单位为Nm;
F2为粘贴有第二应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N;
F4为粘贴有第四应变片的山形弹簧板受拉伸或压缩产生的拉压力,单位为N。
CN201810255313.XA 2018-03-23 2018-03-23 一种大推力火箭发动机侧向力试验预估方法 Active CN108953004B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810255313.XA CN108953004B (zh) 2018-03-23 2018-03-23 一种大推力火箭发动机侧向力试验预估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810255313.XA CN108953004B (zh) 2018-03-23 2018-03-23 一种大推力火箭发动机侧向力试验预估方法

Publications (2)

Publication Number Publication Date
CN108953004A CN108953004A (zh) 2018-12-07
CN108953004B true CN108953004B (zh) 2019-11-19

Family

ID=64495310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810255313.XA Active CN108953004B (zh) 2018-03-23 2018-03-23 一种大推力火箭发动机侧向力试验预估方法

Country Status (1)

Country Link
CN (1) CN108953004B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044191B (zh) * 2019-11-28 2021-04-02 西安航天动力试验技术研究所 一种姿控发动机推力测量装置
CN111173648B (zh) * 2020-01-03 2021-04-16 中国航发沈阳发动机研究所 一种航空推力矢量发动机地面试车方法
CN112486062B (zh) * 2020-11-23 2021-10-15 西安航天动力试验技术研究所 火箭发动机试验双机实时控制系统及切换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253370A (ja) * 1994-03-14 1995-10-03 Mitsubishi Heavy Ind Ltd 6分力の計測システム
RU2191915C1 (ru) * 2001-04-02 2002-10-27 Пермский государственный технический университет Способ сигнализации отклонения направления вектора силы тяги от оси рдтт
CN105424254A (zh) * 2015-12-31 2016-03-23 西安航天动力试验技术研究所 姿控发动机矢量推力测量系统及测量方法
CN107806950A (zh) * 2017-10-24 2018-03-16 大连理工大学 一种大推力矢量立式测试装置结构
CN107818209A (zh) * 2017-10-26 2018-03-20 哈尔滨工程大学 一种弹性板结构的振动分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253370A (ja) * 1994-03-14 1995-10-03 Mitsubishi Heavy Ind Ltd 6分力の計測システム
RU2191915C1 (ru) * 2001-04-02 2002-10-27 Пермский государственный технический университет Способ сигнализации отклонения направления вектора силы тяги от оси рдтт
CN105424254A (zh) * 2015-12-31 2016-03-23 西安航天动力试验技术研究所 姿控发动机矢量推力测量系统及测量方法
CN107806950A (zh) * 2017-10-24 2018-03-16 大连理工大学 一种大推力矢量立式测试装置结构
CN107818209A (zh) * 2017-10-26 2018-03-20 哈尔滨工程大学 一种弹性板结构的振动分析方法

Also Published As

Publication number Publication date
CN108953004A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108953004B (zh) 一种大推力火箭发动机侧向力试验预估方法
US20160109324A1 (en) Method and apparatus of multi-axis resonance fatigue test
CN107543672B (zh) 多自由度微振动环境模拟方法
CN105241630A (zh) 应用于激波风洞测力试验的脉冲型杆式应变天平
Freydin et al. Fiber-optics-based aeroelastic shape sensing
CN203949788U (zh) 一种卫星或火箭上面级推进分系统质心测量及称重的装置
CN104296897B (zh) 基于星箭连接环应变测量的星箭六自由度界面力计算方法
US9151684B2 (en) Bearing test bench
CN107389240A (zh) 4‑25n姿控发动机真空热环境稳态推力测量装置
CN105547235A (zh) 变截面梁结构拉压与弯曲复合变形场的测量方法
Liu et al. Suspension force measuring system for hypersonic wind tunnel test: Design and tests
CN202836851U (zh) 一种推力矢量测量系统
CN107478366B (zh) 一种水下金属燃料发动机推力测试装置
CN101672707A (zh) 一种船舶对闸墙碰擦力测试方法
CN106124319A (zh) 弯矩主动控制试验系统及方法
US20160003693A1 (en) Power determination method and turbomachine
Draper et al. Development and Implementation of a hybrid dynamic force measurement system at AEDC tunnel 9
CN113306749B (zh) 用于模拟失重的称重气浮装置
Robinson et al. Short duration force measurements in impulse facilities
Liu et al. Three components strain-gauge type aircraft surface friction resistance sensor: Design, manufacturing, and calibration
CN113670745A (zh) 基于塑性金属膜片和激光多普勒效应的冲量测量装置及方法
CN105352445A (zh) 单边固支板结构变形光纤模式辨识系统及标定方法与应用
CN206583437U (zh) 一种测量岩石微小变形的装置
CN110296806A (zh) 一种适用于舰载电子设备的强冲击试验调节装置及方法
RU2135976C1 (ru) Стенд для определения составляющих силы тяги ракетного двигателя

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant