CN108934029B - 面向感知大数据重建的加速分布式优化算法 - Google Patents

面向感知大数据重建的加速分布式优化算法 Download PDF

Info

Publication number
CN108934029B
CN108934029B CN201810736403.0A CN201810736403A CN108934029B CN 108934029 B CN108934029 B CN 108934029B CN 201810736403 A CN201810736403 A CN 201810736403A CN 108934029 B CN108934029 B CN 108934029B
Authority
CN
China
Prior art keywords
node
link
representing
flow
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810736403.0A
Other languages
English (en)
Other versions
CN108934029A (zh
Inventor
陈思光
郑忆敏
王志浩
王堃
殷俊
孙雁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201810736403.0A priority Critical patent/CN108934029B/zh
Publication of CN108934029A publication Critical patent/CN108934029A/zh
Application granted granted Critical
Publication of CN108934029B publication Critical patent/CN108934029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/145Network analysis or design involving simulating, designing, planning or modelling of a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种面向感知大数据重建的加速分布式优化算法,首先构建感知大数据的重构误差最小化模型;基于拉格朗日乘子构造原始优化问题和相应的对偶问题;利用双重分解法将原始优化问题进行分解;采用加速次梯度方法解决对偶问题,构建加速优化算法进行求解;实现压缩数据的重构误差最小化以及求解唯一最优值的收敛速度提高,解决现有技术无法同时满足高精度数据质量和低时延要求的技术问题;证明了所提出的加速分布式优化算法的可收敛性,并且该算法有着对网络规模的免疫性。

Description

面向感知大数据重建的加速分布式优化算法
技术领域
本发明属于无线通信网络技术领域,具体涉及一种面向感知大数据重建的加速分布式优化算法。
背景技术
在感知大数据时代,感知数据的数量通过无处不在的无线传感设备高速生长,并且超出了传统无线传感器网络的处理和管理能力。因此,我们称现在的传感器网络为无线感知大数据网络,它能有效地组织和管理感知大数据。
处理大量感知数据的主要挑战之一是数据量越来越大,导致存储设备无法跟上感知数据生产速度的增长。
目前,解决数据规模与存储容量之间增长速率不匹配问题有两种方法,这两种方法的共同目标是减少数据传输和存储容量。
一种方法是关键数据点检索方法,另一种是纯数据压缩方法;虽然前一种方法可以显著减少感知大数据的传输量,但恢复精度不如第二种方法;第二种方法的典型代表是基于压缩感知(Compressed Sensing,CS)的压缩方法,CS将计算负担转移到汇聚节点,并且可以有效地探索时空数据的相关性,在感知大数据网络中得以成功应用。
总体来说,解决数据规模和存储容量之间增长速率不匹配问题存在两个挑战,一个是无法达到高精度的数据质量标准;另一个是不能满足低延迟的要求。
面对上述两个挑战,即现有技术在提高恢复性能方面的问题以及在解决优化问题时无法满足低时延的问题,现有技术主要解决以上单一挑战。
根据具有不同数据恢复精度的压缩方案,现有技术可以分为以下三类:
第一类调查数据压缩方法以减轻存储负担,该方案通过设计不同的数据压缩方案,有效减少传输和接收数量,通过压缩数据来缓解增加感知大数据的增长的存储压力,但是恢复精度仍有待提高;
第二类是通过优化CS理论的内部参数来研究数据恢复精度的提高方法,该方案通过考虑测量矩阵和稀疏字典之间的相关性,提出优化测量矩阵,可以提高原始数据的重建质量;
第三类是通过引入网络资源优化来实现数据恢复精度的提高,目前,对于从网络资源角度提高恢复性能的研究还很少,虽然一些技术提出了网络效用最大化问题来提高压缩数控流的恢复性能,但它是解决无线干扰问题的有线网络场景;现有技术消除了上述的无线干扰问题,并从网络资源分配的角度构造重构误差优化模型,可以最大限度地减少原始数据的恢复错误;一般来说,某些特定的业务需要实时处理能力,如自然灾害检测、军事防御、火灾探测、交通监控等,然而,迭代确定最优解的收敛速度难以满足采用传统次梯度算法的实时或近实时的要求。
发明内容
本发明的目的在于提高感知大数据的重建精度,提出一种面向感知大数据重建的加速分布式优化算法,实现压缩数据的重构误差最小化以及求解唯一最优值的收敛速度提高,解决现有技术无法同时满足高精度数据质量和低时延要求的技术问题。
本发明采用如下技术方案,一种面向感知大数据重建的加速分布式优化算法,具体步骤如下:
1)构建感知大数据的重构误差R(xl)最小化模型;
2)基于拉格朗日乘子构造原始优化问题和相应的对偶问题;
3)利用双重分解法将原始优化问题进行分解;
4)采用加速次梯度方法解决对偶问题,构建加速优化算法进行求解。
优选地,所述步骤1)中感知大数据的重构误差最小化模型具体为:
数据流l中感知大数据的重构误差函数R(xl)为,
R(xl)=C1(xl)-2α
其中常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,xl是数据流l的总流量,即单位时间内汇聚节点接收的测量值;
重构误差最小化模型为:
Figure BDA0001722125810000021
约束条件为:
Figure BDA0001722125810000031
Figure BDA0001722125810000032
其中,f表示传输速率,G表示群流;
Figure BDA0001722125810000033
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点;Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,
Figure BDA0001722125810000034
表示节点j到其附近节点的接通情况,
Figure BDA0001722125810000035
表示链接(i,j)接通,
Figure BDA0001722125810000036
表示链接(i,j)没有接通,
Figure BDA0001722125810000037
表示数据流l通过链接(i,j)的路由矩阵,
Figure BDA0001722125810000038
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000039
表示数据流l通过链接(j,i)的传输速率,
Figure BDA00017221258100000310
表示从节点i输出的输出流量;E表示网络链接,EC表示一组网络派系,随机网络派系
Figure BDA00017221258100000311
是网络派系EC的一个元素,Cij表示链接(i,j)的相关容量能力;
第一个约束条件表示汇聚节点处接收到的数据流l的总流量等于所有感知节点的流量总和,其中在汇聚节点的流量为0,表示为
Figure BDA00017221258100000312
符号D表示汇聚节点;
第二个约束条件表示发送数据满足流量守恒定律,链接(i,j)中除源节点和汇聚节点以外,其余感知节点的输入流量总和等于输出流量的总和,源节点为起始发送数据流的感知节点,从节点i输出的输出流量
Figure BDA00017221258100000313
的值定义如下:
Figure BDA00017221258100000314
其中
Figure BDA00017221258100000315
即表示数据流l从汇聚节点到其他节点的传输速率为0;V-D表示感知节点;
帧内编码可以激发同一链接中不同感知节点的相同流量,通过一起编码来共享链接量。
第三个约束条件表示互相干扰的链接不能同时发送数据流,即属于同一个集团
Figure BDA00017221258100000316
的所有链接的占用率之和不超过1,每个感知节点不能同时发送和接收信息,但是所有感知节点可以同时发送信息或者同时接收信息;
链接(i,j)上所有数据流l∈G的传输速率总和不超过链接(i,j)的相关容量能力Cij,即:
Figure BDA0001722125810000041
第四个约束条件表示定义变量
Figure BDA0001722125810000042
为非负变量。
优选地,所述步骤2)的具体步骤为:
21)基于重构误差R(xl)最小化模型,将第二和第三约束条件的不等式右边项左移再分别乘以两个乘子,即对两个约束条件进行了扩大或缩小,利用拉格朗日乘子
Figure BDA0001722125810000043
Figure BDA0001722125810000044
构造一个拉格朗日函数,表示如下:
Figure BDA0001722125810000045
其中,x表示流量,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,xl是数据流l的总流量,
Figure BDA0001722125810000046
为数据流l流经节点i的拥塞价格因子,
Figure BDA0001722125810000047
为一组随机网络派系
Figure BDA0001722125810000048
中的干扰价格因子,
Figure BDA0001722125810000049
表示数据流l流经节点j的拥塞价格因子,
Figure BDA00017221258100000410
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100000411
表示经过节点i的数据流l的总流量,G表示群流,Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,E表示网络链接,EC表示一组网络派系,随机网络派系
Figure BDA00017221258100000412
是网络派系EC的一个元素,V表示感知节点和汇聚节点,V-D表示感知节点,
Figure BDA0001722125810000051
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000052
表示数据流l通过链接(j,i)的传输速率,Cij表示链接(i,j)的相关容量能力,
Figure BDA0001722125810000053
表示数据流l通过链接(i,j)的路由矩阵;
Figure BDA0001722125810000054
表示从节点i输出的输出流量,
Figure BDA0001722125810000055
表示节点j到节点j附近节点的接通情况,
Figure BDA0001722125810000056
表示链接(i,j)接通,
Figure BDA0001722125810000057
表示链接(i,j)没有接通;
22)构造如下格式的原始优化问题:
Figure BDA0001722125810000058
建立相应对偶问题如下:
Figure BDA0001722125810000059
约束条件为:λ≥0;ε≥0 (6)
优选地,所述步骤3)具体为将原始优化问题分解为拥塞控制问题和无线链接流量守恒及互干扰问题;
拥塞控制问题为:
Figure BDA00017221258100000510
约束条件为:
Figure BDA00017221258100000511
其中,x表示流量,R为重构误差函数,
Figure BDA00017221258100000512
为数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100000513
表示数据流l流经节点j的拥塞价格因子,
Figure BDA00017221258100000514
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100000515
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
无线链接流量守恒及互干扰问题为:
Figure BDA00017221258100000516
约束条件为:
Figure BDA00017221258100000517
其中,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure BDA0001722125810000061
为一组随机网络派系
Figure BDA0001722125810000062
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure BDA0001722125810000063
是网络派系EC的一个元素,
Figure BDA0001722125810000064
表示数据流l通过链接(i,j)的传输速率,Cij表示链接(i,j)的相关容量能力,
Figure BDA0001722125810000065
表示节点j到节点j附近节点的接通情况,
Figure BDA0001722125810000066
表示链接(i,j)接通,
Figure BDA0001722125810000067
表示链接(i,j)没有接通,
Figure BDA0001722125810000068
表示数据流l通过链接(i,j)的路由矩阵。
优选地,所述步骤4)构建加速优化算法进行求解具体为:
41)基于拥塞价格因子
Figure BDA0001722125810000069
和流量xl(t)的值求解感知节点i∈{V-D}的优化问题,即求解拥塞控制问题,
Figure BDA00017221258100000610
其中,
Figure BDA00017221258100000611
表示第t次迭代时数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100000612
表示第t次迭代时数据流l流经汇聚节点的拥塞价格因子,xl(t)表示第t次迭代时的数据流l的总流量,
Figure BDA00017221258100000613
表示经过节点i的数据流l的最优流量,argmin表示使目标函数取最小值时的变量值,x表示流量,λ为拉格朗日乘子,R为重构误差函数,
Figure BDA00017221258100000614
为数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100000615
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100000616
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
42)基于拥塞价格因子
Figure BDA00017221258100000617
Figure BDA00017221258100000618
和干扰价格因子
Figure BDA00017221258100000619
的值求解每个链接(i,j),i∈{V-D}的优化问题,即求解无线链接流量守恒及互干扰问题:
Figure BDA00017221258100000620
Figure BDA0001722125810000071
其中,
Figure BDA0001722125810000072
表示第t次迭代时数据流l流经节点j的拥塞价格因子,
Figure BDA0001722125810000073
表示第t次迭代时随机网络派系
Figure BDA0001722125810000074
中的干扰价格因子,
Figure BDA0001722125810000075
表示数据流l通过链接(i,j)的最优传输速率,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure BDA0001722125810000076
为一组随机网络派系
Figure BDA00017221258100000721
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure BDA0001722125810000077
是网络派系EC的一个元素,
Figure BDA0001722125810000078
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000079
表示数据流l流经节点j的拥塞价格因子,Cij表示链接(i,j)的相关容量能力,
Figure BDA00017221258100000710
表示节点j到节点j附近节点的接通情况,
Figure BDA00017221258100000711
表示链接(i,j)接通,
Figure BDA00017221258100000712
表示链接(i,j)没有接通,
Figure BDA00017221258100000713
表示数据流l通过链接(i,j)的路由矩阵;
43)每个链接(i,j),i∈{V-D}根据步骤42)得到的第t-1次迭代最优传输速率以及如下公式更新拥塞价格因子
Figure BDA00017221258100000714
的值,
Figure BDA00017221258100000715
其中
Figure BDA00017221258100000716
Figure BDA00017221258100000717
是公式(11)中定义的变量,
Figure BDA00017221258100000718
表示在第t-1次迭代时数据流l通过链接(i,j)的传输速率,
Figure BDA00017221258100000719
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,
Figure BDA00017221258100000720
表示第t次迭代时从节点i输出的输出流量,ρλ是对偶变量λ的步长,步长范围为0.01-0.1,当x是非负值时[.]+表示[x]+=x,否则[x]+=0;
44)感知节点i根据步骤42)在第t-1次迭代中更新的最优传输速率以及如下公式更新干扰价格因子
Figure BDA0001722125810000081
的值,
Figure BDA0001722125810000082
其中
Figure BDA0001722125810000083
Figure BDA0001722125810000084
是公式(12)中定义的变量,
Figure BDA0001722125810000085
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,ρε是对偶变量ε的步长,步长范围为0.01到0.1;
45)迭代次数加一,返回到步骤41)并重复执行,直到迭代收敛结束。
优选地,所述拥塞控制问题和无线链接流量守恒及互干扰问题的最优解求解方法具体为:
拥塞控制问题:基于拥塞控制问题L1(x,λ)的目标函数,感知节点i∈{V-D}的最优流量
Figure BDA0001722125810000086
如公式(9)所示,根据拥塞价格因子
Figure BDA0001722125810000087
Figure BDA0001722125810000088
和流量xl(t)的值,感知节点i∈{V-D}在第t次迭代处更新其数据流l,并且求解优化问题(9)的过程为:
利用低通滤波方法解决优化问题(9),感知节点i∈{V-D}的流量通过如下公式更新:
Figure BDA0001722125810000089
Figure BDA00017221258100000810
根据最优化拉格朗日增广变量的定义,增广变量
Figure BDA0001722125810000091
Figure BDA0001722125810000092
的最优估计,γ1为步长,步长范围为0.01-0.1,常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,
Figure BDA00017221258100000914
表示第t次迭代后经过节点i的数据流l的总流量;
按照如下公式计算:
Figure BDA0001722125810000093
其中,xl(t+1)表示第t次迭代后数据流l的总流量;
无线链接流量守恒及互干扰问题:基于无线链接流量守恒及互干扰问题L2(f,λ,ε)的目标函数,数据流l在链接(i,j)上的最优传输速率如公式(10)所示,根据拥塞价格因子
Figure BDA0001722125810000094
Figure BDA0001722125810000095
和干扰价格因子
Figure BDA0001722125810000096
的值,每个链接(i,j)在第t次迭代处更新数据流l的传输速率,优化问题(10)的求解过程为:
求解函数L2(f,λ,ε)相对于变量
Figure BDA0001722125810000097
的偏导数:
Figure BDA0001722125810000098
结合一阶拉格朗日算法和低通滤波方法按照公式(17)组成联合求解方法,
链接(i,j)上的数据流l的传输速率更新为:
Figure BDA0001722125810000099
Figure BDA00017221258100000910
其中增广变量
Figure BDA00017221258100000911
Figure BDA00017221258100000912
的最优估计,γ2为步长,步长范围为0.01-0.1,
Figure BDA00017221258100000913
表示在第t次迭代时数据流l通过链接(i,j)的传输速率。
发明所达到的有益效果:本发明是一种面向感知大数据重建的加速分布式优化算法,实现压缩数据的重构误差最小化以及求解唯一最优值的收敛速度提高,解决现有技术无法同时满足高精度数据质量和低时延要求的技术问题;本发明可用于具有相似网络拓扑的不同尺寸的网络,相比于常规方法,本发明设计方法可以稳定收敛到最优值,并且可以显着提高常规优化算法的收敛速度,本发明可将传统优化求解算法的收敛速度从O(1/t)提升到O(1/t^2),O(n)表示时间复杂度,n=1/t到n=1/t^2表示整个求解算法耗时从1/t缩短到1/t^2,,而且可适用于不同规模大小的网络,不会牺牲加速收敛效果。
附图说明
图1为本发明实施例感知大数据重建优化模型的求解步骤流程图;
图2为具有12个节点的网络拓扑中步长为0.06时流率的演变图;
图3为具有12个节点的网络拓扑中步长为0.06时恢复误差的演变图;
图4为具有12个节点的网络拓扑中步长为0.04时流率演变图;
图5为具有12个节点的网络拓扑中步长为0.04时恢复误差的演变图;
图6为步长相同时20个节点和30个节点的网络规模下的流率演变图;
图7为步长相同时20个节点和30个节点的网络规模下的恢复误差演变图。
具体实施方式
下面根据附图并结合实施例对本发明的技术方案作进一步阐述。
首先,构建一个感知大数据网络,其中汇聚节点负责收集感知节点观察到的感知数据。整个网络有许多感知节点,每个感知节点通过CS理论同时实现对原始数据的压缩和采样。感知节点向汇聚节点(sink节点)发送采样数据,同时作为中继节点转发来自其他感知节点的数据。线性网络编码(Network Coding,NC)在感知节点转发其自身和传入数据之前执行。最后,汇聚节点通过一跳或多跳从所有感知节点接收编码数据。
同一个时隙内不同感知节点的观察数据被认为是同一个数据流,在模型中只执行内流NC,即只对相同流量的数据进行随机NC操作。
随后,假设来自感知节点的采样数据通过多个链接传播到相邻节点,并通过预定路由转发到汇聚节点。对于通信覆盖的重叠,存在不同环节的相互干扰,因此引入作为基本冲突集合的派系。派系是由相互干扰的链接组成的,派系中同一时隙只有一个链接可以传输数据,以避免相互干扰。集合EC由网络中的所有派系组成,即随机派系
Figure BDA0001722125810000111
是EC的一个元素。
由于无线链接的不稳定性和不可靠性,假设感知节点以一定概率成功在链接上传输编码数据。传输速率
Figure BDA0001722125810000112
在不同链接上是会变化的。
制定优化模型以最大限度地减少来自感知大数据网络的多组数据流G的重构误差。当CS的测量矩阵具有有限等距性质(Restricted Isometry Property,RIP)时,已知CS的恢复精度重构算法在现有的CS理论文献中与汇聚节点接收到的测量值和感知数据的稀疏水平相关联。从J.Haupt和R.Nowak,的文章中得到数据流l∈G中感知数据的平均重建误差上限为
Figure BDA0001722125810000113
的常数倍,其中n表示汇聚节点接收到的测量值,N表示原始感知数据的长度,αl表示数据流中感知数据的稀疏水平。
图1为求解感知大数据重建优化模型的步骤流程图,根据网络模型,测试中提供了三种不同大小的相似网络拓扑,以测试加速优化算法的收敛和加速效果。这三种网络拓扑结构分别由12个,20个和30个节点组成。一种面向感知大数据重建的加速分布式优化算法,包括以下步骤:
1)构建感知大数据的重构误差最小化模型;
在感知大数据的时间维度上,假设来自群流G的不同数据流在一定的基础上都是可压缩的数据,而来自G的不同数据流具有相同的可压缩程度,数据流l中感知大数据的重构误差函数R(xl)为,
R(xl)=C1(xl)-2α
其中常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,xl是数据流l的总流量,即单位时间内汇聚节点接收的测量值;
重构误差最小化模型为:
Figure BDA0001722125810000114
约束条件为:
Figure BDA0001722125810000115
Figure BDA0001722125810000116
Figure BDA0001722125810000121
Figure BDA0001722125810000122
其中,f表示传输速率,G表示群流;
Figure BDA0001722125810000123
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点;Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,
Figure BDA0001722125810000124
表示节点j到其附近节点的接通情况,
Figure BDA0001722125810000125
表示链接(i,j)接通,
Figure BDA0001722125810000126
表示链接(i,j)没有接通,
Figure BDA0001722125810000127
表示数据流l通过链接(i,j)的路由矩阵,
Figure BDA0001722125810000128
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000129
表示数据流l通过链接(j,i)的传输速率,
Figure BDA00017221258100001210
表示从节点i输出的输出流量;E表示网络链接,EC表示一组网络派系,随机网络派系
Figure BDA00017221258100001211
是网络派系EC的一个元素,Cij表示链接(i,j)的相关容量能力;统一不同优化问题的步长,不同链接的传输比例均设置为0.9,常数C1和α的值分别设为1和0.7;
第一个约束条件表示汇聚节点处接收到的数据流l的总流量等于所有感知节点的流量总和,其中在汇聚节点的流量为0,表示为
Figure BDA00017221258100001212
符号D表示汇聚节点;
第二个约束条件表示发送数据满足流量守恒定律,链接(i,j)中除源节点和汇聚节点以外,其余感知节点的输入流量总和等于输出流量的总和,源节点为起始发送数据流的感知节点,从节点i输出的输出流量
Figure BDA00017221258100001213
的值定义如下:
Figure BDA00017221258100001214
其中
Figure BDA00017221258100001215
即表示数据流l从汇聚节点到其他节点的传输速率为0;V-D表示感知节点;
帧内编码可以激发同一链接中不同感知节点的相同流量,通过一起编码来共享链接量。
第三个约束条件表示互相干扰的链接不能同时发送数据流,即属于同一个集团
Figure BDA00017221258100001216
的所有链接的占用率之和不超过1,每个感知节点不能同时发送和接收信息,但是所有感知节点可以同时发送信息或者同时接收信息;
链接(i,j)上所有数据流l∈G的传输速率总和不超过链接(i,j)的相关容量能力Cij,即:
Figure BDA0001722125810000131
第四个约束条件表示定义变量
Figure BDA0001722125810000132
为非负变量。
2)基于拉格朗日乘子构造原始优化问题和相应的对偶问题;
21)将第二和第三约束条件的不等式右边项左移再分别乘以两个乘子,即对两个约束条件进行了扩大或缩小,利用拉格朗日乘子
Figure BDA0001722125810000133
Figure BDA0001722125810000134
构造一个拉格朗日函数,表示如下:
Figure BDA0001722125810000135
其中,x表示流量,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,xl是数据流l的总流量,
Figure BDA0001722125810000136
为数据流l流经节点i的拥塞价格因子,
Figure BDA0001722125810000137
为一组随机网络派系
Figure BDA0001722125810000138
中的干扰价格因子,它们的初始值都定义为1,
Figure BDA0001722125810000139
表示数据流l流经节点j的拥塞价格因子,
Figure BDA00017221258100001310
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100001311
表示经过节点i的数据流l的总流量,G表示群流,Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,E表示网络链接,EC表示一组网络派系,随机网络派系
Figure BDA0001722125810000141
是网络派系EC的一个元素,V表示感知节点和汇聚节点,V-D表示感知节点,
Figure BDA0001722125810000142
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000143
表示数据流l通过链接(j,i)的传输速率,对于不同节点,传输速率的初始值定义为0.2或0.4,Cij表示链接(i,j)的相关容量能力,Cij设置为1.5,
Figure BDA0001722125810000144
表示数据流l通过链接(i,j)的路由矩阵;
Figure BDA0001722125810000145
表示从节点i输出的输出流量,
Figure BDA0001722125810000146
表示节点j到节点j附近节点的接通情况,
Figure BDA0001722125810000147
表示链接(i,j)接通,
Figure BDA0001722125810000148
表示链接(i,j)没有接通;
22)构造如下格式的原始优化问题:
Figure BDA0001722125810000149
建立相应对偶问题如下:
Figure BDA00017221258100001410
约束条件为:λ≥0;ε≥0. (6)
3)利用双重分解法将原始优化问题进行分解;
根据拉格朗日函数的可分性和D(λ,ε)的陈述,D(λ,ε)可以分解为拥塞控制问题和无线链接流量守恒及互干扰问题;
拥塞控制问题为:
Figure BDA00017221258100001411
约束条件为:
Figure BDA00017221258100001412
其中,x表示流量,R为重构误差函数,
Figure BDA00017221258100001413
为数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100001414
表示数据流l流经节点j的拥塞价格因子,
Figure BDA00017221258100001415
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100001416
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
无线链接流量守恒及互干扰问题为:
Figure BDA00017221258100001417
约束条件为:
Figure BDA0001722125810000151
其中,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure BDA0001722125810000152
为一组随机网络派系
Figure BDA0001722125810000153
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure BDA0001722125810000154
是网络派系EC的一个元素,
Figure BDA0001722125810000155
表示数据流l通过链接(i,j)的传输速率,Cij表示链接(i,j)的相关容量能力,
Figure BDA0001722125810000156
表示节点j到节点j附近节点的接通情况,
Figure BDA0001722125810000157
表示链接(i,j)接通,
Figure BDA0001722125810000158
表示链接(i,j)没有接通,
Figure BDA0001722125810000159
表示数据流l通过链接(i,j)的路由矩阵。
4)采用加速次梯度方法解决对偶问题,构建加速优化算法进行求解。
41)基于拥塞价格因子
Figure BDA00017221258100001510
和流量xl(t)的值求解感知节点i∈{V-D}的优化问题,即求解拥塞控制问题,
Figure BDA00017221258100001511
其中,
Figure BDA00017221258100001512
表示第t次迭代时数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100001513
表示第t次迭代时数据流l流经汇聚节点的拥塞价格因子,xl(t)表示第t次迭代时的数据流l的总流量,
Figure BDA00017221258100001514
表示经过节点i的数据流l的最优流量,argmin表示使目标函数取最小值时的变量值,x表示流量,λ为拉格朗日乘子,R为重构误差函数,
Figure BDA00017221258100001515
为数据流l流经节点i的拥塞价格因子,
Figure BDA00017221258100001516
表示数据流l流经汇聚节点的拥塞价格因子,
Figure BDA00017221258100001517
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
基于拥塞控制问题L1(x,λ)的目标函数,感知节点i∈{V-D}的最优流量
Figure BDA00017221258100001518
如公式(9)所示,根据拥塞价格因子
Figure BDA00017221258100001519
和流量xl(t)的值,感知节点i∈{V-D}在第t次迭代处更新其数据流l,并且求解优化问题(9)的过程为:
利用低通滤波方法解决优化问题(9),感知节点i∈{V-D}的流量通过如下公式更新:
Figure BDA0001722125810000161
Figure BDA0001722125810000162
根据最优化拉格朗日增广变量的定义,增广变量
Figure BDA0001722125810000163
Figure BDA0001722125810000164
的最优估计,γ1为步长,步长范围为0.01-0.1,常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,
Figure BDA00017221258100001615
表示第t次迭代后经过节点i的数据流l的总流量;
最后将所有节点流量汇聚到汇聚节点,按照如下公式计算:
Figure BDA0001722125810000165
其中,xl(t+1)表示第t次迭代后数据流l的总流量;
42)基于拥塞价格因子
Figure BDA0001722125810000166
和干扰价格因子
Figure BDA0001722125810000167
的值求解每个链接(i,j),i∈{V-D}的优化问题,即求解无线链接流量守恒及互干扰问题:
Figure BDA0001722125810000168
其中,
Figure BDA0001722125810000169
表示第t次迭代时数据流l流经节点j的拥塞价格因子,
Figure BDA00017221258100001610
表示第t次迭代时随机网络派系
Figure BDA00017221258100001611
中的干扰价格因子,
Figure BDA00017221258100001612
表示数据流l通过链接(i,j)的最优传输速率,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure BDA00017221258100001613
为一组随机网络派系
Figure BDA00017221258100001614
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure BDA0001722125810000171
是网络派系EC的一个元素,
Figure BDA0001722125810000172
表示数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000173
表示数据流l流经节点j的拥塞价格因子,Cij表示链接(i,j)的相关容量能力,
Figure BDA0001722125810000174
表示节点j到节点j附近节点的接通情况,
Figure BDA0001722125810000175
表示链接(i,j)接通,
Figure BDA0001722125810000176
表示链接(i,j)没有接通,
Figure BDA0001722125810000177
表示数据流l通过链接(i,j)的路由矩阵;
基于无线链接流量守恒及互干扰问题L2(f,λ,ε)的目标函数,数据流l在链接(i,j)上的最优传输速率如公式(10)所示,根据拥塞价格因子
Figure BDA0001722125810000178
和干扰价格因子
Figure BDA0001722125810000179
的值,每个链接(i,j)在第t次迭代处更新数据流l的传输速率,优化问题(10)的求解过程为:
求解函数L2(f,λ,ε)相对于变量
Figure BDA00017221258100001710
的偏导数:
Figure BDA00017221258100001711
结合一阶拉格朗日算法和低通滤波方法按照公式(17)组成联合求解方法,链接(i,j)上的数据流l的传输速率更新为:
Figure BDA00017221258100001712
Figure BDA00017221258100001713
其中增广变量
Figure BDA00017221258100001714
Figure BDA00017221258100001715
的最优估计,γ2为步长,步长范围为0.01-0.1,
Figure BDA00017221258100001716
表示在第t次迭代时数据流l通过链接(i,j)的传输速率。
43)每个链接(i,j),i∈{V-D}根据步骤42)得到的第t-1次迭代最优传输速率以及如下公式更新拥塞价格因子
Figure BDA00017221258100001717
的值,
Figure BDA00017221258100001718
Figure BDA0001722125810000181
其中
Figure BDA0001722125810000182
Figure BDA0001722125810000183
是公式(11)中定义的变量,
Figure BDA0001722125810000184
表示在第t-1次迭代时数据流l通过链接(i,j)的传输速率,
Figure BDA0001722125810000185
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,
Figure BDA0001722125810000186
表示第t次迭代时从节点i输出的输出流量,ρλ是对偶变量λ的步长,步长范围为0.01-0.1,当x是非负值时[.]+表示[x]+=x,否则[x]+=0;
44)感知节点i根据步骤42)在第t-1次迭代中更新的最优传输速率以及如下公式更新干扰价格因子
Figure BDA0001722125810000187
的值,
Figure BDA0001722125810000188
其中
Figure BDA0001722125810000189
Figure BDA00017221258100001810
是公式(12)中定义的变量,
Figure BDA00017221258100001811
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,ρε是对偶变量ε的步长,步长范围为0.01到0.1;
45)迭代次数加一,返回到步骤41)并重复执行,直到迭代收敛结束。
结合图2,3可以看出,在具有12个节点的网络拓扑结构中,步长为0.06时,常规方法和本发明方法流量的流速随迭代次数逐渐收敛,但显然本发明方法的迭代次数半于常规方法,能够显著提高一般优化算法的收敛速度。当流量接近最优值时,恢复误差(原问题的目标函数)也收敛到相应的最优值。这也意味着通过采用所提出的加速方法,重建误差可以被快速地最小化并且获得低延迟。
根据图4,5可知,在同等规模的拓扑结构中,将步长减为0.04时,虽然加速方法的收敛速度变慢但是与常规方法相比效果依然显著。同时观察到步长大小与收敛速度成正相关,所以使用时仍需自适应地选择步长,并通过实现最优解的收敛速度和精度之间的权衡来设置合适的大小。
由图6,7可以看出,常规方法和本发明设计方法在20、30个节点的拓扑网络结构中,步长相同时,不同网络规模的收敛值对于使用类似的网络拓扑是近似的,加速方法的性能效果对网络规模从20节点到30节点的变化不敏感。

Claims (2)

1.一种面向感知大数据重建的加速分布式优化算法,其特征在于,包括以下步骤:
1)构建感知大数据的重构误差R(xl)最小化模型,其中,感知大数据的重构误差最小化模型具体为:
数据流l中感知大数据的重构误差函数R(xl)为,
R(xl)=C1(xl)-2α
其中常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,xl是数据流l的总流量,即单位时间内汇聚节点接收的测量值;
重构误差最小化模型为:
Figure FDA0003083924950000011
约束条件为:
Figure FDA0003083924950000012
Figure FDA0003083924950000013
Figure FDA0003083924950000014
Figure FDA0003083924950000015
其中,f表示传输速率,G表示群流;
Figure FDA0003083924950000016
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点;Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,
Figure FDA0003083924950000017
表示节点j到其附近节点的接通情况,
Figure FDA0003083924950000018
表示链接(i,j)接通,
Figure FDA0003083924950000019
表示链接(i,j)没有接通,
Figure FDA00030839249500000110
表示数据流l通过链接(i,j)的路由矩阵,
Figure FDA00030839249500000111
表示数据流l通过链接(i,j)的传输速率,
Figure FDA00030839249500000112
表示数据流l通过链接(j,i)的传输速率,
Figure FDA00030839249500000113
表示从节点i输出的输出流量;E表示网络链接,EC表示一组网络派系,随机网络派系
Figure FDA00030839249500000114
是网络派系EC的一个元素,Cij表示链接(i,j)的相关容量能力;
第一个约束条件表示汇聚节点处接收到的数据流l的总流量等于所有感知节点的流量总和,其中在汇聚节点的流量为0,表示为
Figure FDA00030839249500000115
符号D表示汇聚节点;
第二个约束条件表示发送数据满足流量守恒定律,链接(i,j)中除源节点和汇聚节点以外,其余感知节点的输入流量总和等于输出流量的总和,源节点为起始发送数据流的感知节点,从节点i输出的输出流量
Figure FDA0003083924950000021
的值定义如下:
Figure FDA0003083924950000022
其中
Figure FDA0003083924950000023
即表示数据流l从汇聚节点到其他节点的传输速率为0;V-D表示感知节点;
第三个约束条件表示互相干扰的链接不能同时发送数据流,即属于同一个集团
Figure FDA0003083924950000024
的所有链接的占用率之和不超过1,每个感知节点不能同时发送和接收信息;
链接(i,j)上所有数据流l∈G的传输速率总和不超过链接(i,j)的相关容量能力Cij,即:
Figure FDA0003083924950000025
第四个约束条件表示定义变量
Figure FDA0003083924950000026
为非负变量;
2)基于拉格朗日乘子构造原始优化问题和相应的对偶问题,具体为:
21)基于重构误差R(xl)最小化模型,利用拉格朗日乘子
Figure FDA0003083924950000027
Figure FDA0003083924950000028
构造一个拉格朗日函数,表示如下:
Figure FDA0003083924950000029
Figure FDA0003083924950000031
其中,x表示流量,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,xl是数据流l的总流量,
Figure FDA0003083924950000032
为数据流l流经节点i的拥塞价格因子,
Figure FDA0003083924950000033
为一组随机网络派系
Figure FDA0003083924950000034
中的干扰价格因子,
Figure FDA0003083924950000035
表示数据流l流经节点j的拥塞价格因子,
Figure FDA0003083924950000036
表示数据流l流经汇聚节点的拥塞价格因子,
Figure FDA0003083924950000037
表示经过节点i的数据流l的总流量,G表示群流,Pij表示链接(i,j)的传输比例,Pji表示链接(j,i)的传输比例,E表示网络链接,EC表示一组网络派系,随机网络派系
Figure FDA0003083924950000038
是网络派系EC的一个元素,V表示感知节点和汇聚节点,V-D表示感知节点,
Figure FDA0003083924950000039
表示数据流l通过链接(i,j)的传输速率,
Figure FDA00030839249500000310
表示数据流l通过链接(j,i)的传输速率,Cij表示链接(i,j)的相关容量能力,
Figure FDA00030839249500000311
表示数据流l通过链接(i,j)的路由矩阵;
Figure FDA00030839249500000312
表示从节点i输出的输出流量,
Figure FDA00030839249500000313
表示节点j到节点j附近节点的接通情况,
Figure FDA00030839249500000314
表示链接(i,j)接通,
Figure FDA00030839249500000315
表示链接(i,j)没有接通;
22)构造如下格式的原始优化问题:
Figure FDA00030839249500000316
建立相应对偶问题如下:
Figure FDA00030839249500000317
约束条件为:λ≥0;ε≥0 (6);
3)利用双重分解法将原始优化问题进行分解,具体为:
将原始优化问题分解为拥塞控制问题和无线链接流量守恒及互干扰问题;
拥塞控制问题为:
Figure FDA00030839249500000318
约束条件为:
Figure FDA00030839249500000319
其中,x表示流量,R为重构误差函数,
Figure FDA00030839249500000320
为数据流l流经节点i的拥塞价格因子,
Figure FDA00030839249500000321
表示数据流l流经节点j的拥塞价格因子,
Figure FDA00030839249500000322
表示数据流l流经汇聚节点的拥塞价格因子,
Figure FDA00030839249500000417
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
无线链接流量守恒及互干扰问题为:
Figure FDA0003083924950000041
Figure FDA0003083924950000042
约束条件为:
Figure FDA0003083924950000043
其中,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure FDA0003083924950000044
为一组随机网络派系
Figure FDA0003083924950000045
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure FDA0003083924950000046
是网络派系EC的一个元素,
Figure FDA0003083924950000047
表示数据流l通过链接(i,j)的传输速率,Cij表示链接(i,j)的相关容量能力,
Figure FDA0003083924950000048
表示节点j到节点j附近节点的接通情况,
Figure FDA0003083924950000049
表示链接(i,j)接通,
Figure FDA00030839249500000410
表示链接(i,j)没有接通,
Figure FDA00030839249500000411
表示数据流l通过链接(i,j)的路由矩阵;
4)采用加速次梯度方法解决对偶问题,构建加速优化算法进行求解,具体为:
41)基于拥塞价格因子
Figure FDA00030839249500000412
和流量xl(t)的值求解感知节点i∈{V-D}的优化问题,即求解拥塞控制问题,
Figure FDA00030839249500000413
其中,
Figure FDA00030839249500000414
表示第t次迭代时数据流l流经节点i的拥塞价格因子,
Figure FDA00030839249500000415
表示第t次迭代时数据流l流经汇聚节点的拥塞价格因子,xl(t)表示第t次迭代时的数据流l的总流量,
Figure FDA00030839249500000416
表示经过节点i的数据流l的最优流量,argmin表示使目标函数取最小值时的变量值,x表示流量,λ为拉格朗日乘子,R为重构误差函数,
Figure FDA0003083924950000051
为数据流l流经节点i的拥塞价格因子,
Figure FDA0003083924950000052
表示数据流l流经汇聚节点的拥塞价格因子,
Figure FDA0003083924950000053
表示经过节点i的数据流l的总流量,V表示感知节点和汇聚节点,V-D表示感知节点;
42)基于拥塞价格因子
Figure FDA0003083924950000054
和干扰价格因子
Figure FDA0003083924950000055
的值求解每个链接(i,j),i∈{V-D}的优化问题,即求解无线链接流量守恒及互干扰问题:
Figure FDA0003083924950000056
其中,
Figure FDA0003083924950000057
表示第t次迭代时数据流l流经节点j的拥塞价格因子,
Figure FDA0003083924950000058
表示第t次迭代时随机网络派系
Figure FDA0003083924950000059
中的干扰价格因子,
Figure FDA00030839249500000510
表示数据流l通过链接(i,j)的最优传输速率,f表示传输速率,λ、ε均为拉格朗日乘子,λ、ε是对偶变量,
Figure FDA00030839249500000511
为一组随机网络派系
Figure FDA00030839249500000512
中的干扰价格因子,Pij表示链接(i,j)的传输比例,EC表示一组网络派系,随机网络派系
Figure FDA00030839249500000513
是网络派系EC的一个元素,
Figure FDA00030839249500000514
表示数据流l通过链接(i,j)的传输速率,
Figure FDA00030839249500000515
表示数据流l流经节点j的拥塞价格因子,Cij表示链接(i,j)的相关容量能力,
Figure FDA00030839249500000516
表示节点j到节点j附近节点的接通情况,
Figure FDA00030839249500000517
表示链接(i,j)接通,
Figure FDA00030839249500000518
表示链接(i,j)没有接通,
Figure FDA00030839249500000519
表示数据流l通过链接(i,j)的路由矩阵;
43)每个链接(i,j),i∈{V-D}根据步骤42)得到的第t-1次迭代最优传输速率以及如下公式更新拥塞价格因子
Figure FDA00030839249500000520
的值,
Figure FDA00030839249500000521
Figure FDA00030839249500000522
Figure FDA0003083924950000061
Figure FDA0003083924950000062
其中
Figure FDA0003083924950000063
Figure FDA0003083924950000064
是公式(11)中定义的变量,
Figure FDA0003083924950000065
表示在第t-1次迭代时数据流l通过链接(i,j)的传输速率,
Figure FDA0003083924950000066
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,
Figure FDA0003083924950000067
表示第t次迭代时从节点i输出的输出流量,ρλ是对偶变量λ的步长,步长范围为0.01-0.1,当x是非负值时[.]+表示[x]+=x,否则[x]+=0;
44)感知节点i根据步骤42)在第t-1次迭代中更新的最优传输速率以及如下公式更新干扰价格因子
Figure FDA0003083924950000068
的值,
Figure FDA0003083924950000069
Figure FDA00030839249500000618
Figure FDA00030839249500000610
Figure FDA00030839249500000611
其中
Figure FDA00030839249500000612
Figure FDA00030839249500000613
是公式(12)中定义的变量,
Figure FDA00030839249500000614
的值是按照步骤42)在第t-1次迭代后得到的数据流l通过链接(i,j)的最优传输速率,ρε是对偶变量ε的步长,步长范围为0.01到0.1;
45)迭代次数加一,返回到步骤41)并重复执行,直到迭代收敛结束。
2.根据权利要求1所述的面向感知大数据重建的加速分布式优化算法,其特征在于,所述拥塞控制问题和无线链接流量守恒及互干扰问题的最优解求解方法具体为:
拥塞控制问题:基于拥塞控制问题L1(x,λ)的目标函数,感知节点i∈{V-D}的最优流量
Figure FDA00030839249500000615
如公式(9)所示,根据拥塞价格因子
Figure FDA00030839249500000616
和流量
Figure FDA00030839249500000617
的值,感知节点i∈{V-D}在第t次迭代处更新其数据流l,并且求解优化问题(9)的过程为:
利用低通滤波方法解决优化问题(9),感知节点i∈{V-D}的流量通过如下公式更新:
Figure FDA0003083924950000071
Figure FDA0003083924950000072
根据最优化拉格朗日增广变量的定义,增广变量
Figure FDA0003083924950000073
Figure FDA0003083924950000074
的最优估计,γ1为步长,步长范围为0.01-0.1,常数C1>0,α=α1≥0是与原始感知数据的可压缩程度相关的常数,αl表示数据流l中感知数据的稀疏水平,
Figure FDA0003083924950000075
表示第t次迭代后经过节点i的数据流l的总流量;
按照如下公式计算:
Figure FDA0003083924950000076
其中,xl(t+1)表示第t次迭代后数据流l的总流量;
无线链接流量守恒及互干扰问题:基于无线链接流量守恒及互干扰问题L2(f,λ,ε)的目标函数,数据流l在链接(i,j)上的最优传输速率如公式(10)所示,根据拥塞价格因子
Figure FDA0003083924950000077
和干扰价格因子
Figure FDA0003083924950000078
的值,每个链接(i,j)在第t次迭代处更新数据流l的传输速率,优化问题(10)的求解过程为:
求解函数L2(f,λ,ε)相对于变量
Figure FDA0003083924950000079
的偏导数:
Figure FDA00030839249500000710
结合一阶拉格朗日算法和低通滤波方法按照公式(17)组成联合求解方法,
链接(i,j)上的数据流l的传输速率更新为:
Figure FDA0003083924950000081
Figure FDA0003083924950000082
其中增广变量
Figure FDA0003083924950000083
Figure FDA0003083924950000084
的最优估计,γ2为步长,步长范围为0.01-0.1,
Figure FDA0003083924950000085
表示在第t次迭代时数据流l通过链接(i,j)的传输速率。
CN201810736403.0A 2018-07-06 2018-07-06 面向感知大数据重建的加速分布式优化算法 Active CN108934029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810736403.0A CN108934029B (zh) 2018-07-06 2018-07-06 面向感知大数据重建的加速分布式优化算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810736403.0A CN108934029B (zh) 2018-07-06 2018-07-06 面向感知大数据重建的加速分布式优化算法

Publications (2)

Publication Number Publication Date
CN108934029A CN108934029A (zh) 2018-12-04
CN108934029B true CN108934029B (zh) 2021-09-24

Family

ID=64447720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810736403.0A Active CN108934029B (zh) 2018-07-06 2018-07-06 面向感知大数据重建的加速分布式优化算法

Country Status (1)

Country Link
CN (1) CN108934029B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614571B (zh) * 2020-04-26 2022-03-04 北京邮电大学 一种分布式的关键型任务端到端时延优化方法及系统
CN113411821B (zh) * 2021-06-18 2021-12-03 北京航空航天大学 一种复杂网络的体系重构能力测评方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843219A (zh) * 2012-09-07 2012-12-26 西安交通大学 协作多点联合传输中鲁棒的和速率优化预编码方法
CN103684850A (zh) * 2013-11-25 2014-03-26 浙江大学 基于服务邻域的Web Service服务质量预测方法
CN103716262A (zh) * 2012-10-09 2014-04-09 王晓安 基于时域参数提取的信道估计方法
CN105760959A (zh) * 2016-02-24 2016-07-13 武汉大学 一种基于两阶段萤火虫编码的机组组合优化方法
CN106548016A (zh) * 2016-10-24 2017-03-29 天津大学 基于张量时域相关性分解模型的时间序列分析方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8468244B2 (en) * 2007-01-05 2013-06-18 Digital Doors, Inc. Digital information infrastructure and method for security designated data and with granular data stores
US9553453B2 (en) * 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9618912B2 (en) * 2013-05-17 2017-04-11 Mitsubishi Electric Research Laboratories, Inc. MPC controller using parallel quadratic programming
US9317780B2 (en) * 2013-10-17 2016-04-19 Xerox Corporation Detecting multi-object anomalies utilizing a low rank sparsity model
US9825812B2 (en) * 2013-12-05 2017-11-21 Pulse Secure, Llc Transparently intercepting and optimizing resource requests

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843219A (zh) * 2012-09-07 2012-12-26 西安交通大学 协作多点联合传输中鲁棒的和速率优化预编码方法
CN103716262A (zh) * 2012-10-09 2014-04-09 王晓安 基于时域参数提取的信道估计方法
CN103684850A (zh) * 2013-11-25 2014-03-26 浙江大学 基于服务邻域的Web Service服务质量预测方法
CN105760959A (zh) * 2016-02-24 2016-07-13 武汉大学 一种基于两阶段萤火虫编码的机组组合优化方法
CN106548016A (zh) * 2016-10-24 2017-03-29 天津大学 基于张量时域相关性分解模型的时间序列分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于Storm的面向大数据实时流查询系统设计研究;蒋晨晨; 季一木; 孙雁飞; 王汝传;《南京邮电大学学报(自然科学版)》;20160629;全文 *
大数据中面向乱序数据的改进型BP算法;卓林超; 王堃;《系统工程理论与实践》;20140625;全文 *
大数据压缩编码与寻址关键技术及其应用;孙知信;陈思光;陈松乐;赵学健;《科技成果》;20141201;全文 *

Also Published As

Publication number Publication date
CN108934029A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
Cheng et al. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks
Nguyen et al. Compressive sensing based random walk routing in wireless sensor networks
Pattem et al. The impact of spatial correlation on routing with compression in wireless sensor networks
Hou et al. Rate allocation and network lifetime problems for wireless sensor networks
Chen et al. Compressive network coding for wireless sensor networks: Spatio-temporal coding and optimization design
CN108934029B (zh) 面向感知大数据重建的加速分布式优化算法
CN102202349B (zh) 基于自适应最优消零的无线传感器网络数据压缩方法
Wang et al. A UAV-assisted topology-aware data aggregation protocol in WSN
CN105554888A (zh) 基于链路多速率的多射频多信道无线Mesh网络信道分配算法
CN107147433A (zh) 基于半张量积压缩感知模型的确定性随机观测阵构造方法
Zhang et al. Compressive sensing and random walk based data collection in wireless sensor networks
Cai et al. Optimal max-min fairness rate control in wireless networks: Perron-Frobenius characterization and algorithms
Tian et al. Massive unsourced random access over Rician fading channels: Design, analysis, and optimization
CN108366394A (zh) 基于时空压缩网络编码的高能效无线传感网数据传输方法
Enam et al. An adaptive data aggregation technique for dynamic cluster based wireless sensor networks
Wu et al. Routing algorithm based on social relations in opportunistic networks
Roumy et al. Optimal matching in wireless sensor networks
CN103368586A (zh) 面向深空探测多媒体业务的独立窗不等保护喷泉编码方法
CN101809873B (zh) 用于多描述编码的方法和设备
CN111182488A (zh) 一种基于时间信道的溯源数据节能传输方法
Han et al. A data gathering algorithm based on compressive sensing in lossy wireless sensor networks
CN101808383A (zh) 面向矩阵式无线传感器网络的随机路由的选择方法
CN103686916A (zh) 一种基于剩余能量和期望传输次数的工业无线传感网多路径数据传输方法
Manuel et al. Energy-efficient Data Aggregation in Low-power Wireless Networks with Sensors of Discrete Transmission Ranges: A Mathematical Framework for Network Design
Jonckheere et al. Large deviations for the stationary measure of networks under proportional fair allocations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant